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Propagation characteristics of fast light in an
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A perturbation method is used to study the interactions among the signal power, pump power, and metastable
population density for fast light in an erbium-doped fiber amplifier. The impact of temporal pump depletion
(TPD) on fast light is investigated in which TPD is the response of the pump power to the temporal variation
of the metastable population density. It is found that the gain coefficient and the absolute value of the negative
group velocity are overestimated without considering the TPD. The effects of high-order dispersions on fast
light are also shown. © 2008 Optical Society of America
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. INTRODUCTION
he propagation of an optical pulse in the highly disper-
ive medium for slow or fast light was intensively inves-
igated [1–10]. It was reported that slow and fast light
an be observed by using the effect of coherent population
scillation (CPO) in an erbium-doped fiber amplifier
EDFA) [9,10]. Due to the interaction between the fields
nd the erbium ions in an EDFA, there is the spectral
ain dip of a narrow bandwidth. According to the
ramers–Kronig relations, the EDFA becomes a highly
ispersive medium for the pulse in the presence of a gain
ip. The spectral gain dip provides the dispersion for fast
ight. The case of a 9 m erbium-doped fiber strongly
umped by a 980 nm semiconductor laser diode was
hown in [10]. The 1550 nm input pulse of 0.5 ms in width
nd 0.5 mW in power superimposed on a strong continu-
us wave (cw) control beam of the same wavelength was
aunched into the EDFA. The pulse backward propaga-
ion owing to a negative group velocity was reported to be
xperimentally observed. The group index of the pulse is
stimated to be about −4000.

Because the interested pulse width is much longer than
he polarization dephasing time, the interaction of the
ulse and the population of the doped erbium ions in an
DFA can be described by the coupled equations of power
volution equation and rate equation. A perturbation
ethod to derive the time delay and gain (loss) coefficient

f a sinusoidally modulated wave was used in [9]. This
ethod linearizes the coupled equations by assuming

hat the power of the sinusoidally modulated wave is
uch less than that of the control beam. Under this as-

umption, the temporal variation of the population inver-
ion induced by the sinusoidally modulated wave can also
e assumed to be much less than the steady-state popu-
ation inversion induced by the control beam. From the
0740-3224/08/061073-8/$15.00 © 2
inearized coupled equations, the gain coefficient and
roup velocity of the sinusoidally modulated wave can be
erived. However, in this paper, we show that this pertur-
ation method is not accurate in an EDFA even for the
ase that the assumption of perturbation is valid. The nu-
erical results solved from the complete coupled equa-

ions without linearization show that the gain coefficient
nd the absolute value of the negative group velocity are
verestimated.

We find that the inaccuracy is due to the temporal
ump depletion (TPD) that is not included in the above
erturbation method. The pump power depleted by the
ontrol beam is not time varying. An optical pulse de-
letes the metastable population density. The pump
ower is absorbed more when the metastable population
ensity is depleted. The TPD is the pump power temporal
ariation responding to the temporal variation of the
etastable population density absorbed by the optical

ulse. In this paper, we develop the perturbation method
ncluding the TPD effect. It is shown that our method is
ccurate compared with the results directly solved from
he complete coupled equations. The impact of the TPD on
he gain coefficient and group velocity is shown. In addi-
ion, the pulse delay time and pulse shape distortion
esulting from high-order dispersions induced by CPO in
n EDFA are also studied.

. COUPLED EQUATIONS
he energy levels of an EDFA can be approximated as a

hree-level system. However the decay rate from the up-
er level to the metastable level is much faster than the
ecay rate from the metastable level to the ground level.
ecause the population density of the upper level is neg-
008 Optical Society of America
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igible, the signal and pump powers in an EDFA can be
escribed by the following equations [11]:

�Ps

�z
+

ngs

c

�Ps

�t
= − ��s + �ls�Ps + ��gs + �ls�N2Ps, �1�

�Pp

�z
+

ngp

c

�Pp

�t
= − ��p + �lp�Pp + ��gp + �lp�N2Pp, �2�

here Ps is the signal power including the pulse and con-
rol beam powers; Pp is the forward pump power; ngs and
gp are the group indexes of the signal and pump in the
bsence of doped erbium ions, respectively; c is the light
elocity in vacuum; �s and �p are the intrinsic fiber loss
oefficients at the signal and pump wavelengths, respec-
ively; �ls and �lp are the absorption coefficients at the
ignal and pump wavelengths, respectively, which are due
o doped erbium ions when population is completely in the
round level; �gs and �gp are the gain coefficients at the
ignal and pump wavelengths, respectively, which are due
o doped erbium ions when population is completely in the
etastable level. In Eqs. (1) and (2), N2=n2 /nt is the nor-
alized metastable population density in which n2 and nt

re the population density of the metastable level and the
oping density, respectively.
The normalized metastable population density can be

escribed by the rate equation [11],

dN2

dt
=

1

�
� Ps

Ps
th +

Pp

Pp
th� −

1

�
�1 +

Ps

Ps
is +

Pp

Pp
is�N2, �3�

here � is the lifetime of the metastable level and

Pk
th =

Aehvknt

�lk�
, �4a�

Pk
is =

Aehvknt

��gk + �lk��
, �4b�

here k=s and p; hvs and hvp are the photon energies of
he signal and pump, respectively; and Ae is the effective
oping area.
Equations (1)–(3) are the coupled equations that

escribe the interaction of the optical fields and doped
rbium ions. The coupled equations can be numerically
olved with the initial conditions

Ps�z = 0,t� = Pc0 + Pa0�t�, �5�

Pp�z = 0,t� = Pp0, �6�

here Pc0 is the input control beam power, Pa0�t� is the
nput pulse power envelope; and Pp0 is the input forward
ump power. In this paper, we will consider the Gaussian
nput pulse

Pa0�t� = Ps0 exp�− �t/T0�2�, �7�

here Ps0 is the pulse peak power and the FWHM pulse
idth Tw=2�ln�2��1/2T0.
For the considered EDFA, �=10.5 ms, Ae=3.14 �m2,

t=1�1025 m−3, the absorption cross section at 980 nm in
avelength is 2.1�10−25 m, the absorption and emission
ross sections at 1550 nm in wavelength are 3.2
10−25 m and 3.78�10−25 m, respectively, and the EDFA

ength L=10 m. At 980 nm in wavelength, �p
1.7 dB/km, �lp=4.52 dB/m, and �gp=0. At 1550 nm in
avelength, �s=0.4 dB/km, �ls=3.11 dB/m, and �gs
3.67 dB/m. Since the delay time contributed from the
roup index ng=1.5 in an EDFA is Lng /c=50 ns, which is
uch less than the interested millisecond pulse width,

he terms with ngs and ngp in Eqs. (1) and (2), respec-
ively, are negligible. We take the pulse width Tw
0.5 ms and the pump power Pp0=180 mW to show the
umerical results in Section 4, where the control beam
ower Pc0 and the peak power Ps0 are varied.

. PERTURBATIVE SOLUTION
he signal power along the EDFA can be written as
s�z , t�=Pc�z�+Pa�z , t�. For the CPO effect, the pulse
ower Pa�z , t� is much less than the control beam power
c�z� [12], i.e., Pc�z�� !Pa�z , t��. For simplicity the z de-
endence of all variables will not be shown in the follow-
ng, unless they are specified. The normalized metastable
opulation density can be written as N2�t�=Nc+Na�t�,
here Nc and Na�t� are the normalized metastable popu-

ation densities corresponding to Pc and Pa�t�, respec-
ively, hence �Nc � � �Na�t��. The signal power depletes the
ump power through the metastable population density.
he corresponding pump power can be written as Pp�t�
Ppc+Ppa�t�, where Ppc and Ppa�t� are the pump powers
orresponding to Nc and Na�t�, respectively, hence
pc� �Ppa�t��. The powers and normalized metastable
opulation density can be written as

