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A perturbation method is used to study the interactions among the signal power, pump power, and metastable
population density for fast light in an erbium-doped fiber amplifier. The impact of temporal pump depletion
(TPD) on fast light is investigated in which TPD is the response of the pump power to the temporal variation
of the metastable population density. It is found that the gain coefficient and the absolute value of the negative
group velocity are overestimated without considering the TPD. The effects of high-order dispersions on fast
light are also shown. © 2008 Optical Society of America
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1. INTRODUCTION

The propagation of an optical pulse in the highly disper-
sive medium for slow or fast light was intensively inves-
tigated [1-10]. It was reported that slow and fast light
can be observed by using the effect of coherent population
oscillation (CPO) in an erbium-doped fiber amplifier
(EDFA) [9,10]. Due to the interaction between the fields
and the erbium ions in an EDFA, there is the spectral
gain dip of a narrow bandwidth. According to the
Kramers—Kronig relations, the EDFA becomes a highly
dispersive medium for the pulse in the presence of a gain
dip. The spectral gain dip provides the dispersion for fast
light. The case of a 9m erbium-doped fiber strongly
pumped by a 980nm semiconductor laser diode was
shown in [10]. The 1550 nm input pulse of 0.5 ms in width
and 0.5 mW in power superimposed on a strong continu-
ous wave (cw) control beam of the same wavelength was
launched into the EDFA. The pulse backward propaga-
tion owing to a negative group velocity was reported to be
experimentally observed. The group index of the pulse is
estimated to be about —4000.

Because the interested pulse width is much longer than
the polarization dephasing time, the interaction of the
pulse and the population of the doped erbium ions in an
EDFA can be described by the coupled equations of power
evolution equation and rate equation. A perturbation
method to derive the time delay and gain (loss) coefficient
of a sinusoidally modulated wave was used in [9]. This
method linearizes the coupled equations by assuming
that the power of the sinusoidally modulated wave is
much less than that of the control beam. Under this as-
sumption, the temporal variation of the population inver-
sion induced by the sinusoidally modulated wave can also
be assumed to be much less than the steady-state popu-
lation inversion induced by the control beam. From the
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linearized coupled equations, the gain coefficient and
group velocity of the sinusoidally modulated wave can be
derived. However, in this paper, we show that this pertur-
bation method is not accurate in an EDFA even for the
case that the assumption of perturbation is valid. The nu-
merical results solved from the complete coupled equa-
tions without linearization show that the gain coefficient
and the absolute value of the negative group velocity are
overestimated.

We find that the inaccuracy is due to the temporal
pump depletion (TPD) that is not included in the above
perturbation method. The pump power depleted by the
control beam is not time varying. An optical pulse de-
pletes the metastable population density. The pump
power is absorbed more when the metastable population
density is depleted. The TPD is the pump power temporal
variation responding to the temporal variation of the
metastable population density absorbed by the optical
pulse. In this paper, we develop the perturbation method
including the TPD effect. It is shown that our method is
accurate compared with the results directly solved from
the complete coupled equations. The impact of the TPD on
the gain coefficient and group velocity is shown. In addi-
tion, the pulse delay time and pulse shape distortion
resulting from high-order dispersions induced by CPO in
an EDFA are also studied.

2. COUPLED EQUATIONS

The energy levels of an EDFA can be approximated as a
three-level system. However the decay rate from the up-
per level to the metastable level is much faster than the
decay rate from the metastable level to the ground level.
Because the population density of the upper level is neg-
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ligible, the signal and pump powers in an EDFA can be
described by the following equations [11]:

P ngs P,

+— =— (g + ) Ps + (s + ;) NP, 1
PR (@ + @) P + (ags + ;)N (1)
JP, n,,dP

p 8P p
E + TE =- (ap + alp)Pp + (agp + alp)NZPp’ (2)

where P, is the signal power including the pulse and con-
trol beam powers; P, is the forward pump power; ng, and
ngp, are the group indexes of the signal and pump in the
absence of doped erbium ions, respectively; ¢ is the light
velocity in vacuum; «; and a, are the intrinsic fiber loss
coefficients at the signal and pump wavelengths, respec-
tively; a;; and q, are the absorption coefficients at the
signal and pump wavelengths, respectively, which are due
to doped erbium ions when population is completely in the
ground level; ag, and q, are the gain coefficients at the
signal and pump wavelengths, respectively, which are due
to doped erbium ions when population is completely in the
metastable level. In Eqgs. (1) and (2), No=ny/n, is the nor-
malized metastable population density in which ny and n,
are the population density of the metastable level and the
doping density, respectively.

