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Abstract. This paper presents the design and implementation of a novel VLIW digital signal processor (DSP)

for multimedia applications. The DSP core embodies a distributed & ping-pong register file, which saves 76.8%

silicon area and improves 46.9% access time of centralized ones found in most VLIW processors by restricting

its access patterns. However, it still has comparable performance (estimated in cycles) with state-of-the-art DSP

for multimedia applications. A hierarchical instruction encoding scheme is also adopted to reduce the program

sizes to 24.1õ26.0%. The DSP has been fabricated in the UMC 0.13 mm 1P8M Copper Logic Process, and it can

operate at 333 MHz while consuming 189 mW power. The core size is 3.2� 3.15 mm2 including 160 KB on-

chip SRAM.
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1. Introduction

Programmable processors are attractive in embedded

multimedia systems because software-based systems

need less development effort. Bugs can be fixed with

field patches and the products may be upgraded to

support new standards with only software. These

factors reduce the time-to-market, extend the time-

in-market, and thus help to make the greatest profits.

However, today_s multimedia applications, including

speech, audio, image and video processing demand

extremely high computing power, and the processors

must exploit the inherent parallelism extensively to

meet the requirements. For instruction-level parallel-

ism, VLIW architectures [1] have low-cost static

instruction scheduling (by compilers or assembly

programmers) and thus deterministic execution time

compared to the dynamically scheduled superscalar

ones. They have already become mainstreams of

high-performance DSP designs [2, 3]. However,

VLIW processors have two major weaknesses that

prevent the integration of more functional units with

higher instruction issue rate—the dramatically grow-

ing register file complexity and the poor code

density. This paper proposes a distributed and ping-

pong register organization, which saves 76.8%

silicon area and 46.9% access time of non-scalable

centralized register files in conventional VLIW



processors. A hierarchical instruction-encoding

scheme is also proposed to reduce the program sizes

to 24.1õ26.0%. Figure 1 shows the VLIW DSP

architecture with packed instructions and the clus-

tered architecture (Pica), which integrates up to four

clusters depending on application requirements.

These clusters can operate independently by explor-

ing data-level parallelism in most DSP applications,

or inter-cluster communications can be carried out

via the memory subsystem. We have implemented a

prototype of Pica DSP with two identical clusters in

the UMC 0.13 mm 1P8M Copper Logic Process. The

chip can operate at 333 MHz and consumes 189 mW

average power. Its core size is 3.2� 3.15 mm2

including the 160 KB on-chip memory.

The rest of this paper is organized as follows. Section

2 describes clustered architectures and our proposed

distributed and ping-pong register file respectively that

reduce datapath complexity. Section 3 describes

hierarchical instruction encoding to improve the

code density of VLIW processors. The design and

verification flow of programmable processors are

summarized in Section 4, while the implementation

results from instruction set simulation to silicon

proof are available in Section 5. Section 6 concludes

this work and outlines our future researches.

2. Register Organization

2.1. Clustered Architectures

A register file provides temporal storage and inter-

connections for parallel functional units (FU) in a

microprocessor. As more and more FU are integrated

into a microprocessor, the complexity of the register

file grows rapidly. For a centralized register file for N

FU, where each FU can read or write any register

directly, the area complexity is N3, the access delay

is N3/2, and the power dissipation is N3 [4].

Therefore, register files in modern wide-issue

microprocessors are usually partitioned to reduce

hardware complexity [5–12]. Figure 2 shows a

generic clustered architecture, where each FU has

direct accesses only to a subset of the register file. If

data need passing across clusters, additional wiring

and execution cycles are necessary for inter-cluster

communication (ICC).

ICC mechanisms can be classified into three

categories [5, 6]. The first one is to use Bcopy^
instructions, which are issued through existing

instruction slots [7] or dedicated slots [8], to copy

variables from (or to) the register files of other

clusters. The former can reduce additional access

ports on each of the partitioned register files, but it

wastes some effective instruction cycles. The second

ICC category is through extended register accesses,

where each cluster has limited Bread^ accesses from
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[9] (or Bwrite^ accesses to [10]) other partitioned

register files. The third kind of ICC mechanisms is

via some common storage resources, such as shared

memory or specific shared registers [11].

Table 1 shows the comparison of ICC mecha-

nisms [6]. The function f(x, y, n, w) denotes the

hardware complexity of a centralized register file

with x read ports, y write ports, and n w-bit registers,

of which the cell-based implementation requires n

registers, x n-input multiplexers (n:1 MUX) for the

read ports and n y:1 MUX with some glue control for

the write ports. The glue control is negligible when

w is much larger than y. Thus, the area complexity

of f can be approximated with the area of

x n� 1ð Þ þ n y� 1ð Þ½ � � w 2:1 MUX and n�w

flipflops, while the time complexity can be approx-

imated as the delay of log2n 2:1 MUX or the delay of

log2y 2:1 MUX plus the write control overheads. The

register file complexity of the clustered architectures

with dedicated ICC copy slots can be described as

c� f x=c þ p; y=c þ p; n=c; wð Þ þ gCP c; p; wð Þ,
where c denotes the number of clusters, each of

which has p extra ports. The g function describes the

interconnection complexity of the ICC switch net-

work. The architectures without dedicated copy slots

have the same register file complexity as those with

extended read ICC: c� f x=cþ p; y=c; n=c; wð Þ þ
gER c; p; wð Þ , where no extra write port is needed.

Similarly, the register file complexity of those with

extended write ICC can be described as c�
f x=c; y=cþ p; n=c; wð Þ þ gEW c; p; wð Þ . We have

adopted the ICC mechanism through the on-chip

data memory [6]. When a load/store pair in a VLIW

packet has an identical memory address, the data

variable from the Bstore^ will be directly forwarded

to the Bload^. The proposed ICC mechanism with

load/store pairs has the lowest complexity of c�
f x=c; y=c; n=c; wð Þ þ gLS c; p; wð Þ . Note that the

existing crossbar in the memory subsystem can be used

for ICC, and therefore the g complexity can be absorbed.

