Available online at www.sciencedirect.com

. . AlPIILIEID
ScienceDirect MATHEMATICAL

S lies
ELSEVIER Applied Mathematical Modelling 32 (2008) 958-970

www.elsevier.com/locate/apm

A recursive method for the F-policy G/M/1/K queueing
system with an exponential startup time

. a, . b b
Kuo-Hsiung Wang “*, Ching-Chang Kuo °, W.L. Pearn
& Department of Applied Mathematics, National Chung-Hsing University, Taichung 402, Taiwan

® Department of Industrial Engineering and Management, National Chiao Tung University, Hsin Chu 30050, Taiwan

Received 1 May 2006; received in revised form 1 February 2007; accepted 28 February 2007
Available online 13 March 2007

Abstract

This paper deals with the optimal control of a finite capacity G/M/1 queueing system combined the F-policy and an
exponential startup time before start allowing customers in the system. The F-policy queueing problem investigates the
most common issue of controlling arrival to a queueing system. We provide a recursive method, using the supplementary
variable technique and treating the supplementary variable as the remaining interarrival time, to develop the steady-state
probability distribution of the number of customers in the system. We illustrate a recursive method by presenting three
simple examples for exponential, 3-stage Erlang, and deterministic interarrival time distributions, respectively. A cost
model is developed to determine the optimal management F-policy at minimum cost. We use an efficient Maple computer
program to determine the optimal operating F-policy and some system performance measures. Sensitivity analysis is also
studied.
© 2007 Elsevier Inc. All rights reserved.

Keywords: F-Policy; G/M/1/K queue; Recursive method; Server startup; Supplementary variable

1. Introduction

We use a supplementary variable technique to analyze the optimal control of the F-policy G/M/1/K queue-
ing system where the server needs a startup time before start allowing customers in the system and K < oo
denotes the maximum capacity of the system. The method of controlling arrivals focuses on reducing the num-
ber of customers in the system. The model proposed in this paper is very useful in real-life situations since the
controlling of arriving customers is considered.

Steady-state analytical solutions of the F-policy M/M/1/K queueing system with an exponential startup
time were first developed by Gupta [1]. However, steady-state analytical solutions of the F-policy queueing
systems with interarrival times or service times distribution of the general type have not been found. It is extre-
mely difficult, if not possible, to obtain the explicit expressions for the steady-state probability distribution of

* Corresponding author.
E-mail address: khwang@amath.nchu.edu.tw (K.-H. Wang).

0307-904X/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.apm.2007.02.023

mailto:khwang@amath.nchu.edu.tw

K.-H. Wang et al. | Applied Mathematical Modelling 32 (2008) 958-970 959

the number of customers in the system. This becomes particularly helpful when the supplementary variable
technique to the non-Markovian queueing system having general interarrival times or general service times
is used. Cox [2] first introduced the supplementary variable technique. Basis on this technique, Gupta and
Rao [3,4] presented a recursive method to develop the steady-state probability distributions of the number
of failed machines for the no-spare M/G/1 machine repair problem and the cold-standby M/G/1 machine
repair problem, respectively.

Past work regarding queues may be divided into two parts according to whether the system is considered to
control the service or the arrival. In the first category of controlling the service, the N-policy M/M/1 queueing
system without startup was first introduced by Yadin and Naor [5]. The extension of this model can be
referred to Bell [6,7], Heyman [8], Kimura [9], Teghem [10], Wang and Ke [11], and others. Wang and Ke
[11] provided a recursive method and used the supplementary variable technique to develop the steady-state
probability distributions of the number of customers for the N-policy M/G/1/L queueing system. Ke and
Wang [12] presented a recursive method and applied the supplementary variable technique to obtain the
steady-state probability distributions of the number of customers for the N-policy G/M/1/L queueing system.
The server startup corresponds to the preparatory work of the server before starting the service. In some real-
life situations, the server often needs a startup time before beginning to provide the service. Several authors
research on queueing systems with startup time focus mainly on the N-policy M/G/1 queues. Baker [13] first
studied the N-policy M/M/1 queueing system with an exponential startup time. Borthakur et al. [14] extended
Baker’s model to the general startup time. The N-policy M/G/1 queueing system with startup time was inves-
tigated by several authors such as Medhi and Templeton [15], Takagi [16], Lee and Park [17], Hur and Paik
[18], Krishna et al. [19], and so on. Ke [20] presented a recursive method and used the supplementary variable
technique to compute the operating characteristics for the N-policy G/M/1/L queueing system with an expo-
nential startup time. In the second category of controlling the arrivals, the analytical developments for con-
trolling the arrivals in queueing problems are rarely found in the literature, which are particularly for
service time and interarrival time following general type. The work of related problems in the past mainly con-
centrates on Markovian system. The pioneering work in steady-state analytical solutions of the F-policy
M/M/1/K queueing system with an exponential startup time was first derived by Gupta [1]. Through a series
of propositions, the relationship between the operating N-policy and the operating F-policy are established by
Gupta [1].