The normalized metastable population density can be
described by the rate equation [11],

dN, 1/P, P,\ 1 P, P,
S W-FW -1+ —=+— NQ, (3)
e 7\pr P o\" PP

where 7 is the lifetime of the metastable level and

A hvpn
pih= 2 (4a)
aT
A hvyn,

Py (4b)

(agk + a’lk)T,

where k=s and p; hv; and hv, are the photon energies of
the signal and pump, respectively; and A, is the effective
doping area.

Equations (1)-(3) are the coupled equations that
describe the interaction of the optical fields and doped
erbium ions. The coupled equations can be numerically
solved with the initial conditions

Ps(z = O’t) =PCO +Pa0(t)9 (5)

P,(z=0,0) =P, (6)

where P, is the input control beam power, P, o(¢) is the
input pulse power envelope; and P, is the input forward
pump power. In this paper, we will consider the Gaussian
input pulse

Py(t) = Pyg exp[~ (¢/To)?], (7

where P, is the pulse peak power and the FWHM pulse
width T, =2[In(2) V2T,

For the considered EDFA, r=10.5ms, A,=3.14 um?,
n;=1x10% m~3, the absorption cross section at 980 nm in
wavelength is 2.1 X 1072 m, the absorption and emission
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cross sections at 1550nm in wavelength are 3.2
X 10725m and 3.78 X 10725 m, respectively, and the EDFA
length L=10m. At 980nm in wavelength, «,
=1.7dB/km, a;,=4.52dB/m, and ag,=0. At 1550 nm in
wavelength, «;=0.4dB/km, ¢;=3.11dB/m, and a4
=3.67dB/m. Since the delay time contributed from the
group index n,=1.5 in an EDFA is Ln,/c=>50ns, which is
much less than the interested millisecond pulse width,
the terms with ng, and ng, in Egs. (1) and (2), respec-
tively, are negligible. We take the pulse width T,
=0.5ms and the pump power P,;=180 mW to show the
numerical results in Section 4, where the control beam
power P, and the peak power Py, are varied.

3. PERTURBATIVE SOLUTION

The signal power along the EDFA can be written as
P, z,t)=P.(z)+P,(z,t). For the CPO effect, the pulse
power P,(z,t) is much less than the control beam power
P.(2) [12], i.e., P.(z)>> |P,(z,t)|. For simplicity the z de-
pendence of all variables will not be shown in the follow-
ing, unless they are specified. The normalized metastable
population density can be written as Ny(¢)=N_.+N,(t),
where N, and N,(¢) are the normalized metastable popu-
lation densities corresponding to P, and P,(t), respec-
tively, hence |N,|>>|N,(¢)|. The signal power depletes the
pump power through the metastable population density.
The corresponding pump power can be written as P,(¢)
=P,.+P,,(t), where P,. and P,,(¢) are the pump powers
corresponding to N, and N,(¢), respectively, hence
P,.>|P,,(t)|. The powers and normalized metastable
population density can be written as

P(t)=P.+ f P (Q)exp(-iOt)dQ, (8)
P,(t)=P,. + f P,,(Q)exp(-i0)dQ, 9)
Ny(t) =N, + J N,(Q)exp(- iQ#)dQQ, (10)

where P,(Q), P,,(Q), and N,(Q) are the Fourier trans-
forms of P,(t), P,,(t), and N,(t), respectively. Note that

f’a(Q) and f’pa(ﬂ) are the spectra of the power envelopes.
Because P,(t), Py,(t), and N,(f) are real, we have the
relations P,(Q)=P,#(-Q), P,,(Q)=P,,(-Q), and N,(Q)
=Na*(—9).