Ps�t� = Pc +� P̃a���exp�− i�t�d�, �8�

Pp�t� = Ppc +� P̃pa���exp�− i�t�d�, �9�

N2�t� = Nc +� Ña���exp�− i�t�d�, �10�

here P̃a���, P̃pa���, and Ña��� are the Fourier trans-
orms of Pa�t�, Ppa�t�, and Na�t�, respectively. Note that
˜

a��� and P̃pa��� are the spectra of the power envelopes.
ecause Pa�t�, Ppa�t�, and Na�t� are real, we have the
elations P̃a���= P̃a* �−��, P̃pa���= P̃pa* �−��, and Ña���
Ña* �−��.
Substituting Eqs. (8)–(10) into Eq. (3) and equating the

erms of the same order of magnitude, we have

Nc = � Pc

Ps
th +

Ppc

Pp
th���c��−1, �11�

˜
a��� = 	� P̃a

Ps
th +

P̃pa

Pp
th� − � P̃a

Ps
is +

P̃pa

Pp
is �Nc
��c� − i���−1,

�12�

here �c is the resonant angular frequency defined
ccording to [9] and
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�c = �1 +
Pc

Ps
is +

Ppc

Pp
is ��−1. �13�

ubstituting Eqs. (8)–(12) into Eqs. (1) and (2) and equat-
ng the terms of the same order of magnitude, we have the
oupled equations

dPc

dz
= − ��s + �ls�Pc + ��gs + �ls�NcPc, �14�

dPpc

dz
= − ��p + �lp�Ppc + ��gp + �lp�NcPpc, �15�

dP̃a���

dz
= cssP̃a��� + cspP̃pa���, �16�

dP̃pa���

dz
= cppP̃pa��� + cpsP̃a���, �17�

here the coefficients

ss = i
ngs

c
� − ��s + �ls� + ��gs + �ls�	Nc + � Pc

Ps
th −

Pc

Ps
isNc���c�

− i���−1
 , �18�

sp = ��gs + �ls�� Pc

Pp
th −

Pc

Pp
isNc���c� − i���−1, �19�

pp = i
ngp

c
� − ��p + �lp� + ��gp + �lp�	Nc + �Ppc

Pp
th −

Ppc

Pp
is Nc�

���c� − i���−1
 , �20�

ps = ��gp + �lp��Ppc

Ps
th −

Ppc

Ps
is Nc���c� − i���−1. �21�

For the case without TPD, the gain coefficient and
ropagation constant of P̃a��� are the real and imaginary
arts of css, respectively. “Propagation constant” usually
efers to the electric field, but for the present analysis it
efers to the power envelope. The group index of Pa�t� can
e obtained from the derivative of the propagation con-
tant with respect to � at �=0. However, TPD always ex-
sts. Thus, the gain coefficient and propagation constant
f P̃a��� must be solved from the coupled Eqs. (14)–(17).
he following shows the numerical solving procedures.

Step 1. The cw powers Pc and Ppc along the EDFA are
olved from Eqs. (14) and (15) with the boundary condi-
ions Pc�z=0�=Pc0 and Ppc �z=0�=Pp0 in which Nc is given
y Eq. (11). Note that Eqs. (14) and (15) are independent
f Eqs. (16) and (17).
Step 2. P̃a�z ,�� and P̃pa�z ,�� are solved from Eqs. (16)
nd (17) with the boundary conditions P̃a�z=0,��
P̃a0��� and P̃pa�z=0,��=0, where P̃a0��� is the Fourier

ransform of the input pulse envelope Pa0�t�, and there is
o initial temporal pump power variation. Note that the
oefficients given by Eqs. (18)–(21) along the EDFA
equire the cw powers Pc and Ppc solved in Step 1. The
pproximate solutions of the pulse shape and temporal
ump power variation are

Pa�z,t� =� P̃a�z,��exp�− i�t�d�, �22�

Ppa�z,t� =� P̃pa�z,��exp�− i�t�d�, �23�

espectively. The integration of Eqs. (22) and (23) can be
umerically calculated with an inverse fast Fourier trans-
orm (FFT) routine.