Practically, the memoryless property of the arrival (input) process does not always meets the needs of appli-
cations because, for interarrival time, general distribution, rather than exponential distribution, appears to be
more appropriate and reasonable. General distribution can include the special cases of exponential, Erlang,
hyper-exponential, and deterministic, etc. However, aside from theoretical arguments, many real-life situa-
tions satisfy the assumptions of Markovian conditions for service time. Hence, we may consider inevitably
to analyze the F-policy G/M/1/K queueing system.

In Section 2, the queueing model is briefly described. Practical justification of the model is also included.
Section 3 provides a recursive method using the supplementary variable technique and treating the supplemen-
tary variable as the remaining interarrival time, to obtain the steady-state probability distributions of the num-
ber of customers in the F-policy G/M/1/K queueing system. We illustrate the solution algorithm by presenting
three simple examples for three different interarrival time distributions: exponential (denoted M), 3-stage
Erlang (denoted E;), and deterministic (denoted D). In Section 4, various system performance measures are
presented. The total expected cost function per unit time for the F-policy G/M/1/K queueing system with
startup times is developed in Section 4. Numerical and comparative results are shown in Section 5. Finally,
Section 6 consists of some concluding remarks.

2. Description of the system

We consider the category of controlling the arrivals to the F-policy G/M/1/K queueing system with expo-
nential startup time. It is assumed that the times elapsing between successive arrivals are independent and
identically distributed (i.i.d) random variables having general distribution 4(v) (v > 0), a probability density
function a(v) (v = 0) and mean interarrival time b;. The service times of the customers are independent
random variables having a common exponential distribution with mean 1/u. Let us assume that customers

960 K.-H. Wang et al. | Applied Mathematical Modelling 32 (2008) 958-970

arriving at the server form a single waiting line and are served in the order of their arrivals; that is, according
to the first-come, first-served (FCFS) discipline. Suppose that the server can serve only one customer at a time,
and that the service is independent of the arrival of the customers. Customers entering into the service facility
and finding that the server is busy have to wait in the queue until the server is available. Gupta [1] first intro-
duced the concept of a F-policy. The definition of a F-policy is described as follows: When the number of cus-
tomers in the system reaches its capacity K (i.e. the system becomes full), no further arriving customers are
allowed to enter the system until there are enough customers in the system have been served so that the num-
ber of customers in the system decreases to a threshold value F (0 < F < K — 1). At that time, the server needs
to take an exponential startup time with parameter f§ to start allowing customers in the system. Thus, the sys-
tem operates normally until the number of customers in the system reaches its capacity at which time the
above process is repeated all over again.

2.1. Practical justification of the model

A number of practical problems arise which may be formulated as one in which the server requires take a
startup time to start allowing customers in the system. Such models have potentially useful in practical real-
life. For example, in computer process and service systems, messages are transmitted among the computers
(processors). If the processor is free the message is accepted; otherwise the message is temporarily stored in
a buffer to be served some time later. When the buffer is full, the arriving messages will be restricted entrance
until the number of messages drops to a specified threshold level. When system buffer reduces to the threshold
level, the messages are immediately admitted to enter the system. This will help to prevent the system from
becoming over-loaded. Another application of our model is transportation. In order to avoid traffic jams
caused by motorists returning home for Thanksgiving day, the entrance ramps along the highway will be con-
trolled by a metering system. When traffic flow is congested, entrance ramps are closed to keep expressway
traffic smooth. Vehicles are allowed to re-enter once the traffic is improved. The entrance ramps may need
to maintain and the service may be temporarily shut down.

2.2. Notation

The following notation and definitions are used throughout the paper:
F threshold level
K system capacity (K > F + 1)
A interarrival time random variable
V remaining interarrival time random variable
A(v) distribution function (d.f.) of 4
a(v) probability density function (p.d.f.) of 4
a*(0) Laplace-Stieltjes transform (LST) of 4
a*)(0) Ith order derivative of a*(6) with respect to 0
Py(t) probability of no customers in the system at time ¢ when the arrivals are not allowed to enter the sys-

tem
Py ,(t) probability of n customers in the system at time ¢ when the arrivals are not allowed to enter the sys-
tem, where n =1,2,.... K

P1o(¢) probability of no customers in the system at time ¢ when the arrivals are allowed to enter the system

Py ,(t) probability of n customers in the system at time ¢ when the arrivals are allowed to enter the system,
wheren=1,2,..., K — 1

3. Steady-state results

The state of the system at time 7 is given by

N(t) = number of customers in the system, and
V(t) = remaining interarrival time for the customer who is arriving.