2.2. Distributed and Ping-Pong Register File

Besides global clustering, the register file complexity

of each cluster can be further reduced. Figure 3

shows a cluster of Pica with a load/store unit (LS), an

arithmetic unit (AU), and the proposed distributed

and ping-pong register file with 32 registers. The 32

registers are divided into four independent banks,

and each bank is equipped with the access ports for a

single functional unit (FU) only (i.e. two Bread^ and

two Bwrite^ ports in our case). The address registers

(a0õa7) and the accumulators (ac0õac7) are dedi-

cated to LS and AU respectively, and they are not

visible to the other FU. The remnant 16 registers are

shared between these two FU and they are divided

into two banks with exclusive accesses. In other

words, when LS accesses the ping, AU can only

access the pong, and vice versa. Each VLIW packet

of Pica needs to specify its access mode (to be either

ping or pong) with a corresponding bit (i.e. the

Bping-pong index^ described later) in its encoding.

Pica supports powerful SIMD instructions based

on the proposed distributed and ping-pong register

file. For example, the double load (store) word

instruction:

dlw dm; aið Þ þ k; aj
� �þ l:

It performs two memory accesses (i.e. dm@
Mem32[ai] and dm+1@Mem32[aj]) and two address

updates (i.e. ai@ai+ k, and aj@aj+ l) simultaneous-

ly. The index m must be an even number with m+ 1

implicitly specified. These double load/store instruc-

tions require six concurrent accesses of the register

Table 1. Comparison of ICC mechanisms.

HW complexity

Centralized f (x, y, n, w)

Copy c� f x=cþ p; y=cþ p; n=c; wð Þ þ gCP c; p; wð Þ
Extended read c� f x=cþ p; y=c; n=c; wð Þ þ gER c; p; wð Þ
Extended write c� f x=c; y=cþ p; n=c; wð Þ þ gEW c; p; wð Þ
Load/store pair c� f x=c; y=c; n=c; wð Þ þ gLS c; p; wð Þ

address registers a0~a7

Load/Store Unit (LS)

Arithmetic Unit (AU)

ping registers d0~d7

pong registers d'0~d'7

accumulators ac0~ac7

Figure 3. Distributed and ping-pong register organization.

High-Performance and Complexity-Effective VLIW DSP 211



file (including two Breads^ and four Bwrites^ for dlw,

or four Breads^ and two Bwrites^ for dsw). They do

not cause access conflict on the distributed and ping-

pong register file, because ai and aj are private

address registers while dm and dm+1 are ping-pong

registers that deliver data between LS and AU. These

registers locate at independent banks. The DSP

also supports sub-word (16-bit) SIMD multiply-

accumulations with full-precision results on two

40-bit accumulators aci and aci+1:

fmac:d aci; dm; dn:

It performs aci  aci þ dm:H � dn:H (dm.H and

dn.H denote the upper 16 bits of dm and dn
respectively) and aciþ1  aciþ1 þ dm:L� dn:L (dm.L

and dn.L denote the lower 16 bits of dm and dn)

in parallel. Similarly, the index i must be an even

number with i+ 1 implicitly specified. This instruc-

tion requires six concurrent accesses of the register

file (i.e. four Breads^ and two Bwrites^). Without

the proposed ping-pong register file, Pica will

need a 14-port centralized one for the 14 simulta-

neous register accesses (i.e. four Breads^ and four

Bwrites^ for LS and four Breads^ and two Bwrites^
for AU).

Finally, each of the four four-port banks (i.e. with

two Breads^ and two Bwrites^) in Fig. 3 can be

further partitioned into even and odd banks, and the

distributed and ping-pong register file can be

implemented using eight smaller banks, each of

which has only two Bread^ and one Bwrite^ ports.

We define fDPP n; wð Þ ¼ 8� f 2; 1; n=8; wð Þ þ g_DPP wð Þ
as the hardware complexity of a distributed and ping-

pong register file with n w-bit registers. The f

function is that for the centralized register file

described in Section 2.1, and g`DPP denotes the

complexity of the mapping between logical and

physical ports. The port mapping contains six 6:1

MUX and two 3:1 MUX (for rm+1 and ri+1 in LS and

AU respectively) for the read ports, and one 2:1

MUX (even private bank), one 4:1 MUX and one 2:1

MUX (odd private banks), two 3:1 MUX (even ping-

pong banks) and two 6:1 MUX (odd ping-pong

banks) for the write ports respectively. By the way,

the ping-pong registers can be extended for a special

ICC mechanism via register permutations, such as

the proposed Bring-structure register organization^ in

our previous work [12].

The assembly syntax of our VLIW packet starts

from the ping-pong index, followed by the instruc-

tions to each issue slot in sequence:

ping�pong index; i0 for LSð Þ; i1 for AUð Þ;:

In the following, we are going to use FIR and

DCT, two popular DSP kernels [13], to illustrate

how the proposed distributed and ping-pong register

file works, and show some code optimization

techniques. Assume there is no delay slot (such as

an ALU instruction that follows a load instruction

immediately cannot use the load result in classical

five-stage pipelined processors) for simplicity. The

data memory is byte-addressable.

& FIR filtering

The following code segment is to perform 64-

tap finite-impulse response (FIR) filtering on

1,024 samples. The inputs including both the

data samples (pointed by X) and the coefficients

(pointed by COEF) are 16-bit fractional numbers

and the outputs (pointed by Y) are 32-bit

variables.