Step 3. Because the coupled Eqs. (16) and (17) are lin-
ar, we define the spectral transmittance of the pulse en-
elope at the distance z as T�z ,��= P̃a�z ,��/P̃a0���, which
an be written as T�z ,��= �T�z ,�� �exp�i��z ,���, and
�z ,�� is the phase of T�z ,��. The gain coefficient and
ropagation constant of the spectral component of the
ulse envelope are ga�z ,��=d ln��T�z ,�� � � /dz and
a�z ,��=d��z ,�� /dz, respectively.

The group delay time along the EDFA evaluated at
=0 is Td0�z�=d��z ,�� /dz��=0. However, the actual pulse

elay time should be evaluated from the pulse shape
iven by Eq. (22). We will show in Section 4 that the
ctual pulse delay time is significantly influenced by
igh-order dispersions.
At the output of the EDFA, the accumulated gain

a���=ln��T�z=L ,�� � � and the phase shift 
a���
��z=L ,��. The gain coefficient and propagation constant
re even and odd functions, respectively, for the CPO in a
wo-level system [12]. In Section 4, it is shown that 	a���
nd 
a��� are also even and odd functions, respectively.
hus we may expand them as

	a��� + i
a��� = �
k=0

k:even

Q 1

k!
	ak�k + i �

k=1
k:odd

Q 1

k!

ak�k, �24�

here Q is an integer; 	ak and 
ak are the coefficients
btained by numerically fitting 	a���and 
a��� with
q. (24). For the cases considered in this paper, we take
=29 so that 	a��� and 
a��� can be fitted well. 	ak and
ak represent dispersion coefficients that are the deriva-

ives of 	a��� and 
a��� at �=0, respectively. It is noticed
hat 
a1=Td0�z=L�. In Eq. (24), the even and odd order
erms can be called the gain dispersion and phase shift
ispersion, respectively. For studying the effect of disper-
ion induced by CPO on the pulse shape, we define the
utput pulse shape:
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Pa
�M��t� =� P̃a0���exp�	a

�M���� + i
a
�M���� − i�t�d�,

�25�

here M is an integer not larger than Q; 	a
�M���� and

a
�M���� are the partial accumulated gain and phase shift

ncluding the dispersions up to the Mth order, respec-
ively, i.e., they are the accumulated gain and phase shift
iven in Eq. (24) except that the terms of order larger
han M are dropped. Comparing the pulse shapes of Pa

�M�

�t� and Pa
�M−1��t�, one can clearly see the effect of the Mth

rder dispersion on the pulse shape.

ig. 1. With input control beam power Pc0=0.5 mW, (a) input a
alized metastable population density at EDFA output end, (c)

pectra at several distances, (e) peak-power delay time Tpeak and
utput pulse shapes Pa

�M��t� synthesized up to several M disper
q. (22) without dispersion expansion. (f) Corresponding values
pproximate solutions with and without TPD are shown for com
For the case without TPD, we may solve Eqs. (14) and
16) with the coefficient csp=0. From the solutions, the
utput pulse shape, gain coefficient, and propagation
onstant can be calculated with similar methods as shown
bove.

. NUMERICAL RESULTS
t is found that the approximate solutions solved from
qs. (14)–(17) are nearly the same as the exact solutions
olved from Eqs. (1)–(3) when the control beam power Pc0
s about 100 times larger than the peak pulse power Ps0.
n this section, we take the ratio Pc0 /Ps0=10 [10], which

tput pulse shapes, (b) pump power temporal variation and nor-
oefficient spectra at several distances, (d) propagation constant
roup delay time Td0 along the EDFA evaluated at �=0, and (f)
rders and the approximate solution with TPD calculated from
(arrows). The exact solution is solved from Eqs. (1)–(3). (a)–(e)
n.
nd ou
gain c

the g
sion o
of M
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ill result in a slight discrepancy between the approxi-
ate solution and the exact solution. The propagation

haracteristics of fast light with Pc0 /Ps0=10 and 100 are
imilar. The cases with Pc0=0.5, 0.1, and 2.5 mW are
onsidered in Subsections 4.A–4.C.