Substituting Egs. (8)—(10) into Eq. (3) and equating the
terms of the same order of magnitude, we have

(Pc Ppc) 1

N,=| — + — |(w,7)" (11)

c h h c ’

PP

i} B, B\ (B. B,

N @)= | | o+ 2 | =2+ 22N, [(w,r- 10972,
P’ P PPy

(12)

where o, is the resonant angular frequency defined
according to [9] and
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P. P,
w,=1+—+ 2 (13)
P Py

Substituting Eqgs. (8)-(12) into Egs. (1) and (2) and equat-
ing the terms of the same order of magnitude, we have the
coupled equations

d_zC == (as + als)Pc + (a’gs + als)NcPc’ (14)
dpP,,
dz =- (ap + alp) et ( p T alp)N per (15)
dP, ()
- CSSP (Q) + csp pa(Q) (16)
dP,, ()
T G P,o(Q) + ¢ P (), (17)

where the coefficients

.ngs Pc Pc
Cos =1—Q = (a5 + ayy) + (ags + ) | No+ | — — =N, (0.7
c

- iQT)_1:| , (18)

P
sp= (ags + als)<_ )(wc -iQ7)” 1 (19)

¢
th ]
p* P

Ngp Py Py
Cpp LTQ (a +a’lp)+( +alp) N+ Pth P;'JSNC

X (w,7— iQT)-ll , (20)

pc

(agp+alp)<Pth Pls )(wc -0 (21)

For the case without TPD, the gain coefficient and

propagation constant of Pa(ﬂ) are the real and imaginary
parts of ¢, respectively. “Propagation constant” usually
refers to the electric field, but for the present analysis it
refers to the power envelope. The group index of P,(¢) can
be obtained from the derivative of the propagation con-
stant with respect to ) at 1=0. However, TPD always ex-
ists. Thus, the gain coefficient and propagation constant

of ?G(Q) must be solved from the coupled Egs. (14)—(17).
The following shows the numerical solving procedures.

Step 1. The cw powers P, and P, along the EDFA are
solved from Eqgs. (14) and (15) with the boundary condi-
tions P.(2=0)=P,y and P, (z=0)=P,( in which N, is given
by Eq. (11). Note that Eqgs. (14) and (15) are independent
of Egs. (16) and (17).
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Step 2. f’a(z,ﬂ) and Ppa(z,ﬂ) are solved from Eqs. (16)
and (17) With the boundary conditions P .(2=0,Q)

=P,5(Q)) and P »a(2=0,0)=0, where P,o(Q) is the Fourier
transform of the input pulse envelope P,((¢), and there is
no initial temporal pump power variation. Note that the
coefficients given by Eqgs. (18)—(21) along the EDFA
require the cw powers P, and P, solved in Step 1. The
approximate solutions of the pulse shape and temporal
pump power variation are

P,(z,t) = f P_(z,Q)exp(- iQ#)dQ, (22)

P, (z,t)= f P,,(z,Q)exp(- iQt)dQ, (23)

respectively. The integration of Egs. (22) and (23) can be
numerically calculated with an inverse fast Fourier trans-
form (FFT) routine.

Step 3. Because the coupled Eqs. (16) and (17) are lin-
ear, we define the spectral transmittance of the pulse en-

velope at the distance z as T'(z,Q) =1~Ja(z,ﬂ)/13a0(ﬂ), which
can be written as T(z,Q)=|T(z,Q)|exp[if(z,Q)], and
0(z,Q) is the phase of T(z,Q)). The gain coefficient and
propagation constant of the spectral component of the
pulse envelope are g,(z,Q)=dIn(|T(z,Q)])/dz and
B.(z,Q0)=d0(z,Q)/dz, respectively.

The group delay time along the EDFA evaluated at
0=0is Tyy(z)=db(z,Q)/dz|o-o. However, the actual pulse
delay time should be evaluated from the pulse shape
given by Eq. (22). We will show in Section 4 that the
actual pulse delay time is significantly influenced by
high-order dispersions.

