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Abstract The approximation of the convex envelope of nonconvex functions is an
essential part in deterministic global optimization techniques (Floudas in Deterministic
Global Optimization: Theory, Methods and Application, 2000). Current convex unde-
restimation algorithms for multilinear terms, based on arithmetic intervals or recursive
arithmetic intervals (Hamed in Calculation of bounds on variables and underestima-
ting convex functions for nonconvex functions, 1991; Maranas and Floudas in J Global
Optim 7:143–182, (1995); Ryoo and Sahinidis in J Global Optim 19:403–424, (2001)),
introduce a large number of linear cuts. Meyer and Floudas (Trilinear monomials with
positive or negative domains: Facets of convex and concave envelopes, pp. 327–352,
(2003); J Global Optim 29:125–155, (2004)), introduced the complete set of expli-
cit facets for the convex and concave envelopes of trilinear monomials with general
bounds. This study proposes a novel method to underestimate posynomial functions
of strictly positive variables.

Keywords Convex envelopes · Convex underestimators · Posynomials

H.-L. Li (B)
Institute of Information Management, National Chiao Tung University,
No. 1001, Ta Hsueh Road, Hsinchu 300, Taiwan
e-mail: hlli@cc.nctu.edu.tw

J.-F. Tsai
Department of Business Management, National Taipei University of Technology,
No. 1, Sec. 3, Chung-Hsiao E. Road, Taipei 10608, Taiwan
e-mail: jftsai@ntut.edu.tw

C. A. Floudas
Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
e-mail: floudas@titan.princeton.edu

123



334 H.-L. Li et al.

1 Introduction

Convex underestimators of nonconvex functions are frequently applied in global
optimization algorithms such as the α BB algorithm [1,2,10] to underestimate the
nonconvex functions. A good convex underestimator should be as tight as possible
and should contain minimal number of new variables and constraints thus to improve
the computational effect of processing a node in a branch-bound tree [11].

Tawarmalani and Sahinidis [26] developed the convex envelope and concave
envelope for x/y over a unit hypercube, proposed a semidefinite relaxation of x/y,
and suggested convex envelopes for functions of the form f (x)y2 and f (x)/y. Ryoo
and Sahinidis [21] studied the use of arithmetic intervals, recursive arithmetic intervals,
logarithmic transformation, and exponential transformation for multilinear functions.
Tawarmalani et al. [24] studied the role of disaggregation in resulting tighter linear
programming relaxations. Tawarmalani and Sahinidis [27] introduced the convex
extensions for lower semi-continuous functions, proposed a technique for construc-
ting convex envelopes for nonlinear functions, and studied the maximum separation
distance for functions such as x/y. Tawarmalani et al. [25] studied 0–1 hyperbolic
programs, and developed eight mixed-integer convex reformulations. Liberti and
Pantelides [15] proposed a nonlinear continuous and differentiable convex envelope
for monomials of odd degree, derived its linear relaxation, and compared to other
relaxation. Pörn et al. [20] presented different convexification strategies for nonconvex
optimization problems and illustrated how to convexified posynomials and negative
binomials within the field of discrete optimization. Björk et al. [7] studied convexifica-
tions for signomial terms, introduced properties of power convex functions, compared
the effect of the convexification schemes for heat exchanger network problems, and
studied quasi-convex convexifications.

Meyer and Floudas [17] studied trilinear monomials with positive or negative
domains, derived explicit expressions for the facets of the convex and concave
envelopes and showed that these outperform the previously proposed relaxations
based on arithmetic intervals or recursive arithmetic intervals. Meyer and Floudas [18]
presented explicit expressions for the facets of convex and concave envelopes of trili-
near monomials with mixed-sign domains. Tardella [23] studied the class of functions
whose convex envelope on a polyhedron coincides with the convex envelope based
on the polyhedron vertices, and proved important conditions for a vertex polyhedral
convex envelope. Meyer and Floudas [19] described the structure of the polyhedral
convex envelopes of edge–concave functions over polyhedral domains using geome-
tric arguments and proposed an algorithm for computing the facets of the convex
envelopes.