. Pc0=0.5 mW
igures 1(a)–1(f) show the numerical results with Pc0
0.5 mW. Figure 1(a) shows the input and output pulse
hapes in which the input pulse shape is enlarged 100
imes so that it can be clearly shown. The approximate so-
utions with and without TPD are also shown in Fig. 1(a).
igure 1(a) shows that there is negative power at the tail
f the output pulse. The pulse peak power is amplified
rom 0.05 to 2.42 mW, and the cw power is amplified from
.5 to 151 mW. Thus the signal power Ps, which comprises
oth the pulse power Pa and the cw power Pc, at the pulse
ail is still amplified. The leading edge of the output pulse
epletes the metastable population density. The gain pro-
ided by the metastable population density at the pulse
ail is lower than that at the pulse leading edge for the
ignal power. Because the amplified signal power at the
ulse tail is less than that at the pulse leading edge, there
s the negative power at the pulse tail when the cw power
s subtracted from the signal power to derive the pulse
hape. This result agrees with the output pulse shape
easured in [10]. In Fig. 1(a), one can see that, without
PD, the pulse gain is overestimated, and the absolute
alue of the pulse delay time is underestimated. The dis-
repancy between the exact solution and the approximate
olution with TPD is due to the pulse peak power that is
ot small enough compared with the control beam power.
igure 1(b) shows the pump power temporal variation
nd normalized metastable population density at the
DFA output end in which the approximate solutions
pa�t� and Na�t� are also shown. Ppa�t� and Na�t�are calcu-

ated from Eqs. (23) and (12), respectively. For the case
ithout TPD, P̃pa=0 in Eq. (12). One can clearly see that

he depletion of the metastable population density is un-
erestimated for the case without considering TPD, which
eads to the underestimation of the CPO effect. Figures
(c) and 1(d) show the gain coefficient and propagation

Fig. 2. (a) Accumulated gain spectra and (b) accumulated
onstant spectra, respectively, at several distances. In
igs. 1(c) and 1(d), the approximate solutions with and
ithout TPD are shown. At a 2.5 m distance, the gain co-
fficient spectra and the propagation constant spectra for
he cases with and without TPD are about the same be-
ause TPD is not yet significantly built up. After about a
m distance, for the case without TPD, the gain coeffi-

ient and the absolute value of the negative slope of the
ropagation constant at �=0 are overestimated and un-
erestimated, respectively. Thus the pulse gain and the
bsolute value of the negative group velocity are overes-
imated. Figures 2(a) and 2(b) show the accumulated gain
nd phase shift, respectively, for the approximate solu-
ions with and without TPD. From the results, we study
he effect of gain dispersion and phase shift dispersion on
ulse propagation in the following.
For the case with TPD shown in Fig. 2(a), the gain dip

f narrow bandwidth will result in serious high-order dis-
ersions. The first-order dispersion accelerates fast light
ithout pulse distortion. Higher-order dispersion not only
istorts the pulse shape as shown in Fig. 1(a) but also
elays the pulse and slows down fast light. Figure 1(e)
hows the peak-power delay time Tpeak, the group delay
ime Td0 with TPD, and the group delay time Td0 without
PD. One can see that �Td0� of the case with TPD is much

arger than that of the case without TPD. In Fig. 1(e),
peak is only about one-half of Td0 with TPD. The average
roup index can be calculated as navg=cTd /L in which Td
s the delay time. We have navg=−3443, −6176, and −1093
or Td=Tpeak, Td0 with TPD, and Td0 without TPD, re-
pectively. Figure 1(f) shows the output pulse shapes

a
�M��t� with partial high-order dispersions, and the cases
ith M=0, 1, 2, 3, and 5 are shown. In Fig. 1(f), the
pproximate solution with TPD calculated from Eq. (22)
ithout dispersion expansion is also shown for compari-

on. In Fig. 1(f), one can see how the combined effect of
igh odd order dispersions slows down fast light. The
eak-power delay time of Pa