At the output of the EDFA, the accumulated gain
Y.(Q)=In(|T(z=L,Q)|) and the phase shift ¢,(Q)
=0(z=L,Q). The gain coefficient and propagation constant
are even and odd functions, respectively, for the CPO in a
two-level system [12]. In Section 4, it is shown that v,(Q)
and ¢,(Q) are also even and odd functions, respectively.
Thus we may expand them as

Q@

1
Ya(Q) +ig ()= >, Wakn +z2 —¢akn (24)
k=0 !
k:even kodd

where @ is an integer; 7y,, and ¢,, are the coefficients
obtained by numerically fitting y,(Q)and ¢,(Q) with
Eq. (24). For the cases considered in this paper, we take
Q=29 so that y,(Q) and ¢,(Q) can be fitted well. y,, and
¢, represent dispersion coefficients that are the deriva-
tives of y,(Q) and ¢,(Q)) at (=0, respectively. It is noticed
that ¢,1=Ty4o(z=L). In Eq. (24), the even and odd order
terms can be called the gain dispersion and phase shift
dispersion, respectively. For studying the effect of disper-
sion induced by CPO on the pulse shape, we define the
output pulse shape:
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PM(t) = f Po(@exp[yM(Q) +i42(Q) - i01dQ,

(25)

where M is an integer not larger than @; 'y‘(ZM)(Q) and
¢flM) (Q)) are the partial accumulated gain and phase shift
including the dispersions up to the Mth order, respec-
tively, i.e., they are the accumulated gain and phase shift
given in Eq. (24) except that the terms of order larger
than M are dropped. Comparing the pulse shapes of PfZM)
X (t) and PflM_l)(t), one can clearly see the effect of the Mth
order dispersion on the pulse shape.
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For the case without TPD, we may solve Egs. (14) and
(16) with the coefficient c,,=0. From the solutions, the
output pulse shape, gain coefficient, and propagation
constant can be calculated with similar methods as shown
above.

4. NUMERICAL RESULTS

It is found that the approximate solutions solved from
Eqgs. (14)—(17) are nearly the same as the exact solutions
solved from Egs. (1)—(3) when the control beam power P,
is about 100 times larger than the peak pulse power Py,.
In this section, we take the ratio P.y/P,;=10 [10], which

— B ,(1): Exact Solution
0] < RD:Ea23)

z
‘5 -2 4-2
8
o 3] \ / 13
N,(1): Exact solution
-4 — N,(f): with TPD 14

=== N(f): without TPD

T T T
1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Time (ms)

(b)

Normalized Population Density (1x1 0'3)

—— with TPD
........ without TPD

20 15 -10 -5 0 5 10 15 20
Frequency Q/2n (kHz)

(d)

Power (mW)

T
-1.0 0.5 0.0 0.5 1.0
Time (ms)

(f)

Fig. 1. With input control beam power P,,=0.5 mW, (a) input and output pulse shapes, (b) pump power temporal variation and nor-
malized metastable population density at EDFA output end, (c) gain coefficient spectra at several distances, (d) propagation constant
spectra at several distances, (e) peak-power delay time 7', and the group delay time 7y, along the EDFA evaluated at (1=0, and (f)
output pulse shapes P((ZM>(t) synthesized up to several M dispersion orders and the approximate solution with TPD calculated from
Eq. (22) without dispersion expansion. (f) Corresponding values of M (arrows). The exact solution is solved from Egs. (1)—(3). (a)-(e)
Approximate solutions with and without TPD are shown for comparison.
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will result in a slight discrepancy between the approxi-
mate solution and the exact solution. The propagation
characteristics of fast light with P,4/P,=10 and 100 are
similar. The cases with P,=0.5, 0.1, and 2.5 mW are
considered in Subsections 4.A—4.C.