Caratzoulas and Floudas [8] proposed novel convex underestimators for trigono-
metric functions which are trigonometric functions themselves. Akrotirianakis and
Floudas [4,5] introduced a new class of convex underestimators for twice conti-
nuously differentiable nonlinear programs, studied their theoretical properties, and
proved that the resulting convex relaxation is improved compared to the α BB one.
Meyer and Floudas [18] proposed two new classes of convex underestimators for
general C2 nonlinear programs which combine the α BB underestimators within a
piecewise quadratic perturbation, derived properties for the smoothness of the convex
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underestimators, and showed the improvements over the classical α BB convex unde-
restimators for box-constrained optimization problems.

Three popular convex underestimation methods, arithmetic intervals (AI) [12],
recursive arithmetic intervals (rAI) [12,16,21], and explicit facets (EF) for convex
envelopes of trilinear monomials [17,18], are effective to underestimate a trilinear
term x1x2x3 for xi to be bounded variables. However, these current methods have
difficulty to treat a posynomial function. According to Ryoo and Sahinidis [21], the
maximal number of required linear inequalities to lower bound a multilinear func-

tion x1x2 . . . xn with n variables, AI scheme needs to use
∏n−1

k=2 �
(n
k )

k

∑
⌊

n
2

⌋

i=1 (n
2i ) linear

constraints maximally. �k denotes the number of linear functions that the AI gene-
rates to lower bound k-cross-product terms, k = 2, 3, . . . , n − 1. Since the number of
linear constraints of convex envelopes for a multilinear function with n variables
grows doubly exponentially in n, AI bounding scheme may only treat n ≤ 3 cases.
It is more difficult for AI to treat a posynomial function for n > 3 cases. More
over, applying rAI scheme to underestimate a multilinear function x1x2 . . . xn needs
to use the maximum of exponentially many 2n−1 linear inequalities. Therefore, the
rAI bounding scheme has difficulty to treat posynomial functions as well as AI
scheme.

EF [17,18] provided the explicit facets of the convex and concave envelopes of
trilinear monomials and demonstrated that these result in tighter bounds than the AI
and rAI techniques. An important difference between EF and other bounding schemes
is that these explicit facets are linear cuts which were proven to define the convex
envelope. Explicit Facets, EF, of the convex envelope are effective in treating general
trilinear monomials but the derivation of explicit facets for the convex envelope of
general multilinear monomials and signomials is an open problem.

This study proposes a novel method for the convex relaxation of posynomial
functions. This approach is different from the work of Maranas and Floudas [16]
which provided an alternative way of generating convex underestimators for
generalized geometric programming problems via the exponential transformation
and linear underestimation of the concave terms. We first convexify a nonconvex
posynomial function into a convex function and some bilinear functions, and subse-
quently we introduce linear underestimators for these bilinear functions. Comparing
with current convex underestimation algorithms, the proposed method can deal with
more general functions effectively. Applications of the proposed approach include
the area of process synthesis and design of separations, phase equilibrium, noni-
sothermal complex reactor networks, and molecular conformation problems (e.g.,
[3,9,13]).

2 Proposed method

This section presents a new method to develop a convex underestimator for a posy-
nomial function f (X) = dxα1

1 xα2
2 . . . xαn

n where X = (x1, . . . , xn), 0 < xi ≤ xi ≤
x̄i , αi ∈ � for i = 1, 2, . . . , n, and d > 0.
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For a twice-differentiable function f (X), let H(X) be the Hessian matrix
of f (X). The determinant of H(X) can be expressed as det H(X) =
(−1)n(

∏n
i=1 dαi xnαi −2

i )(1 − ∑n
i=1 αi ). If xi ≥ 0, αi < 0 for all i and d > 0 then

detH(X) ≥ 0. Consider the following proposition:

Proposition 1 A twice-differentiable function f (X) is convex for xi ≥ 0, αi ≤ 0, i =
1, 2, . . . , n, and d > 0 [6].

We then have two rules of underestimating f (X) described below:

Rule 1. If αi < 0,∀i , then f (X) is already a convex function by Proposition 1. No
convexification is required.
Rule 2. If αi > 0 for some i , then convert f (X) into a new function f (X, Y ) =
dxα1

1 . . . y−αi
i . . . xαn

n where yi = x−1
i . Since f (X, Y ) is already a convex function,

we only need to underestimate functions yi = x−1
i for all i .