 PP LS AU 
1 0; li a0, COEF; li ac0, 0; 
2 0; li a1, X; nop; 
3 0; li a2, Y; nop; 
4  rpt 1024, 8; 
5 0; dlw d0, (a0)+4, (a1)+4; li ac1, 0; 
6  rpt 15, 2; 
7 1; dlw d0, (a0)+4, (a1)+4; fmac.d ac0, d0, d1; 
8 0; dlw d0, (a0)+4, (a1)+4; fmac.d ac0, d0, d1; 
9 1; dlw d0, (a0)+4, (a1)+4; fmac.d ac0, d0, d1; 

10 0; li a0,COEF; fmac.d ac0, d0, d1; 
11 0; addi a1, a1, -126; add d0, ac0, ac1; 
12 1; sw (a2)+4, d0; li ac0, 0; 

The zero-overhead loop instructions (rpt in the

line 4 and line 6) are carried out in the instruction

dispatcher and do not consume execution cycles

of the datapath. The inner loop (line 7õ8 in dark

gray) loads two 16-bit inputs and two 16-bit

coefficients into the 32-bit d0 and the 32-bit d1
with the SIMD load operations (i.e. d0@Mem32

[a0] and d1@Mem32[a1]), and the address

registers a0 and a1 are updated simultaneously

(i.e. a0@a0 + 4 and a1@a1 + 4). In the meanwhile,

AU performs two 16-bit (SIMD) multiply-

accumulations (i.e. ac0@ac0 + d0. H� d1. H and

ac1@ac1+ d0. L� d1. L). After accumulating 32
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32-bit products respectively with two 40-bit

accumulators, ac0 and ac1 are added together

and rounded back to the 32-bit d0 in the ping-

pong registers. Finally, the 32-bit output is stored

in the memory by LS via d0. In this example,

each output is produced in 35 cycles, and the

loops can be unrolled to easily achieve similar

performance when the load slots are taken into

account.

& Discrete Cosine Transform (DCT)

Figure 4 shows the eight-point fast DCT

algorithm [14], which is extensively used in image

and video processing. In this case, the number of

operations per sample is larger than the previous

FIR example. Thus, LS can assist in performing

some simple arithmetic operations to balance the

loading.

The first dlh (double load half words; line 3)

instruction loads and sign-extends the first and the

last 16-bit input data (i.e. x0 and x7 in Fig. 4) into

32-bit d0 and d1. AU performs a butterfly

operation on these two data by switching the

ping-pong index in the succeeding VLIW packet.

The butterfly operations on the other three input

pairs are performed accordingly. The final two

butterfly operations for the even outputs (i.e. X0,

X2, X4, and X6 shown in Fig. 4) are performed in

LS instead (line 12õ17) after the coefficient

multiplication, which must be performed in AU

following the two butterfly operations (line 8–11).

In this example, an eight-point DCT can be carried

out in 24 cycles. Note that two eight-point DCT

can be concurrently performed in one cluster with

SIMD instructions, and thus a 2D 8� 8 DCT (i.e.

equivalent to sixteen eight-point DCT) requires

only 192 cycles.

3. Instruction Encoding

VLIW architectures are notorious for their poor code

density, which comes from the redundancy inside (1)

fixed-length RISC-like instructions, for many

instructions do not use all bits actually; (2) fixed-

length VLIW packets of which the encoding dedi-

cates a bit-field for each issue slot, and NOPs will be

filled in the unused slots; and (3) the repeated codes

due to loop unrolling or software pipelining. Here,

we define an instruction to be a RISC-like operation

for an issue slot, and a VLIW packet (or simply a

packet) as the instructions issued in the same cycle.

HAT [15] is an effective variable-length instruction

format to improve the first problem. Variable-length

VLIW encoding applied on TI C64 [9] and NEC

SPXK5 [16] can eliminate NOP in a packet by

attaching a slot number to each instruction for run-

time dispersal. Besides, an additional mark is needed

for each instruction to denote the boundary of each

variable-length packet (i.e. with a varying number of
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C3/8

C3/8

S3/8

C1/4
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S1/4

C1/4

C1/4

S1/4

C7/16

C7/16

S7/16 S3/16

C3/16

C3/16

Figure 4. Discrete cosine transform.

PP LS AU

1 0; li a0,X; nop;
2 0; li a1,COEF; nop;
3 0; dlh d0,0(a0),14(a0); nop;
4 1; dlh d0,2(a0),12(a0); bf ac0,d0,d1;
5 0; dlh d0,4(a0),10(a0); bf ac4,d0,d1;
6 1; dlh d0,6(a0),8(a0); bf ac6,d0,d1;
7 0; lh d4,0(a1); bf ac2,d0,d1;
8 1; dlh d4,0(a1),2(a1); bf d0,ac0,ac2;
9 1; dlh d6,4(a1),6(a1); bf d2,ac4,ac6;

10 1; nop; add d3,d1,d3;
11 1; nop; xmpy16 d3,d3,d4;
12 0; add d4,d0,d2; add d0,ac3,ac7;
13 0; sub d5,d0,d2; add d1,ac5,ac7;
14 0; dsh d4,0(a0),8(a0); add d2,ac5,ac1;
15 0; add d4,d1,d3; xmpy16 d4,d4,d1;
16 0; sub d5,d1,d3; bf ac0,ac1,d4;
17 0; dsh d4,4(a0),12(a0); sub d3,d0,d2;
18 0; nop; xmpy16 d3,d3,d5;
19 0; nop; xmpy16 d6,d0,d6;
20 0; nop; add ac2,d3,d6;
21 0; nop; xmpy16 d7,d2,d7;
22 0; nop; add d7,d7,d2;
23 0; nop; add ac3,d3,d7;
24 0; nop; bf d0,ac1,ac3;
25 1; dsh d0,10(a0),6(a0); bf d0,ac0,ac2;
26 0; dsh d0,2(a0),14(a0); nop;
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effective instructions). Indirect VLIW [8] uses a

programmable microinstruction memory for the

VLIW datapath (i.e. the programmable VIM), and

the VLIW packets are stored internally and executed

with short indices. The instructions in existing

packets may be reused to synthesize new packets to

reduce the instruction bandwidth. Systemonic pro-

poses an incremental encoding scheme for the prolog

and the epilog of software pipelined codes [17],

which helps to remove the repeated instructions. Pica

uses a novel and integrated encoding scheme [18],

which takes into account the three problems to

improve the VLIW code density.