K.-H. Wang et al. | Applied Mathematical Modelling 32 (2008) 958-970

Let us define
Po,(v,6)dv =Pr{N(t) =n, v< V(¢t) <v+dv}, v=0,
Pr(v,t)do=Pr{N(¢t) =n, v< V(t) < =0
Py, (t) = / Py,(v,t)dv, n=0,1,... F,
0
EAQ:/ Pio(o)do, n=0,1,....K—1.
0

In steady state, we define
Py, = ;lij?opo’”(t)’ n=0,1,...,K,
Py, = }EEOPOW(’)’ n=0,1,...,K—1,
Py,(v) = }LIEPO’"(U’ t), n=0,1,...,F,
Pi,(v) = }LIEICPL,,(U, t), n=0,1,...,K—1

and further define
PO,W(U) = PO,na(U)7 n=01,...,F.

961

()

For the F-policy G/M/1/K queueing system with server startup, we can easily obtain the steady-state equa-

tions as follows:

0= —pPoo+ uPoy,
0=—(B+uPoy+ Py, 1<
0=—pPo,+ pPoyy1, F+1<n
0=—uPox + P1x-1(0),

n<F,
<K-1,
— _Pl,O(U> = ﬁpoyod(v) + ,uPM(U),

—P1,(v) = —uP1,(v) + pPoya(v) + Pi,y-1(0)a(v) + pPy i (v),

We introduce the following Laplace—Stieltjes transforms (LST):
a*(0) = / e dd(v) = / e "a(v)do,
0 0
PM@z/eWEMMQi:QL
0
P, =P;,(0) = / P (v)dv, i=0,1,
' 0

/ e-UUQPi,,,(u)du =0P;,(0) — P;,(0), i=0,1.

0 ou ~ ’

Taking the LST on both sides of (6)—(9), it implies that
= 0P} o(0) = BPooa"(0) + uP} ,(0) — P1o(0),
(n—=0)P,(0) = BPona”(0) + uPy,,1(0) + Pra-1(0)a"(0) — P1,(0),

<n<F,

_Pl,n(v) - _MPLn(U) +Pl,n71(0)a(v) + ,uPl,rH»l(v)a F+ l < n < K - 23

962 K.-H. Wang et al. | Applied Mathematical Modelling 32 (2008) 958-970
(= 0)P,(0) = uPy,, (0) + P1,1(0)a(0) — P1,(0), F+1<n<K-2, (12)
(1= 0)P) 1 (0) = Pr1x2(0)a"(0) = Prx1(0). (13)
3.1. Recursive method
Our main work is to develop the steady-state probabilities 7 ,(0) and Pj,(0), where 1 < n < K. Our solu-

tion algorithm will first obtain Pg,(0) (1 < n < K).
Using (2)—(5) yields

P, (0) = ¢,Pop, 1<n<K, (14)
P1x-1(0) = o1 Poo, (15)
where
1, n=20,
O 1 (R I RS (16)
w\ " u

and

‘- n, 0<n<F—-1,
" |F, F<n<K.

Thus, P;,(0),P;,(0),...,P;4(0) can be obtained by using (14).
Next, we derive the expressions of P;,(0) (0 < n < K —2) in terms of Pyy. Substituting (14), (15) into
(11)—~(13) and then setting 0 = u in (11)—(13) we finally have

Py 31(0) — pPy - Po, wi1Pood"
P1(0) = 1+1(0) = 4Py, 5 (1) = BOu1 p a1 Popa (IJ)7 0<n<K-3, (17)
a(n)

where

B I, 1<n<F,
Pnr = 0, otherwise,

Pri(0) = l;‘f’(F;)l Poo. (18)

To obtain Py, (1) (0 <n <K —3)in (17), substituting (14) and (18) into (11)~(13) then differentiating
(11)~(13) (/ — 1) times with respect to 6, and finally setting 6 = p, we get

(- 1 . . «
PV = =5 P (0)a (1) + o, pbuPooa () + pP (), (19)
where 2<n<K-2,/[=1,....K—n—1,
Hppaa (p)

Pl (1) =— = Pog. (20)

where P{\) (1)) = Py, ().
Solving (19) and (20) recursively, we finally obtain

ﬁ(pn a
ln(lu) = +2F Z En i—1

P*
i=(p42 i=n+2

nzlPlll 7 2<n<K_2a (21)

K.-H. Wang et al. | Applied Mathematical Modelling 32 (2008) 958-970 963

where
" grin)
(=wa (u)’ l<n<K_l,
6 = nla* () (22)
0, otherwise
Using (20) and (21) in (17), we obtain
Pra
Plv"<0) - - +] + Z gl —n— 1P11 1 +ﬁ (pn+2F Z fl —n— l(f) (pn+1,F¢n+l P0,07 0 < n < K —3.
i=n+2 i={p0
(23)
Further, let us define
1, n=0,
Kg Kg, *t* Kep 7’[2172,...7]<—27
qln = 1gkzgn rl+rz;+rk:n e f (24)
Tl,’L‘z,-“7’L‘k€{1,2wun}
0, otherwise,
where
1
— + gla n 17
e s
= 0, n=23,... K—2, (25)
0 otherwise.