Theorem 1 The lower bound of a nonconvex function f (X) = dxα1
1 xα2

2 . . . xαn
n ,

0 < xi ≤ xi ≤ x̄i , where d > 0, αi < 0, i = 1, 2, . . . , m, αi > 0, i = m + 1,

m + 2, . . . , n, is obtained by solving the following convex program:

Min f (X, Y ) = dxα1
1 . . . xαm

m y−αm+1
m+1 . . . y−αn

n

subject to1 ≥ xi

x̄i
+ xi yi − xi

x̄i
, i = m + 1, m + 2, . . . , n.

Proof By Rule 2, f (X) is fully converted into a convex function f (X, Y ) where
yi = x−1

i . The equality xi yi = 1 is nonconvex for i = m + 1, m + 2, . . . , n. Denote
y

i
= 1

x̄i
≤ yi ≤ 1

xi
= ȳi . The convex underestimators of the bilinear terms xi yi for

i = m + 1, m + 2, . . . , n are obtained based on the following inequalities:

(xi − xi )(yi − y
i
) ≥ 0, i = m + 1, m + 2, . . . , n,

(x̄i − xi )(ȳi − yi ) ≥ 0, i = m + 1, m + 2, . . . , n,

which are expressed by the following inequalities:

xi yi ≥ xi y
i
+ xi yi − xi y

i
⇒ 1 ≥ xi

x̄i
+ xi yi − xi

x̄i
, i = m + 1, m + 2, . . . , n,

(1)

xi yi ≥ xi ȳi + x̄i yi − x̄i ȳi ⇒ 1 ≥ xi

xi
+ x̄i yi − x̄i

x i
, i = m + 1, m + 2, . . . , n.

(2)

Multiplying (1) by x̄i
xi

, we have (2). Therefore, we only need constraint (1) to formulate
the lower bound of f (X).

Remark 1 To form a convex underestimator for a posynomial function where n
variables having positive exponent, the proposed method at most requires n additional
variables and n additional constraints.
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Table 1 Comparison results of Example 1

Scheme AI rAI EF BARON ET [20] Proposed
(root node) method

Lower bound 1 1 1 1 1 1

No. of additional constraints 16 18 6 NA NA 3

3 Numerical examples

Example 1 Underestimating a trilinear function f (X) = x1x2x3, 1 ≤ x1, x2, x3 ≤ 2.
The above function can be transformed into the following convex function:

f (Y ) = y−1
1 y−1

2 y−1
3 where x1 = y−1

1 , x2 = y−1
2 , x3 = y−1

3 ,

and 0.5 = y
i
≤ yi ≤ 1 = ȳi for i = 1, 2, 3.

Then we have the convex underestimator for the trilinear function as below.

Min f (Y ) = y−1
1 y−1

2 y−1
3

subject to 1 ≥ xi

x̄i
+ xi yi − xi

x̄i
, i = 1, 2, 3,

where 1 = xi ≤ xi ≤ 2 = x̄i , 0.5 = y
i
≤ yi ≤ 1 = ȳi for i = 1, 2, 3.

Solving the above convex relaxation program provides a lower bound of 1 and
(x1, x2, x3, y1, y2, y3) =(1, 1, 1, 1, 1, 1). The comparisons of the bounding schemes
and the results obtained by BARON (2005) [22] at the root node and the exponential
transformation (ET) approach of Pörn et al. [20] in the first iteration are listed in
Table 1. The number of additional constraints of the proposed method is less than that
of the other bounding schemes to find the same lower bound.

Example 2 To construct the convex lower bound of a nonconvex function f (X) =
x1x2x3x4x5 − x0.5

2 x0.5
4 − 3x1 − x5, 1 ≤ x1, x2, x3, x4, x5 ≤ 100. According to the

convexification rule (Proposition 5 of [14]), −x0.5
2 x0.5

4 is a convex function without
transformation and f (X) can be transformed into a convex function as below:

f (X, Y ) = y−1
1 y−1

2 y−1
3 y−1

4 y−1
5 − x0.5

2 x0.5
4 − 3x1 − x5

where x1 = y−1
1 , x2 = y−1

2 , x3 = y−1
3 , x4 = y−1

4 , and x5 = y−1
5 .