A. P,=0.5mW

Figures 1(a)-1(f) show the numerical results with P,
=0.5 mW. Figure 1(a) shows the input and output pulse
shapes in which the input pulse shape is enlarged 100
times so that it can be clearly shown. The approximate so-
lutions with and without TPD are also shown in Fig. 1(a).
Figure 1(a) shows that there is negative power at the tail
of the output pulse. The pulse peak power is amplified
from 0.05 to 2.42 mW, and the cw power is amplified from
0.5 to 151 mW. Thus the signal power P,, which comprises
both the pulse power P, and the cw power P,, at the pulse
tail is still amplified. The leading edge of the output pulse
depletes the metastable population density. The gain pro-
vided by the metastable population density at the pulse
tail is lower than that at the pulse leading edge for the
signal power. Because the amplified signal power at the
pulse tail is less than that at the pulse leading edge, there
is the negative power at the pulse tail when the cw power
is subtracted from the signal power to derive the pulse
shape. This result agrees with the output pulse shape
measured in [10]. In Fig. 1(a), one can see that, without
TPD, the pulse gain is overestimated, and the absolute
value of the pulse delay time is underestimated. The dis-
crepancy between the exact solution and the approximate
solution with TPD is due to the pulse peak power that is
not small enough compared with the control beam power.
Figure 1(b) shows the pump power temporal variation
and normalized metastable population density at the
EDFA output end in which the approximate solutions
P,,(¢) and N,(t) are also shown. P,,(¢) and N,(¢)are calcu-
lated from Eqgs. (23) and (12), respectively. For the case

without TPD, Ppa=0 in Eq. (12). One can clearly see that
the depletion of the metastable population density is un-
derestimated for the case without considering TPD, which
leads to the underestimation of the CPO effect. Figures
1(c) and 1(d) show the gain coefficient and propagation

—— with TPD
****** without TPD

Accumulated Gain y,

1 T T T T T T 1

20 -15 -10 -]5 0 5 10 15 20
Frequency Q/2r (kHz)

(a)
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constant spectra, respectively, at several distances. In
Figs. 1(c) and 1(d), the approximate solutions with and
without TPD are shown. At a 2.5 m distance, the gain co-
efficient spectra and the propagation constant spectra for
the cases with and without TPD are about the same be-
cause TPD is not yet significantly built up. After about a
5 m distance, for the case without TPD, the gain coeffi-
cient and the absolute value of the negative slope of the
propagation constant at (=0 are overestimated and un-
derestimated, respectively. Thus the pulse gain and the
absolute value of the negative group velocity are overes-
timated. Figures 2(a) and 2(b) show the accumulated gain
and phase shift, respectively, for the approximate solu-
tions with and without TPD. From the results, we study
the effect of gain dispersion and phase shift dispersion on
pulse propagation in the following.

For the case with TPD shown in Fig. 2(a), the gain dip
of narrow bandwidth will result in serious high-order dis-
persions. The first-order dispersion accelerates fast light
without pulse distortion. Higher-order dispersion not only
distorts the pulse shape as shown in Fig. 1(a) but also
delays the pulse and slows down fast light. Figure 1(e)
shows the peak-power delay time T'., the group delay
time Ty with TPD, and the group delay time T;;, without
TPD. One can see that |T| of the case with TPD is much
larger than that of the case without TPD. In Fig. 1(e),
T'peak is only about one-half of T;yo with TPD. The average
group index can be calculated as n,,,=cTy/L in which T
is the delay time. We have n,,,=-3443, -6176, and —1093
for Ty=Tpeax, Tqo with TPD, and Ty, without TPD, re-
spectively. Figure 1(f) shows the output pulse shapes
PflM)(t) with partial high-order dispersions, and the cases
with M=0, 1, 2, 3, and 5 are shown. In Fig. 1(f), the
approximate solution with TPD calculated from Eq. (22)
without dispersion expansion is also shown for compari-
son. In Fig. 1(f), one can see how the combined effect of
high odd order dispersions slows down fast light. The
peak-power delay time of Pfll)(t) is Tyo. The third-order
dispersion increases the pulse delay time and slows down
fast light. Thus the absolute value of the peak-power de-
lay time is decreased. The fifth-order dispersion acceler-
ates fast light, but it is not able to recover the slow down
resulting from the third-order dispersion. The dispersions
of order larger than the fifth order further slightly in-