Remark. The representative meaning of the above formulation (24) is to sum up all possible products of k ks
in which the total of subscript values of k equals n. We may present an easily understood example for n = 4:

2 2 4
Yy = K4 + K3K] + KoKy + K1K3 + K K1Ky + KKK + KoK 1K) + K1K 1K1K = Ka + 2K35) + K5 + 3K1K2 + K. (26)

Using (24) and (25) to solve (23) recursively, and including (18), we finally have

K—n—1
Pia(0)= > Wk i AK —i—=1)Pyy, 0<n<K-2, (27)
where
ﬁ(pn+2F Z f —n—]¢ ﬁ(Pn+1,F¢n+la 0<7’l<K-3,
A(n) = o (28)
M¢F+1 , n=K—2.
a*(p)

Finally, we develop the steady-state probabilities Pj, (0) in terms of Py. Setting 0 = 0 in (10)~(13) yields

1 [}
P;,(0) = i Piaa(0) = B Py, 1<n<K-—1. (29)
i=0

As P11(0), P12(0), ..., P1xk-1(0) are known, Py, (0), P{,(0),..., P, (0) can be solved recursively using (29) in
terms of Py.

964 K.-H. Wang et al. | Applied Mathematical Modelling 32 (2008) 958-970

Now the only unknown quantity is P} ,(0) which can be determined from (10)-(13). To find it, differenti-
ating (10)—(13) with respect to 6 and then setting 6 = 0, we get

P;o(0) = —pPoga’" (0) — uP'(0), (30)
Pio+ B, ¢, PooaV(0) + P (0) + Py, (0)a*™M (0
Py = B i $uPooa™(0) + uP,51(0) + Prypi (0)a™)’ l<n<K-1. (1)
’ It
The values P]kfj)(O) forn=1,2,...,K — 1 can be found recursively from (31). Therefore, we obtain
F K-1 K-2
P o(0) == [Ba"V(0) Y " ¢, Poo+ Y Pri+aM(0)> Pii(0)]. (32)
i=0 -1 i=0
So Pjy(0),P;,(0),...,Pi 4 ,(0) are known in terms of Py, which can be determined using the normalizing
condition

K K-1
ZPo,i-l-ZPu:l- (33)
=0 =0

3.2. The solution algorithm
The steps of the solution algorithm are stated as follows:

Step 1. Forn=0,1,...,K, compute ¢, using (16).

Step 2. Forn=1,2,...,K, compute P; ,(0) using (14) in terms of Py,.

Step 3. Compute 4, (1 <n <K —2)and x, (1 <n<K —2) using (22) and (25), respectively.

Step4. Forn=0,1,...,K —2, compute ¥, using (24).

Step 5. Forn=0,1,...,K — 2, compute A(n) using (28).

Step 6. For n=0,1,...,K — 2, compute P;,(0) using (27) in terms of Py.

Step1. Forn=1,2,...,K — 1, compute P ,(0) using (29) in terms of Py.

Step 8. Compute P} ,(0) using (32) in terms of Py.

Step 9. Determine Py, using (33). Thus P;(0) (n=1,2,...,K) are achieved from Step 2, and
P} (0) (n=0,1,...,K — 1) are achieved from Steps 7 and 8.

3.3. Simple examples
We use the solution algorithm to illustrate a recursive method. We provide three simple examples for three

different interarrival time distributions such as exponential, 3-stage Erlang, and deterministic, respectively.

Example 1 (For M/M/1/K queueing system). We set the mean interarrival time b, = 1/, where 1 is the
interarrival rate. Assume that F = 2 and K = 5. In this case, we have

A

a*(0) =710

Step 1. For n=0,1,...,5, compute ¢, using (16).
Using (16), we have
1 —«a 11—« 1 -«
bo=1, ¢ = x ¢y = 2 and ¢3:¢4:¢5:77 where o = pu/(p+ B).
Step 2. For n=1,2,...,5, compute P ,(0) using (14) in terms of P .
Using (14), we finally obtain
1 —
o

l—o

o *
P;(0) = ¢y Pop = Poo, Pyy(0) = drPop = Do

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

K.-H. Wang et al. | Applied Mathematical Modelling 32 (2008) 958-970 965

% * * 1 — o
P53(0) = Py 4(0) = Py5(0) = ¢3Pop = " Pogp.

For n =1,2,3, compute ¢, and «,, using (22) and (24), respectively.