Thus xi yi = 1, 0.01 = y
i
≤ yi ≤ 1 = ȳi for i = 1, 2, . . . , 5.

The following is immediate:

(xi − xi )(yi − y
i
) ≥ 0, i = 1, 2, . . . , 5,

(x̄i − xi )(ȳi − yi ) ≥ 0, i = 1, 2, . . . , 5.
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Table 2 Comparison results of Example 2

Scheme BARON (root node) ET [20] Proposed method Optimal solution

Lower bound −224.4 −499 −317.076 −202

Then we have the convex underestimator for the multilinear function as below.

Min f (X, Y ) = y−1
1 y−1

2 y−1
3 y−1

4 y−1
5 − x0.5

2 x0.5
4 − 3x1 − x5

subject to 1 ≥ xi

x̄i
+ xi yi − xi

x̄i
, i = 1, 2, . . . , 5,

where 1 = xi ≤ xi ≤ 100 = x̄i , 0.01 = y
i
≤ yi ≤ 1 = ȳi for i = 1, 2, . . . , 5.

Solving the above convex relaxation results in a lower bound of f (X) is −317.076
and (x1, x2, x3, x4, x5, y1, y2, y3, y4, y5) = (88.4717, 25.8304, 1, 25.8304, 63.4152,

0.1253, 0.7517, 1, 0.7517, 0.3758). The maximal number of required additional li-
near constraints is 5. Since the bounding schemes AI, rAI and EF have difficulties of
generating too many extra constraints and without explicit facets for the convex enve-
lope of general multilinear monomials and signomials to treat this nonconvex function,
Table 2 only lists the results of BARON, ET, and the proposed method. The optimal
solution of the original problem is −202. Table 2 shows that BARON’s lower bound
obtained at the root node is tighter than those obtained by the other two approaches in
the first iteration and the proposed convex relaxation results in a tighter lower bound
than ET.

Example 3 Underestimating a nonconvex function

f (X) = x−2
1 x−1.5

2 x1.2
3 x3

4 − 3x0.5
3 + x2 − 4x4,

1 ≤ x1, x2, x3, x4 ≤ 10. The function can not be underestimated by the bounding
schemes AI, rAI and EF. Transforming the function into the following convex function:

f (X, Y ) = x−2
1 x−1.5

2 y−1.2
3 y−3

4 − 3x0.5
3 + x2 − 4x4

where x3 = y−1
3 , x4 = y−1

4 , and 0.1 = y
i
≤ yi ≤ 1 = ȳi for i = 3, 4.

Then we have the convex underestimator for the nonconvex function as below.

Min f (X, Y ) = x−2
1 x−1.5

2 y−1.2
3 y−3

4 − 3x0.5
3 + x2 − 4x4

subject to 1 ≥ xi

x̄i
+ xi yi − xi

x̄i
, i = 3, 4,

where 1 = xi ≤ xi ≤ 10 = x̄i , 0.1 = y
i
≤ yi ≤ 1 = ȳi for i = 3, 4.

Solving the above convex relaxation results in a lower bound of −41.2442 and
(x1, x2, x3, x4, y3, y4) = (10, 2.9045, 6.9239, 9.5478, 0.4076, 0.1452). Only 2 addi-
tional linear constraints and 2 variables are added to the convex program. The optimal
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Table 3 Comparison results of Example 3

Scheme BARON (root node) ET [20] Proposed method Optimal solution

Lower bound −40 −48.4868 −41.2442 −38.08

solution of the original problem is −38.08 and the comparison results are shown in
Table 3. By Table 3, we know that BARON gives a tighter lower bound than the others
two approaches and the proposed convex relaxation results in a tighter lower bound
than ET.

4 Conclusion

This study integrates the convexification techniques and the bounding schemes to
construct a convex lower bound for a posynomial function of strictly positive variables
which is difficult to be treated by the current methods. Less number of variables and
constraints are used in the proposed method than being used by current methods.
Computational results of the examples illustrate that the proposed convex relaxation
can effectively derive a tight lower bound for a posynomial function.

Acknowledgments The authors thank the valuable comments from the anonymous reviewers. These
comments have improved this paper.
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