�1��t� is Td0. The third-order
ispersion increases the pulse delay time and slows down
ast light. Thus the absolute value of the peak-power de-
ay time is decreased. The fifth-order dispersion acceler-
tes fast light, but it is not able to recover the slow down
esulting from the third-order dispersion. The dispersions
f order larger than the fifth order further slightly in-

shift spectra for the cases with P =0.1, 0.5, and 2.5 mW.
phase
 c0
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rease the pulse delay time and slow down fast light.
herefore, the group velocity of fast light cannot be de-
ned as the velocity derived from the slope of propagation
onstant at �=0. In Figs. 1(e) and 1(f), one can see the
ignificant modification of group velocity by high-order
ispersions.
It is interesting to note that, comparing Pa

�2��t�
ith Pa

�1��t� shown in Fig. 1(f), one can see that the
econd-order gain dispersion significantly narrows the
ulse width. It can easily be derived that if there only ex-
sts the second-order gain dispersion, the output FWHM
ulse width of the Gaussian input pulse given by Eq. (7) is

Tw2 = 2�ln�2��T0
2 − 2	a2��1/2. �26�

f 	a2�T0
2 /2, the pulse width is narrowed; otherwise, it is

roadened. For the case shown in Fig. 1(f), T =0.3 ms

Fig. 3. Same as Fig. 1 except tha
0

Tw=0.5 ms� and 	a2=0.0569 ms2. We have Tw2
0.256 ms, and the pulse is significantly compressed. The
ompressed pulse width enhances the unsymmetric pulse
hape distortion due to the third-order dispersion in
hich 
a3=0.0257 ms3. The dispersions of order higher

han the third-order smooth out the oscillating tail of

a
�3��t�. The resulting FWHM pulse width is 0.42 ms. In
eneral the pulse width may be broadened or narrowed
epending on system parameters, such as pulse width,
ontrol beam power, and pump power [13]. Under a small
ignal assumption, dispersion coefficients change with the
ontrol beam and pump powers.

. Pc0=0.1 mW
ith a lower Pc0, the depletion of pump power by the am-

lified control beam power is less, and the recovery of the

control beam power Pc0=0.1 mW.
t input
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etastable population density (gain) is better. This re-
ults in less pulse shape distortion but a slowing down of
ast light induced by CPO. Figures 3(a)–3(f) show the
ame numerical results as Figs. 1(a)–1(f), respectively, ex-
ept that Pc0=0.1 mW and the input pulse shape is en-
arged 500 times in Fig. 3(a). Comparing Fig. 3(a) with
ig. 1(a), one can see that the output pulse shape is better
aintained, and the absolute value of the pulse delay

ime is decreased as expected. Comparing Fig. 3(b) with
ig. 1(b), one can see that the depletion of the pump
ower and metastable population density by the pulse are
arger because of a higher pulse gain and output pulse
ower. In Fig. 3(c), at 2.5 and 5 m distances, the gain co-
fficients for the cases with and without TPD are about
he same because the pulse power is still low and TPD is
ot yet significantly built up, as are the propagation con-
tant spectra shown in Fig. 3(d). At a 7.5 m distance, TPD
s high enough so that the difference between the cases
ith and without TPD becomes apparent. In Fig. 3(e), we
ave average group indexes navg=−1794, −2223, and −877

or the peak-power delay time Tpeak, Td0 with TPD, and
d0 without TPD, respectively.
Figures 2(a) and 2(b) also show the accumulated gain

nd phase shift, respectively, for the case with Pc0
0.1 mW. The wide bandwidth of the gain dip for this
ase decreases the high-order dispersions so that the
ulse shape is better maintained. For this case, 	a2
0.0105 ms2, we have Tw2=0.438 ms from Eq. (26), and

he pulse compression owing to 	a2 is slight. In Fig. 3(f),
ne can see that, including only up to the fifth-order dis-
ersion, Pa

�5��t� is about the same as the pulse shape cal-
ulated from Eq. (22). The resulting FWHM pulse width
s slightly narrowed and is 0.472 ms. Fast light slowed
own due to the third-order dispersion is less significant
han the case with Pc0=0.5 mW.