We first compute £, For n=1,2,3, using (22) yields ¢, = —a/(1+0), ¢, = —¢?/(1+0)" and
l3=—6%/(1 4 0)’, where o = u/J.

Next, we compute ,,. For n = 1,2, 3, using (24) yields

ki=—(1+0+06)/(1+0), kn=-0"/(1406) and x3=—0/(1+0).

For n=0,1,2,3, compute ¥, using (23).

It follows from (23) that

Yo=1, Yi=(1+oc+0)/(1+0), P=1+0¢* and ¥;=(1+c+"+7 +3")/(1+0).

For n=0,1,2,3, compute A(n) using (28).
From (28) we have

A0y = -0 O;)j((f‘::)a) A = —”(la—_fﬁ A(2)=0, and A(3)= W
Forn=0,1,2,3, compute P;,(0) using (27) in terms of Py.

Using (27) yields

Puof0) = [#5A(3) + ¥2A(2) + ¥, A(1) + B AO)pyy = ML DT LT X204) p

P (0) = [¥2A(3) + W1 A(2) + WoA(1)]Po, = ML= Zfz ot

Pra(0) = [#14(3) + PoA(2)|Poy = 1= O‘)(lf s “Z)Po,o,

w1l = 2)(1+0)

P173(0) = 'I/3/1(3)P0A0 = e

P()‘()

For n=1,2,3,4, compute P}, (0) using (29) in terms of Py .
It implies from (29) that

i o(l1-a)(c+0>+ 7 +u i (1 —a)(1 + o+ o?
Py 0) = =2 Lpy, o) = O
. o(l—a)(l+o N o(l —a
P14(0) = %PM, and Py, (0) = (e)Po,o-
Compute Pj(0) using (32) in terms of Py .

Using (32) yields Pj(0) = “(lfuxazﬂffauwﬂaPo,o-
Determine Py, using (33). Thus P, (0) (n=1,2,...,5) are achieved from Step 2, and
P1,(0) (n=0,1,...,4) are achieved from Step 7 and Step 8.

063

Py = .
B+ —a)B+a+a2)+o(l —a)(3+ o+ + 00+ 3+ 30+ 30> + 203 + 6*)

It is to be noted that these results are in accordance with the expressions given by Gupta [1, p. 1006].

Example 2. (For E3;/M/1/K queueing system). Let A denote the interarrival rate. The 3-stage Erlang
distribution is made up of three independent and identical exponential stages, each with mean 1/3/4. We set the
mean interarrival time b; = 1/4, F = 1, and K = 3. In this case, we have

3.\

966 K.-H. Wang et al. | Applied Mathematical Modelling 32 (2008) 958-970

Step 1. For n =0,1,...,3, compute ¢, using (16).
Using (16), we obtain
bo=1, ¢1 =3(1—7)/7, and ¢, = ¢35 =3(1 —9)(3 - 2y)/7, where y = 3p/(3u+ p).

Step 2. For n = 1,2,3, compute P ,(0) using (14) in terms of Py .
Using (14) yields

P, Pa0) = Piy(0) = ooy =332
Step 3. Compute ¢; and x; using (22) and (25), respectively.

Using (22) yields ¢; = —3t/(1 + 1), where = = pu/34.

Form (25), we obtain x; = (1 + 7+ 6t +4¢* + %) /(1 + 7).
Step 4. For n =0, 1, compute ¥, using (23).

It follows from (23) that ¥y =1 and ¥, = (1 +t+ 67> + 47> + %) /(1 + 7).
Step 5. For n =0, 1, compute A(n) using (28).

It finds from (28) that

Pgl(o) = ¢1P0‘0 =3 PO,O'

__gi(l =) p(l=y)(3=29)(1 +7)°

o 72 72 :

Step 6. For n =0, 1, compute P;,(0) using (27) in terms of Py .
Using (27), we finally get

A(0) and A(1)=3

P1o(0) = [#1A4(1) + PoA(0)]Pyy = 3u(1 —p)B =21 +1)°(1 +;2+ 612 4 47 + %) — 9u(l — y)?
3u(l =) 3 = 29)(1 +7)°

VZ

Py,

Plﬁl(O) = 'P()/l(l)P()ﬁ() =

P()’().

Step 7. For n = 1,2, compute P}, (0) using (29) in terms of Po .
It implies from (29) that
3(1—9)3=2y)t(3 49t + 172> + 15¢° + 61* + 7°)
y2
3(1 —=9)(3=2y)t(3 + 3t +17%)
2
b
Step 8. Compute P; (0) using (32) in terms of Py .
Using (32) yields

P,(0) = Py,

P, (0) = Poyo.

P1y(0) = %{3‘5(1 — (3 — 12t — 367% — 787° — 787* — 347° — 61°)
+1(18 + 54t + 1177% + 1177° + 51¢* 4+ 97°)]} Py o.