0.0 F,=0.1 mW

Accumulated Phase Shift ¢, (rad)

-0.5]
—— with TPD
,,,,,,,, without TPD
-1.04

20 45 40 5 0 5 10 15 20
Frequency Q/2x (kHz)

(b)

Fig. 2. (a) Accumulated gain spectra and (b) accumulated phase shift spectra for the cases with P.,=0.1, 0.5, and 2.5 mW.
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Fig. 3. Same as Fig. 1 except that input control beam power P.;=0.1 mW.

crease the pulse delay time and slow down fast light.
Therefore, the group velocity of fast light cannot be de-
fined as the velocity derived from the slope of propagation
constant at =0. In Figs. 1(e) and 1(f), one can see the
significant modification of group velocity by high-order
dispersions.

It is interesting to note that, comparing Pff)(t)
with P(al)(t) shown in Fig. 1(f), one can see that the
second-order gain dispersion significantly narrows the
pulse width. It can easily be derived that if there only ex-
ists the second-order gain dispersion, the output FWHM
pulse width of the Gaussian input pulse given by Eq. (7) is

T, =2(In(2)|T§ - 27,5/1"2. (26)

If y,5<T%/2, the pulse width is narrowed; otherwise, it is
broadened. For the case shown in Fig. 1(f), T(=0.3 ms

(T,=0.5ms) and 1v,,=0.0569ms?. We have T,
=0.256 ms, and the pulse is significantly compressed. The
compressed pulse width enhances the unsymmetric pulse
shape distortion due to the third-order dispersion in
which ¢,3=0.0257 ms®. The dispersions of order higher
than the third-order smooth out the oscillating tail of
Pfls)(t). The resulting FWHM pulse width is 0.42 ms. In
general the pulse width may be broadened or narrowed
depending on system parameters, such as pulse width,
control beam power, and pump power [13]. Under a small
signal assumption, dispersion coefficients change with the
control beam and pump powers.

B. P,,=0.1 mW
With a lower P,, the depletion of pump power by the am-
plified control beam power is less, and the recovery of the
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2.0
1.5 1
1.0 1

0.5

Power (mW)

0.0 1

-0.5 1

T T 1

T
1.5 -1.0 0.5 0.0 0.5 1.0 1.5
Time (ms)

(b)

Fig. 4. With input control beam power P,,=2.5 mW, (a) input and output pulse shapes and (b) output pulse shapes PflM)(t) synthesized
up to several M dispersion orders and the approximate solution with TPD calculated from Eq. (22) without dispersion expansion. (b)
Corresponding values of M (arrows). The exact solution is solved from Egs. (1)—(3). (a) Approximate solutions with and without TPD are

shown for comparison.

metastable population density (gain) is better. This re-
sults in less pulse shape distortion but a slowing down of
fast light induced by CPO. Figures 3(a)-3(f) show the
same numerical results as Figs. 1(a)-1(f), respectively, ex-
cept that P,;=0.1 mW and the input pulse shape is en-
larged 500 times in Fig. 3(a). Comparing Fig. 3(a) with
Fig. 1(a), one can see that the output pulse shape is better
maintained, and the absolute value of the pulse delay
time is decreased as expected. Comparing Fig. 3(b) with
Fig. 1(b), one can see that the depletion of the pump
power and metastable population density by the pulse are
larger because of a higher pulse gain and output pulse
power. In Fig. 3(c), at 2.5 and 5 m distances, the gain co-
efficients for the cases with and without TPD are about
the same because the pulse power is still low and TPD is
not yet significantly built up, as are the propagation con-
stant spectra shown in Fig. 3(d). At a 7.5 m distance, TPD
is high enough so that the difference between the cases
with and without TPD becomes apparent. In Fig. 3(e), we
have average group indexes n,,,=-1794, —2223, and -877
for the peak-power delay time T'e,,, Tgo with TPD, and
T 40 without TPD, respectively.