3.1. Variable-length Instructions

First, each instruction is variable-length coded,

depending on the number of operands, the size of

its immediate variable, the frequency of its occur-

rence, and whether it is conditionally executed. Note

that the same operations in different issue slots need

not be coded identical. The variable-length instruc-

tion is divided into a fixed-length Bhead^ and a

variable-length Btail^ as the HAT format to reduce

the complexity of instruction alignment and dis-

persal. Figure 5 shows our encoding of the add/sub

instructions for the arithmetic unit (AU). Note that

the heads need not have the same length across

different issue slots.

3.2. VLIW Packets without NOP

NOP instructions are not coded in the VLIW packets

for Pica. Here we attach a fixed-length CAP to each

VLIW packet. The CAP has a Bvalid^ field for

centralized dispersal, of which each bit indicates

whether its corresponding issue slot has an effective

instruction. In other words, NOPs are eliminated by

turning the corresponding Bvalid^ bits off. Besides,

the total length of the Bheads^ and Btails^ (HT) of a

VLIW packet can be calculated easily for parallel

grouping, with the Bvalid^ for the fixed length

Bheads^ and the Btail length^ for the variable-length

Btails^. To reduce the CAP length and the alignment

complexity, while supporting enough flexibility, the

tail lengths are restricted to be multiple of 4. Figure 6

shows the 14-bit CAP format of the 4-way Pica DSP.

Figure 7a gives an illustrating example with only two

effective instructions. The addi instructions are

converted into machine code first by looking up the

encoding table in Fig. 5. The CAP is then encoded as

0 for a VLIW packet; 0101 to remove NOP in the

first and the third instruction slots; 00010 for an

eight-bit total tail length; 00 for the ping-pong

indices; and 00 to disable SIMD clusters and

conditional execution.

The identical clusters in the VLIW/data streaming

mode of Pica can be configured into SIMD execution

by asserting the S bit in the CAP. The instructions of

the main cluster will be replicated to reduce the code

0000

Tail (0~32-bit)Head (16-bit)

add

func

rd rs rt

0001
add.d

rd rs rt

0110 rd rs rt

func: 0000(sub), 0001(sub.d), 0010(sub.q), 0011(adc)
0101(bf.d), 0110(add.q)

3-addr (less frequently occur)

1000 rd rs DL
immediate

func immediate

func: 00(addi), 01(addi.d), 10(addi.q), 11(rsbi)
DL: 00(4-bit), 01(8-bit), 10(16-bit), 11(32-bit)

1001
abs

rd rs 0000

1001
abs.d

rd rs 0001

Figure 5. Instruction encoding for add/sub instructions.

Valid Tail Length PP

1-bit 4-bit 5-bit 2-bit

0: VLIW/data streaming mode

1: Scalar/program control mode & differential encoding

M S C

Conditional execution

SIMD clusters

Figure 6. CAP in Pica.

e.g.  00 nop;  addi d0, ac4, -8;  nop;  addi d0, ac4, -8;

0101 00010 000

1000

CAP

10001000 1000H1

H3

T1

T3

0 0

0100 00

1000 1000 0100 00

a

0100 00001 000CAP 1 0

b

00

00

10001000 1000H1 T10100 00 00

Figure 7. Example of proposed VLIW encoding. a An illustrat-

ing example with only two effective instructions. b SIMD

execution by asserting the S bit in the CAP.
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size. Figure 7b is an example, which eliminates the

encoding of the instruction for the slave cluster by

turning on the S bit. Besides SIMD execution, we also

supports differential encoding to reduce the repeated

instructions in loop-unrolled or software-pipelined

programs. A VLIW packet can be reused to synthe-

size a new one for its succeeding cycle with a small

register index offset or new ping-pong indices.

3.3. Instruction Bundles

In order to simplify the accesses of variable-length

VLIW packets in the instruction memory, the

packets are first packed into fixed-length instruction

bundles. The fixed-length CAP and the variable-

length HT of a VLIW packet are placed individually

from the two ends of an instruction bundle as shown

in Fig. 8a. Moreover, all fixed-length Bheads^ are

placed first in order, ahead of their variable-length

Btails^. The proposed code layout enables parallel

packet fetch, alignment, dispersal, and decoding. It is

even possible to look ahead succeeding VLIW

packets to further reduce control overheads. We

attach a B#CAP^ field to each bundle to indicate the

number of packets in the bundle. In our simulations,

the 512-bit bundle size is optimal, which has

practical decoding complexity and acceptable frag-

ment (i.e. the unused bits in a bundle that cannot

accommodate a new packet). Our first prototype of

Pica DSP contains 32 kByte on-chip instruction

memory, which can hold 512 512-bit bundles. We

will use these parameters hereafter for simplicity.

Instead of huge multiplexers, we use incremental

and logarithmic shifters to extract VLIW packets

CAP 1 H1T3

VLIW packet 1 (variable-length)

512-bit bundle

14-bit

#
CAP

5-bit

T1 H3

a

32-KB instruction memory with 512 bundles

CAP shifter (14-bit)

CAP buffer (280-bit)

CAP decoder

14

280

H0 shifter (0/16-bit)

H1 shifter (0/16-bit)

H2 shifter (0/16-bit)

C shifter (0/20-bit)

Tail shifter (0~124-bit)

HT buffer (465-bit)

Tail
decoder

465

16

16

16

16

465

124

Head
decoder

465280

280

H3 shifter (0/16-bit)

bundle register (512-bit)

4

1

5

valid

C

tail length

# CAP

b
Figure 8. a Instruction bundle and b packet extractor.
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from an instruction bundle as shown in Fig. 8b. The