Step 9. Determine Py using (33). Thus Pg,(0) (2 = 1,2, 3) are achieved from Step 2, and P} ,(0) (n=0,1,2)
are achieved from Step 7 and Step 8.

Pog = 7[18 = 9(27 — 107) + 272(2 + 67 + 122 + 187> + 157 + 6t + 1°) — 9t(27 + 307 + 607 + 2707’
750 4 30¢° + 57°) + 9172(3 + 12 + 247> + 367 + 302 + 120 4 2¢6)] .

Example 3 (For D/IM/1/K queueing system). We set the mean interarrival time by = 1/A, F =1, and K = 3,
where 2 is the interarrival rate. In this case, we have

a’(0) =e "

K.-H. Wang et al. | Applied Mathematical Modelling 32 (2008) 958-970 967

Step 1. For each n =0, 1,2, 3, compute ¢,, using (16).
Using (16), we obtain
$o=1, ¢y = (1 —2)/o, and ¢, = ¢p3 = (1 —x)/o?, where o = p/(u+ p).

Step 2. For each n = 1,2,3, compute Py, (0) using (14) in terms of Po,o.
Using (14), we finally get

1 —o |

Poo, Pyy(0) = Py;(0) = ¢pPog =

P, (0) = ¢ Poy = Poy.

OCZ
Step 3. Compute ¢; and x; using (22) and (25), respectively.

Using (22) yields ¢; = —o, where ¢ = p/). Form (25), we obtain k| = e° — a.
Step 4. For each n =0, 1, compute ¥, using (23).

It implies from (23) that ¥y =1 and ¥, =¢’ — 0.
Step 5. For each n = 0,1, compute A(n) using (28).

It follows from (28) that A(0) = —“(ld—}“y and A(1) = “(1;2“)66.

Step 6. For each n = 0,1, compute P;,(0) using (27) in terms of Py .
Using (27) yields

Pro(0) = [A(1) + FoA(0)]Pog = M=) (e ;zae“ +a—1)

1 —oa)e’
MU=

Py,

P1A1(0) = 'P()A(I)POA’O =
Step 1. For each n = 1,2, compute P, (0) using (29) in terms of Py .
It implies from (29) that

(1 —a)(e* —oe” —1)
2

Pyy and P;,(0) = wpw

PTJ (0) = o2

Step 8. Compute P} ,(0) using (32) in terms of Py .
Using (32) yleldS P?O(O) _ (lfo()[2+omf(1;a)c"(c0+l70')] P(),()-

Step 9. Determine Py using (33). Thus P, (0) (7 = 1,2,3) are achieved from Step 2, and P ,(0)(n =0,1,2)
are achieved from Steps 7 to 8.

2

a
Pyo = :
g2 (1—a) +oe(1 —a)(1 — 6) + 2 — o+ 00 — o220

4. Optimal F-policy

Some important system performance measures of the F-policy G/M/1/K queueing system with exponential
startup time are first defined as follows:

L = the expected number of customers in the system;

Py, = the probability that the server is busy;

P, = the probability that the server requires a startup time before starting the service;
Py, = the probability that the server is blocked.

The expressions for Ly, Py, Ps, and Py, are given by

K K—1
L= nPy,+ Y _nPi,,
P
Py=> Py, + Y Piy,
n=0 n=0

968 K.-H. Wang et al. | Applied Mathematical Modelling 32 (2008) 958-970

F

Ps = ZPOAM
"y

Py = Zpo,w
n=0

Next, we develop the total expected cost function per unit time for the F-policy G/M/1/K queueing system
with startup times, in which Fis a decision variable. The main purpose of this paper is to determine the opti-
mum operating F-policy so as to minimize this total expected cost function. Let

C}, = holding cost per unit time for each customer present in the system,;

Cy, = cost per unit time for a busy server;

C, = startup cost per unit time for the preparatory work of the server before starting the service;
Cy, = fixed cost for every lost customer when the system is blocked.

Utilizing the definitions of each cost element listed above, the total expected cost function per unit time is
given by

TC(F) = CpLs + CoPy + CsPs + CyiAPy. (34)
The optimal value of F, F* is determined by the following inequalities:
TC(F*—1) = TC(F*) and TC(F*+1) = TC(F"). (35)

5. Numerical comparisons

We set the system capacity K = 15. We perform a sensitivity analysis for changes in the optimum value F*
along with changes in specific values of the system parameters. We consider three simple examples for three
different interarrival time distributions such as exponential, 3-stage Erlang, and deterministic. The following
cost elements are employed:

Case 1: Cy = 10, Cp = 200, C; = 250, Cy; = 350.
Case 2: Gy = 10, Gy = 200, C, = 250, C; = 400.
Case 3: Cy = 10, Cp = 200, Cs = 300, Cy; = 400.
Case 4: Cyp = 10, Cp = 225, C, = 300, C; = 400.
Case 5: Cy = 15, G, = 225, C, = 300, Cy; = 400.