Figures 2(a) and 2(b) also show the accumulated gain
and phase shift, respectively, for the case with P,
=0.1 mW. The wide bandwidth of the gain dip for this
case decreases the high-order dispersions so that the
pulse shape is better maintained. For this case, 7,9
=0.0105 ms?, we have T,,=0.438 ms from Eq. (26), and
the pulse compression owing to y,s is slight. In Fig. 3(f),
one can see that, including only up to the fifth-order dis-
persion, Pff’)(t) is about the same as the pulse shape cal-
culated from Eq. (22). The resulting FWHM pulse width
is slightly narrowed and is 0.472 ms. Fast light slowed
down due to the third-order dispersion is less significant
than the case with P,y=0.5 mW.

C. Py=2.5mW

From the results shown above, it seems that we may en-
hance the average negative group index and increase the
absolute value of the pulse delay time by increasing P,.

However the increase of the input control beam power not
only enhances the first-order dispersion coefficient ¢,
but also higher-order dispersion coefficients ¢, (£>1).
The enhanced higher-order dispersion coefficients may re-
sult in a serious pulse shape distortion and slowing down
of fast light. For example, Figs. 4(a) and 4(b) show the
same case as Figs. 1(a) and 1(f), respectively, except that
P,y=2.5mW, and the input pulse shape is enlarged 20
times in Fig. 4(a). One can see that ¢,;=-0.424 ms, which
is about an 85% pulse width, but the combined effect of
higher-order dispersions decreases the peak-power delay
time to be —0.144 ms (-4320 average group index) and se-
riously distorts the pulse shape. In Fig. 4(b), one can see
that PLZ)(t) is broadened instead of narrowed. For this
case, y,9=0.187 ms?, which is large enough to broaden the
pulse width. From Eq. (26), T,,5=0.888 ms. Careful sys-
tem parameter optimization is able to improve the abso-
lute value of the peak-power delay time under a certain
constraint of the pulse shape distortion [13]. However, as
the first-order dispersion is enhanced, higher-order
dispersions are usually enhanced accordingly. The
optimization should compromise between the first-order
dispersion and higher-order dispersions.

5. CONCLUSIONS

Fast light can be realized by utilizing the CPO effect in an
EDFA in which a pulse superimposed on a strong cw con-
trol beam is launched into the EDFA. The pulse depletes
the metastable population density. The pump power is ab-
sorbed more when the metastable population density is
depleted. In literature, the perturbation method analyz-
ing fast light in an EDFA did not consider this pump
power depletion. Thus the CPO effect is underestimated,
and the derived gain coefficient and propagation constant
are inaccurate. We have developed the perturbation
method for solving the time varying parts of the signal
power, pump power, and metastable population density.
The coupled equations of the spectral components of the
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signal power, pump power, and metastable population
density are derived. From the coupled equations, we can
accurately solve the gain coefficient and propagation con-
stant of fast light in an EDFA. It is found that the pulse
gain and the absolute value of the negative group velocity
are over estimated if TPD is not considered. From the
solved gain coefficient and propagation constant, we also
study the pulse delay time and shape distortion resulting
from high-order dispersions induced by CPO. The gain
dispersion resulting from accumulated gain is shown. Ac-
cumulated gain is the integration of the gain coefficient
along an EDFA, which is an even function of frequency.
The second-order gain dispersion may symmetrically
broaden or compress the pulse depending on the value of
its coefficient. The changes of the pulse shape by higher
even order gain dispersions are complicated because of
the combined effect with high-/odd-order phase shift dis-
persions. The phase shift dispersion results from the ac-
cumulated phase shift, which is the integration of the
propagation constant along an EDFA and is an odd func-
tion of frequency. The first-order phase shift dispersion
undistortedly leads to a negative pulse delay time.
Higher-/odd-order phase shift dispersions unsymmetri-
cally distort the pulse shape and change the pulse delay
time. For the shown examples, the third- and fifth-order
dispersions result in slowing down and accelerating fast
light, respectively. Thus the group velocity of fast light
cannot be simply defined as the velocity derived from the
first derivative of the propagation constant. The
presented perturbation method can also be applied to
analyze fast light in other resonant mediums with optical
pumping.
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