CAP decoder first decodes a leading CAP (14-bit) of

the CAP buffer and the CAP will then be shifted out

to allocate a new CAP for the next packet. The right-

hand-side incremental shifters follow to shift out

0õ4 fixed-length Bheads^ depending on the Bvalid^
of the current CAP. If the C-bit in the CAP is

asserted, more 20 bits will be shifted out, where an

instruction slot has an independent five-bit condition

code. Finally, the logarithmic tail shifter will shift

out all Btails^ of the VLIW packet. A new VLIW

packet can thus be allocated, similarly to the CAP. In

brief, a CAP and a HT are continuously shifted out

from the two ends of an instruction bundle, and a

new VLIW packet will be aligned every cycle to the

boundaries of the CAP buffer and the HT buffer

respectively. The lengths of the CAP and HT buffers

can be estimated as follows:

bundle capacity ¼ bundle size� log2 worst�case #CAPð Þd e
¼ 512� log2 19:5ð Þd e ¼ 507 bitsð Þ

worst�case #CAP ffi bundle capacity
average length of scalar instr:

¼ 507
26
¼ 19:5 � 20ð Þ

CAP buffer size ¼ CAP size� worst�case #CAP
¼ 14� 20 ¼ 280 bitsð Þ

HTbuffer size ¼ bundle capacity � CAP size� bundle capacity
maximum packet length

l m

¼ 507� 14� 507
222

� � ¼ 465 bitsð Þ

First, the capacity of a bundle to accommodate

VLIW packets can be calculated by deducting the

B#CAP^ bits from the bundle size. We assume that the

worst-case number of CAPs turns up when a bundle

only holds scalar instructions (encoded as a fixed-length

CAP and a variable-length Btail^, describe later), which
are much shorter than VLIW packets. Thus, the CAP

buffer needs to hold this worst-case number of entries,

which can be approximated by themaximum number of

scalar instructions of average length. The worst-case

HT buffer size is the bundle capacity minus the bits

impossible to be either Bheads^ or Btails^ (i.e. the

minimum number of CAPs in a bundle, which equals to

the minimum number VLIW packets). Note that the

two buffers have overlapped bits, for the boundary

between CAPs and HTs is not deterministic. Finally, it

is important to mention that the above estimation is

conservative. The buffer sizes can be decided arbitrarily

with constraints on the linker and the code generation

tools to prevent illegal instruction bundles.

Program flow instructions in Pica have a bundle

offset, a CAP index, and a HT pointer, and it can

jump to an arbitrary VLIW packet by fetching a new

instruction bundle and shifting out unused CAPs and

HTs. They are also variable-length encoded as the

effective VLIW instructions, where a variable-length

program flow instruction is decomposed into a fixed-

length CAP with a leading 1 (instead of a fixed-

length Bhead^ as the VLIW instruction) and a

variable-length Btail^. Program flow instructions

and VLIW packets are mixed together, and their

CAPs, Bheads^ and Btails^ are stuffed in order into

instruction bundles. We have developed a linking

tool to automatically translate the code labels in Pica

assembly (or the instruction offsets of PC-relative

jump or branch instructions in a compiled code) into

their corresponding bundle offsets, CAP indices and

HT pointers in the machine code. Figure 9 shows the

complete instruction decoder for Pica DSP, where a

CAP selector is used instead of the shifter in Fig. 8b.

The Bhead^ dispersal of a packet and the packet

alignment with branching are parallel, so the sizes of

the incremental shifters are significantly reduced.

4. Design and Verification Flow

Figure 10 shows a generic design flow for program-

mable processors, including definition of an instruction

set, exploration of an optimal micro-architecture that

implements the instruction set architecture (ISA), RTL

authoring, and silicon/or FPGA implementations.

Designers move forward to the next phase once the

function and the performance meet the processor

specification. Although iteration is inevitable in the

design process, the overall design time can still be

minimized by reducing the number of iterations,

especially in the major loops. In the following sections,

we will describe the design tasks respectively.

32-KB instruction memory with 512 bundles

CAP decoder

14

280

H0 shifter (0/16-bit)

H1 shifter (0/16-bit)

H2 shifter (0/16-bit)

C shifter (0/20-bit)

HT buffer (465-bit)

Tail
decoder

208
16

16

16

16

HT aligner
(0~456-bit)

124

Head
decoder

CAP selector
(20-to-1)

H3 shifter (0/16-bit)

bundle register (512-bit)

465

465 465

20

4

1

6

valid

C

HT length

# CAP

Figure 9. Instruction decoder.
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4.1. Instruction Set Design

An instruction set characterizes the functional be-

havior of a processor, and the software must be

mapped to or encoded in this instruction set in order

to be executed by the processor. In other words,

every program is compiled into a sequence of

instructions in the instruction set. Attributes associ-

ated with an instruction set design include assembly

language, instruction format, addressing modes and

programming model, which are exposed to the

software as perceived by compilers or assembly

programmers. The instruction set may influence

design effort and implementation complexity. Thus,

we focus not only on the micro-architecture techni-

ques but also on the instruction set design. The

primitive instructions of Pica DSP are defined by

pruning the MIPS32 instruction set. DSP-enhanced

instructions are added by surveying the instruction

sets of state-of-the-art DSPs, such as TI C64 [9]/C55

[19], NEC SPXK5 [16], and Intel/ADI MSA [20],

etc. Whether an instruction is included in our

instruction set depends on the tradeoffs between

performance (in terms of cycle counts or code sizes

of applications) and implementation complexity

(both the cycle time and silicon area). An instruction

set design can be modeled as an instruction set

simulator (ISS) for early performance evaluation,

which is usually the most abstract model of a

programmable processor. By the way, ISS is also

very useful for development of large-scale applica-

tion software, because it avoids hardware details that

are not exposed to the software programming.

4.2. Micro-Architecture Exploration

A micro-architecture is a specific implementation of

an ISA design, where all implementations should

execute any program encoded in that instruction set.

Attributes associated with an implementation include

the pipeline design and the memory organization.