Table 1
The optimal value of F and its minimum expected cost for exponential interarrival time
(1) = (1.0,3.0) (4.B) = (0.7,3.0) (4.1) = (0.7,1.0)
2 Iz B
0.55 0.65 0.75 1.0 1.1 1.2 2.0 4.0 5.0
Case 1 F* 6 4 3 4 6 8 4 4 4
TC(F™) 122.209 148.361 177914 162.635 144.660 130.652 162.654 162.626 162.620
Case 2 F* 8 6 5 5 8 11 5 5 5
TC(F™) 122.215 148.425 178.303 162.803 144.705 130.663 162.823 162.793 162.787
Case 3 F~ 8 6 5 5 8 11 5 5 5
TC(F™) 122.216 148.428 178.318 162.810 144.708 130.664 162.834 162.798 162.791
Case 4 F* 7 5 4 4 7 10 5 4 4
TC(F™) 135.963 164.647 196.879 180.230 160.598 145.243 180.253 180.218 180.211
Case 5 F~ 4 3 2 2 4 6 2 2 2

TC(F") 142.056 173.713 210.174 191.254 169.196 152.207 191.276 191.242 191.235

K.-H. Wang et al. | Applied Mathematical Modelling 32 (2008) 958-970 969

Table 2
The optimal value of F and its minimum expected cost for 3-stage Erlang interarrival time
(1) = (10,3.0) (.) = (0.7,3.0) (A1) = (0.7,1.0)
2 Iz B
0.55 0.65 0.75 1.0 1.1 1.2 2.0 4.0 5.0
Case 1 F* 7 5 4 4 7 9 4 4 4
TC(F™) 118.991 143.288 170.687 156.448 139.842 126.868 156.450 156.447 156.447
Case 2 F* 9 7 5 6 9 12 6 6 6
TC(F™) 118.991 143.291 170.747 156.463 139.844 126.868 156.465 156.462 156.462
Case 3 F* 9 7 5 6 9 11 6 6 6
TC(F™) 118.991 143.291 170.750 156.464 139.844 126.868 156.466 156.463 156.462
Case 4 F* 8 6 4 5 8 11 5 5 5
TC(F™) 132.741 159.539 189.471 173.957 155.752 141.451 173.959 173.956 173.955
Case 5 F* 5 4 3 3 5 7 3 3 3
TC(F™) 137.236 166.178 199.711 182.155 162.033 146.552 182.157 182.153 182.153
Table 3
The optimal value of F and its minimum expected cost for deterministic interarrival time
(1) = (10,3.0) (.) = (0.7,3.0) (4.1) = (0.7,1.0)
Y 1 B
0.55 0.65 0.75 1.0 1.1 1.2 2.0 4.0 5.0
Case 1 F* 10 6 4 5 7 10 5 5 5
TC(F~) 117.440 140.710 166.469 153.130 137.435 125.030 153.130 153.129 153.129
Case 2 F* 10 7 5 6 9 12 6 6 6
TC(F™) 117.440 140.710 166.477 153.131 137.435 125.030 153.131 153.130 153.130
Case 3 F* 12 7 5 6 9 12 6 6 6
TC(F™) 117.440 140.710 166.478 153.131 137.435 125.030 153.131 153.131 153.130
Case 4 F* 9 6 5 5 8 11 6 5 5
TC(F™) 131.190 156.960 185.224 170.630 153.344 139.613 170.630 170.630 170.630
Case 5 F* 6 4 3 4 6 8 4 4 4

TC(F~) 134911 162.315 193.445 177.193 158.425 143.794 177.193 177.193 177.193

In this section we provide the numerical results of the optimal value F* and the minimum expected cost for
three interarrival time distributions and specific values of 4, u, . We first fix (g, f) = (1.0,3.0) and choose
different values of A =0.55,0.65,0.75. Next, we fix (4,8) = (0.7,3.0) and consider various values of
w=10,1.1,1.2. Finally, we fix (4, x) = (0.7,1.0) and select different values of = 2.0,4.0,5.0.

The optimal value of F, F*, and its minimum expected cost TC(F*) for the above five cases are shown in
Tables 1-3. For fixed values of (u,) and various values of 1 in Tables 1-3, we observe that (i) TC(F™)
increases as A increases for any case; and (ii) F* decreases as / increases for any case. For fixed values of
(4, B) and various values of u in Tables 1-3, we find that (i) TC(F*) decreases as u increases for any case;
and (ii) F* increases as u increases for any case. Again, for fixed (4,) and various values of f§ in Tables
1-3, we observe that (i) TC(F*) slightly decreases as f§ increases for any case; and (ii) F* does not change
at all when f changes from 2.0 to 5.0 for any case. Intuitively, F* is insensitive to changes in .