. Pc0=2.5 mW
rom the results shown above, it seems that we may en-
ance the average negative group index and increase the
bsolute value of the pulse delay time by increasing P .

ig. 4. With input control beam power Pc0=2.5 mW, (a) input an
p to several M dispersion orders and the approximate solution
orresponding values of M (arrows). The exact solution is solved
hown for comparison.
c0
owever the increase of the input control beam power not
nly enhances the first-order dispersion coefficient 
a1
ut also higher-order dispersion coefficients 
ak �k�1�.
he enhanced higher-order dispersion coefficients may re-
ult in a serious pulse shape distortion and slowing down
f fast light. For example, Figs. 4(a) and 4(b) show the
ame case as Figs. 1(a) and 1(f), respectively, except that
c0=2.5 mW, and the input pulse shape is enlarged 20

imes in Fig. 4(a). One can see that 
a1=−0.424 ms, which
s about an 85% pulse width, but the combined effect of
igher-order dispersions decreases the peak-power delay
ime to be −0.144 ms (−4320 average group index) and se-
iously distorts the pulse shape. In Fig. 4(b), one can see
hat Pa

�2��t� is broadened instead of narrowed. For this
ase, 	a2=0.187 ms2, which is large enough to broaden the
ulse width. From Eq. (26), Tw2=0.888 ms. Careful sys-
em parameter optimization is able to improve the abso-
ute value of the peak-power delay time under a certain
onstraint of the pulse shape distortion [13]. However, as
he first-order dispersion is enhanced, higher-order
ispersions are usually enhanced accordingly. The
ptimization should compromise between the first-order
ispersion and higher-order dispersions.

. CONCLUSIONS
ast light can be realized by utilizing the CPO effect in an
DFA in which a pulse superimposed on a strong cw con-

rol beam is launched into the EDFA. The pulse depletes
he metastable population density. The pump power is ab-
orbed more when the metastable population density is
epleted. In literature, the perturbation method analyz-
ng fast light in an EDFA did not consider this pump
ower depletion. Thus the CPO effect is underestimated,
nd the derived gain coefficient and propagation constant
re inaccurate. We have developed the perturbation
ethod for solving the time varying parts of the signal

ower, pump power, and metastable population density.
he coupled equations of the spectral components of the

ut pulse shapes and (b) output pulse shapes Pa
�M��t� synthesized

TPD calculated from Eq. (22) without dispersion expansion. (b)
qs. (1)–(3). (a) Approximate solutions with and without TPD are
d outp
with
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ignal power, pump power, and metastable population
ensity are derived. From the coupled equations, we can
ccurately solve the gain coefficient and propagation con-
tant of fast light in an EDFA. It is found that the pulse
ain and the absolute value of the negative group velocity
re over estimated if TPD is not considered. From the
olved gain coefficient and propagation constant, we also
tudy the pulse delay time and shape distortion resulting
rom high-order dispersions induced by CPO. The gain
ispersion resulting from accumulated gain is shown. Ac-
umulated gain is the integration of the gain coefficient
long an EDFA, which is an even function of frequency.
he second-order gain dispersion may symmetrically
roaden or compress the pulse depending on the value of
ts coefficient. The changes of the pulse shape by higher
ven order gain dispersions are complicated because of
he combined effect with high-/odd-order phase shift dis-
ersions. The phase shift dispersion results from the ac-
umulated phase shift, which is the integration of the
ropagation constant along an EDFA and is an odd func-
ion of frequency. The first-order phase shift dispersion
ndistortedly leads to a negative pulse delay time.
igher-/odd-order phase shift dispersions unsymmetri-

ally distort the pulse shape and change the pulse delay
ime. For the shown examples, the third- and fifth-order
ispersions result in slowing down and accelerating fast
ight, respectively. Thus the group velocity of fast light
annot be simply defined as the velocity derived from the
rst derivative of the propagation constant. The
resented perturbation method can also be applied to
nalyze fast light in other resonant mediums with optical
umping.
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