Figure 11 shows the pipeline design flow. The

instructions are first classified to design their

corresponding datapaths. In general, a processor

must do three generic tasks to perform a computa-

tion—(1) arithmetic operations, (2) data movements,

and (3) instruction sequencing. The semantics of

each of the three instruction types can be specified

based on the sub-computations performed by the

instruction type. Designers can begin with the five

ISA Design (ISS)

Exploration (SystemC)
Microarchitecture

RTL Authoring

Implementation

Function?

Instr.
Count ?

Function?

Cycle
Count?

Function?

Timing
Area/Power?

Modify ISA /
Add or factorize instr

Modify latency /
Merge or factorize stages

Improve coding style

Improve constraints

Verified with hand-code assembly

Verified with hand-code assembly
or compiled program

Equivalence checking with
cycle-accurate SystemC model

Function?
Formal equivalence checking with
RTL model

Figure 10. Generic design flow for programmable processors.

Instruction Classification

Operation Factorization

Pipeline Balancing
(subdivide or merge)

Optimal Forwarding

Instruction Set

Processor Pipeline

Figure 11. Pipeline design.
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generic sub-computations. Instructions with distinct

sequences of sub-computations can be separated into

different pipelines to improve modularity [21].

One natural operation factorization is based on the

five generic sub-computations. That is, each of the

five sub-computations is mapped to a pipeline stage,

resulting in a five-stage pipeline. The pipeline stages

can be further balanced to minimize the internal

fragment with two methods—(1) merge multiple

sub-computations into one, and (2) subdivide a sub-

computation into multiple sub-computations. Figure

12a shows the initial design with two four-stage

pipelines, where the critical path lies on the multiply-

accumulator (MAC) for arithmetic operations. Figure

12b shows more balanced pipelines by subdividing

MAC and memory accesses into three stages.

The forwarding paths can be grouped as a separate

module as shown in Fig. 13 to improve timing

closure in silicon implementation with registered

output ports [22, 23]. We define Btolerable latency

(TL)^ of a data dependency between consecutive

instructions on the fly to be the difference between

the time the produced datum is ready and the time

the consumer actually needs the datum. A depen-

dency has a negative TL must be avoided with

processor stalls or exposed explicitly as delay slots.

On the other hand, there is no harm in dependencies

with non-negative TLs, where the data item can be

passed through either the register file or specific

forwarding paths. Thus, dependencies from all data

generators to all data consumers in a pipeline can be

classified into non-causal (TL < 0), timing-critical

(TL = 0), and normal (TL > 0) one. Data for normal

dependences are passed through the register file or

the forwarding unit without or with small impacts on

the timing of the datapath. However, the forwarding

paths for timing-critical dependencies increase the

number of input ports (MUX) of the functional units,

which usually lengthen the critical path. Thus, the

inclusion of a timing-critical forwarding path is a

difficult tradeoff between the cycle times the cycle

counts for application software.

The micro-architecture designs were modeled in

SystemC [24] and validated against the ISS to ensure

they perform the functional requirements specified

by the ISA. Figure 14 is the example dump file from

cycle-accurate SystemC simulation, which is faster

than RTL simulations by an order of magnitude.

After micro-architecture explorations, the final de-

sign was described in synthesizable Verilog for the

implementation phase. Moreover, the RTL design

has been cross-verified with the cycle-accurate

SystemC model from bottom up to achieve 100%

coverage (e.g. statement, branch, state, arc, etc.) [25].

4.3. FPGA Prototyping

Figure 15 depicts a simplified Pica system for

multimedia applications based on the AMBA AHB

bus. We have prototyped this system on the ARM

Versatile platform [26] with an ARM926EJ-S core,

128 MB SDRAM, and a rich set of peripherals such

as an LCD controller, a stereo audio codec. Pica was

first encapsulated in an AHB wrapper and ported on

the Xilinx XC2V6000 FPGA on the Logic Tile

daughter card. The system AHB, the expansion AHB

and ARM run at 70 MHz, 35 MHz and 210 MHz

respectively, while Pica operates at 70 MHz with the

embedded DLL-based clock generator on FPGA that

doubles the clock rate of the expansion AHB. ARM

functions as a smart DMA controller that moves data
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EX/AG

2.00 ns

MEM

4.30 ns

WB

1.88 ns

OF

2.05 ns

EX

5.35 ns

-
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Dispatcher

2.08 ns
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EX/AG
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MEM1
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2.05 ns

EX_B
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Instruction
Dispatcher
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b
Figure 12. Pipelines for Pica a classical and b balanced pipeline

stages.
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between the Pica on-chip memory and the on-board

128 MB SDRAM. Besides, all peripherals are

controlled by ARM, too. After the power-on reset,

Pica stays in its standby mode until ARM initializes

the instruction memory and triggers an interrupt. We

have successfully demonstrated a simplified H.264

intra coder on the prototyping system, which can

real-time compress 21 CIF-format pictures per

second. Besides, we have also implemented a

standard JPEG encoder and a real-time MP3 player

using this prototyping platform.

5. Results

5.1. Performance Evaluation

We have hand-optimized several DSP kernels in

assembly to evaluate the performance of Pica DSP

with cycle-accurate instruction set simulation. Table 2

shows the comparison between state-of-the-art DSP

processors and Pica DSP. The first column shows the

number of cycles required for 40-sample and 16-tap

real-value FIR filtering on 16-bit samples. The

second column compares the execution cycles to

perform the eight-by-eight 2D DCT. The third

column is for the 256-point radix-2 fast Fourier

transform (FFT) [13]. The last column summarizes

the cycle counts for block-based motion estimation

under MAE criteria [27], of which the block size is

16� 16 and the search range is within T15 pixels. TI

C64 [9] and NEC SPXK5 [16] are two high-

performance VLIW DSP. C64 can issue eight instruc-

tions per cycle and its datapath is partitioned into two

identical clusters, each of which has a 16-port

centralized register file. Besides, the two clusters can

communicate with each other via the extended-read

mechanism. SPXK5 is a four-issue processor with a

centralized register file, which has only eight general-

purpose registers to reduce the hardware complexity.