It can be easily seen from Tables 1-3 that (i) F* increases as C,, decreases (see cases 4-5); and (ii) C,, has a
larger effect on F* than Cy,, C; and Cy, (see cases 3—4, cases 2-3 and cases 1-2).

6. Conclusions

The analytical steady-state results developed in this paper would be useful, which is significant to practitio-
ners and system designers. The main objective of this paper is threefold. We have first provided a recursive

970 K.-H. Wang et al. | Applied Mathematical Modelling 32 (2008) 958-970

method for obtaining the steady-state probability distributions of the number of customers in the system.
Next, we have illustrated our recursive method by a study of three different interarrival time distributions:
exponential, 3-stage Erlang, and deterministic. In addition, we provide a very efficient solution algorithm
to calculate the optimal threshold F* at minimum cost. Finally, we have performed a sensitivity analysis
among the optimal value of F, specific values of system parameters, and the cost elements. Further, the devel-
oped controlling arrival systems in this paper can be modeled many quality and service (Q&S) system in real-
life.

References

[1] S.M. Gupta, Interrelationship between controlling arrival and service in queueing systems, Comput. Oper. Res. 22 (1995) 1005-1014.
[2] D.R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables, in: Proceedings
Cambridge Philosophical Society 51 (1955) 433-441.
[3] U.C. Gupta, T.S.S. Srinivasa Rao, A recursive method to compute the steady state probabilities of the machine interference model:
(M/G/1)/K, Comput. Oper. Res. 21 (1994) 597-605.
[4] U.C. Gupta, T.S.S. Srinivasa Rao, On the M/G/1 machine interference model with spares, Eur. J. Oper. Res. 89 (1996) 164-171.
[5] M. Yadin, P. Naor, Queueing systems with a removable service station, Oper. Res. Quart. 14 (1963) 393-405.
[6] C.E. Bell, Characterization and computation of optimal policies for operating an M/G/1 queueing system with removable server,
Oper. Res. 19 (1971) 208-218.
[7] C.E. Bell, Optimal operation of an M/G/1 priority queue with removable server, Oper. Res. 21 (1972) 1281-1289.
[8] D.P. Heyman, Optimal operating policies for M/G/1 queuing system, Oper. Res. 16 (1968) 362-382.
[9] T. Kimura, Optimal control of an M/G/1 queueing system with removable server via diffusion approximation, Eur. J. Oper. Res. 8
(1981) 390-398.
[10] J. Teghem Jr., Optimal control of a removable server in an M/G/1 queue with finite capacity, Eur. J. Oper. Res. 31 (1987) 358-367.
[11] K.-H. Wang, J.-C. Ke, A recursive method to the optimal control of an M/G/1 queueing system with finite capacity and infinite
capacity, Appl. Math. Modell. 24 (2000) 899-914.
[12]J.-C. Ke, K.-H. Wang, A recursive method for N-policy G/M/1 queueing system with finite capacity, Eur. J. Oper. Res. 142 (2002)
577-594.
[13] K.R. Baker, A note on operating policies for the queue M/M/1 with exponential startups, INFOR 11 (1973) 71-72.
[14] A. Borthahur, J. Medhi, R. Gohain, Poisson input queueing systems with startup time and under control operating policy, Comput.
Oper. Res. 14 (1987) 33-40.
[15] J. Medhi, J.G.C. Templeton, A Poisson input queue under N-policy and with a general start up time, Comput. Oper. Res. 19 (1992)
35-41.
[16] H. Takagi, An M/G/1/K queues with N-policy and setup times, Queueing Syst. 14 (1993) 79-98.
[17] H.W. Lee, J.O. Park, Optimal strategy in N-policy production system with early set-up, J. Oper. Res. Soc. 48 (1997) 306-313.
[18] S. Hur, S.J. Paik, The effect of different arrival rates on the N-policy of M/G/1 with server setup, Appl. Math. Modell. 23 (1999) 289—
299.
[19] G.V. Reddy Krishna, R. Nadarajan, R. Arumuganathan, Analysis of a bulk queue with N-policy multiple vacations and setup times,
Comput. Oper. Res. 25 (1998) 957-967.
[20] J.-C. Ke, The operating characteristic analysis on a general input queue with N-policy and a startup time, Math. Methods Oper. Res.
57 (2003) 235-254.

	A recursive method for the F-policy G/M/1/K queueing system with an exponential startup time
	Introduction
	Description of the system
	Practical justification of the model
	Notation

	Steady-state results
	Recursive method
	The solution algorithm
	Simple examples

	Optimal F-policy
	Numerical comparisons
	Conclusions
	References