TI C55 [19] and Intel/ADI MSA [20] are conventional

DSP architectures with dual multiply-accumulators,

and the former even allows memory operands (i.e. not

a load/store architecture [28]), and these results are

included just for reference. All cycle counts are

excerpted from the application notes from the vendors

to reveal more objective performance indices.

Pica has DSP-oriented instructions such as MAC

and rich SIMD instructions (e.g. as those described

in Section 2), but they are not new and can be found

in some other DSP processors. However, most Pica

instructions are simple (i.e. RISC-like). Pica would

likely have comparable performance with state-of-

the-art DSP if it is equipped with a generic register

file, for the supported instructions are very similar.

The simulation results in Table 2 show that the

clustered architecture with distributed and ping-pong

register organization has small impact on highly-

parallel DSP kernels, whenever the dataflow is appro-

priately arranged. By the way, the instruction slots

inside the hand-optimized assembly codes can be

almost filled to maximize the hardware utilization.

Note that the concurrently-issued instructions may be

~~~~~~~~    Cycle 71  ~~~~~~~~

========  BOOLEAN REGISTERS  ========
B0 = 1 B1 = 0 B2 = 0 B3 = 0
B4 = 0 B5 = 0 B6 = 0 B7 = 0

========  CLUSTER 0  ========
========  PING REGISTERS  ========
D'[0] = ffff6400 D'[1] = 6600 D'[2] = fffffe00 D'[3] = db3a
D'[4] = 1413a D'[5] = ffff8ac6 D'[6] = 0 D'[7] = 5a84
========  ADDRESS REGISTERS  ========
A[0] = 0 A[1] = 8 A[2] = 8 A[3] = 0
A[4] = 0 A[5] = 0 A[6] = 0 A[7] = 0
========  PONG REGISTERS  ========
D[0] = fffe4d00 D[1] = 4d00 D[2] = 1065e D[3] = 1fc4b
D[4] = 1535e D[5] = ffff46a2 D[6] = 494b D[7] = fffc50b5
========  ACCUMULATORS  ========
AC[0] = 113e6 AC[1] = fffff278 AC[2] = e865 AC[3] = fffeb300
AC[4] = ffffcc00 AC[5] = ffff0000 AC[6] = ffff7f00 AC[7] = ffffe700

========  CLUSTER 1  ========
========  PING REGISTERS  ========
D'[0] = 0 D'[1] = 0 D'[2] = 0 D'[3] = 0
D'[4] = 0 D'[5] = 0 D'[6] = 0 D'[7] = 0
========  ADDRESS REGISTERS  ========
A[0] = 0 A[1] = 0 A[2] = 0 A[3] = 0
A[4] = 0 A[5] = 0 A[6] = 0 A[7] = 0
========  PONG REGISTERS  ========
D[0] = 0 D[1] = 0 D[2] = 0 D[3] = 0
D[4] = 0 D[5] = 0 D[6] = 0 D[7] = 0
========  ACCUMULATORS  ========
AC[0] = 0 AC[1] = 0 AC[2] = 0 AC[3] = 0
AC[4] = 0 AC[5] = 0 AC[6] = 0 AC[7] = 0

Figure 14. Cycle-accurate SystemC simulation.
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Figure 15. Simplified Pica system for multimedia processing.
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severely limited in general applications with irregular

dataflow or arbitrary dependency (especially across the

clusters), and thus the performance will degrade

significantly. Finally, we have also hand-crafted a

standard JPEG encoder [14, 29] on Pica DSP, which

can compress 512� 512 24-bit color Lena and Baboon

images in 4,340,149 and 6,326,148 cycles respectively

(i.e. about 53.6õ76.7 frames/s at 333 MHz).

5.2. Code Size Analysis

It is very difficult to evaluate the quality of the

instruction encoding of different processor architec-

tures, because it strongly depends on the instruction

set architectures (ISA), compilers and code genera-

tion strategies. Therefore, we base on a single ISA

(the aforementioned Pica DSP) and try our best to

make the comparison fair. Table 3 shows the

comparison of various instruction encoding schemes.

The first four rows summarize the results from the

hand-optimized assembly programs described in

Table 2. The fifth and the sixth rows are for a

standard JPEG encoder [14] and a simplified H.264

encoder [27]. The 1st column lists the code sizes for

192-bit fixed-length VLIW packets, each of which

contains four 48-bit instructions. The second column

lists the variable-length VLIW encoding used in TI

C64 and NEC SPXK5. The third column shows the

results with variable-length instruction encoding and

the proposed NOP removal scheme with CAP. The

fourth column shows the improved code sizes with

SIMD execution, while the fifth shows those with

additional differential encoding.

The variable-length VLIW packets are then stuffed

into bundles of different sizes to evaluate the

fragment (i.e. the unused bits in a bundle that cannot

accommodate a new packet). Note that the lengths of

program flow instructions depend on the bundle size

(Bbundle offset^ can decrease by 1 bit, but both

BCAP index^ and BHT pointer^ need 1 more bit, as

the bundle size is doubled). To minimize the offset

of intra-instruction fragment (i.e. the Btails^ must be

multiple of 4), we use worst-case lengths of program

flow instructions for all bundles sizes under compar-

ison. Figure 16 shows the bundling overheads over

the effective instructions.

Table 2. Performance comparison (in cycles).

FIR DCT FFT ME

Processor

descriptions

TI C64 [9] 194 126 1,246 36,538 8-issue VLIW

at 1 GHz

(90 nm)

NEC SPXK5 [16] – 240 2,944 – 4-issue VLIW

at 250 MHz

(0.13 mm)

TI C55 [19] 394 238 4,922 82,260 Dual MAC

at 300 MHz

Intel/ADI MSA [20] 381 284 3,176 90,550 dual MAC

at 400 MHz

Pica DSP 232 123 2,510 41,372 4-issue VLIW

at 333 MHz

(0.13 mm)

Table 3. Code size comparison (in bits).

Fixed

NOP

removal

Hierarchical

Original +SIMD +Diff

FIR 5,016 4,947 2,686 1,646 1,646

DCT 11,248 10,557 6,160 3,696 3,696

ME 12,616 13,158 6,946 4,486 3,838

FFT 60,648 56,202 32,850 20,058 19,698

JPEG 62,472 47,481 28,936 20,128 19,748

H.264 229,368 167,535 99,424 72,992 72,128

Table 4. Comparison of register organizations.

Centralized
Proposed

f (16, 12, 64,

32)

2� f 8; 6; 32; 32ð Þþ
gLS

2� f 0 32; 32ð Þþ
gLS

Delay 3.18 ns 1.91 ns 1.69 ns

Gate

count

196,920 104,976 45,850

Area 1,440,000 mm2 766,314 mm2 334,544 mm2

0%

5%

10%

15%

20%

FIR DCT ME FFT JPEG H.264

256-bit

512-bit

1024-bit

2048-bit

Figure 16. Bundling overheads (due to fragment).
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5.3. Silicon Implementation

We have implemented the proposed distributed and

ping-pong register file for a cluster with 32 32-bit

registers and equivalent centralized register files for

both one and two clusters. These three designs are

described in Verilog RTL, and then synthesized using

Synopsys Design Compiler and UMC L130E High

Speed FSG Library (from Faraday Technology). The

designs are optimized for timing, and their net-lists

are placed and routed for UMC 0.13 mm 1P8M

Copper Logic Process using Cadence SoC Encoun-

ter. Table 4 summarizes the implementation results

from post-layout simulations, where the proposed

register organization reduces the access delay by a

factor of 1.88 and the silicon area by 4.30 respec-

tively for the dual-cluster configuration.

We have implemented the instruction decoders for

various bundle sizes in Verilog RTL, which are

synthesized using Synopsys Design Compiler and

UMC L130E High Speed FSG Library (from Faraday

Technology). Table 5 shows the gate counts and the

delays of the synthesis results. Combined with the

aforementioned overhead analysis as depicted in Fig.

16, 512-bit bundles are optimal for our implementation.

Finally, we have implemented the complete four-

way Pica DSP with the proposed ICC mechanism

with load/store instruction pairs, the distributed and

ping-pong register file, and the hierarchical VLIW

decoder. The RTL design is synthesized using

Synopsys Physical Compiler and UMC L130E High

Speed FSG Library. The gate count is 223,578,

where the register file and the instruction dispatcher

(i.e. hierarchical VLIW decoder) account for 20.5

and 13.1% respectively. The net-lists are placed and

routed using Cadence SoC Encounter for UMC 0.13

mm 1P8M Copper Logic Process. Figure 17 shows

the layout of Pica DSP, and the core size is

3.2� 3.15 mm2 including the 128-kB data memory

and the 32-kB instruction memory. The DSP core

can operate at 333 MHz while consuming 189 mW

average power (while running 2D DCT), where the

power breakdown is shown in Fig. 18.

6. Conclusions

The paper describes the design and implementation of

a high-performance and complexity-efficient VLIW

DSP for multimedia applications. A simple inter-

cluster communication mechanism with load/store

pairs and a novel distributed and ping-pong register

organization are proposed to reduce the register file

complexity. The simulation results show that a four-

issue VLIWDSP with the proposed micro-architecture

design has comparable performance with state-of-the-

art high-performance DSPs. However, 76.8% silicon

area and 46.9% access time are saved from an

equivalent centralized register file found in most DSPs.

Hierarchical VLIW encoding with flexible variable-

length instruction formats, NOP removal and automat-

ic code replication is proposed to solve VLIW code

density problem. In our simulations, the code sizes of a

four-issue VLIW DSP can be reduced to only

24.1õ26.0%. An efficient decoding architecture is

proposed, too. Finally, a complete four-issue VLIWFigure 17. Layout of Pica DSP.

7%4%
11%

9%

69%
Instruction Dispatcher

ICC & Memory Control

Cluster 0

Cluster 1

Memory

Figure 18. Power breakdown of Pica DSP.

Table 5. Complexity comparison.

Bundle size 256-bit 512-bit 1,024-bit 2,048-bit

Delay (ns) 1.79 2.08 2.32 2.71

Gate count 14,780 29,792 66,165 147,195

High-Performance and Complexity-Effective VLIW DSP 221



DSP with the area-efficient register organization and the

hierarchical instruction decoder is implemented in UMC

0.13 mm Copper Logic Process. The gate count is

223,578 (core only), where the register file and the

instruction dispatcher account for 20.5 and 13.3%

respectively. The core size is 3.2� 3.15 mm2

including the 128 kB data memory and the 32 kB

instruction memory. The DSP core can operate at

333 MHz with 189 mW power dissipation (while

performing 2D DCT on a natural image).

The drawback of the proposed register organiza-

tion is that it significantly complicates the operation

scheduling and the code generation. Actually, we can

only optimize the assembly codes by hand. We have

tried some compilation methods with ping-pong

access constraints, but the performance of the com-

piled codes is still far behind that of hand-optimized

ones. Development of customized compilation tech-

niques may be a good research direction [30].

The variable-length VLIW packets are packed into

fixed-length instruction bundles to simplify the

instruction memory accesses. However, it introduces

fragments, especially for small bundles. There is an

opportunity for future researches on the optimal code

generation and linking methods to reduce such

fragments. Besides, automatic synthesis of optimized

variable-length instruction encoding for application-

specific instruction set processors (ASIP) is also an

interesting topic. The overheads of Bvalid^ bits to

remove NOP in each VLIW can be reduced by

allowing only limited patterns [31] or even applying

entropy coding according to the occurrence frequen-

cy. Compressing redundant operands such as the

reduced ISA in ARM Thumb [32] may also further

improve the code density at small costs.
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