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Abstract

An unsteady sampling routine for a general parallel direct simulation Monte Carlo method called PDSC is introduced,
allowing the simulation of time-dependent flow problems in the near continuum range. A post-processing procedure called
DSMC rapid ensemble averaging method (DREAM) is developed to improve the statistical scatter in the results while
minimising both memory and simulation time. This method builds an ensemble average of repeated runs over small num-
ber of sampling intervals prior to the sampling point of interest by restarting the flow using either a Maxwellian distribu-
tion based on macroscopic properties for near equilibrium flows (DREAM-I) or output instantaneous particle data
obtained by the original unsteady sampling of PDSC for strongly non-equilibrium flows (DREAM-II). The method is val-
idated by simulating shock tube flow and the development of simple Couette flow. Unsteady PDSC is found to accurately
predict the flow field in both cases with significantly reduced run-times over single processor code and DREAM greatly
reduces the statistical scatter in the results while maintaining accurate particle velocity distributions. Simulations are then
conducted of two applications involving the interaction of shocks over wedges. The results of these simulations are com-
pared to experimental data and simulations from the literature where there these are available. In general, it was found that
10 ensembled runs of DREAM processing could reduce the statistical uncertainty in the raw PDSC data by 2.5–3.3 times,
based on the limited number of cases in the present study.
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1. Introduction

The direct simulation Monte Carlo (DSMC) method has become a widely used computational tool for the
simulation of rarefied gas flows where effects at the molecular scale become significant [1]. Applications include
modelling of hypersonic flows [2], satellite thrusters at high altitude [3], micro electro mechanical system
(MEMS) devices [4] and chemical vapor deposition (CVD) [5], among others.

In these high Knudsen number flows, the continuum assumption can break down meaning that the
Navier–Stokes equations fail to correctly model the flow. The Boltzmann equation, which is appropriate
for modelling rarefied flow, is extremely difficult to solve numerically due to its high dimensionality and
the complexity of the collision term. Simplification of the collision term by the Bhatnagar–Gross–Krook
(BGK) equation [6] has spawned a number of numerical solution techniques, such as Huang’s model Boltz-
mann equation (MBE) solver [7], however these techniques are still in their infancy. DSMC offers an efficient
particle based approach in which the movement and collisional behavior of a large number of representative
particles within the flow field are decoupled over a time step which is a small fraction of the local mean
collision time. This method has been shown mathematically to effectively provide a solution to the Boltzmann
equation as the number of simulated particles becomes large [8]. A number of scalar (single-processor) DSMC
codes have been developed, most notably by Bird, which utilise sophisticated features such as nearest-neigh-
bour collisions, adaptive cell structures and variable time-step (VTS) schemes to improve the accuracy and
speed of the simulations, and additionally allow the incorporation of complex effects such as non-equilibrium
gas-phase chemistry [1,9].

A major drawback of the DSMC scheme is that the computational expense of the technique becomes
increasingly expensive as the flow density increases. Consequently, modelling of many practical flows which
are in the near-continuum regime are prohibitively computationally expensive when single computer proces-
sors are employed. The development of parallel computer processing, whereby the computational load is
spread over a number of machines, represents an opportunity to simulate near-continuum flows with accept-
able run-times. Additionally, the DSMC technique is ideally suited to parallelisation since the movement of
each particle is independent of all others with the only local coupling required during the collision step.

In the past two decades, a number of parallel-DSMC schemes have been implemented and reported in the
literature [10–13]. These schemes utilized either structured or unstructured meshes and mostly static domain
decomposition. Here, message passing is used to transfer molecules between processors and for simulation
synchronization, however the computational speed-up due to parallelisation is limited by load imbalancing
and the cost of communication between the processors. These limitations necessitate sizing the problem care-
fully to the number of processors. Several recent implementations of parallel-DSMC include those by the
groups led by Boyd [14], Ivanov [15], LeBeau [16] and Wu [2,17–19].

Boyd’s code, named MONACO, utilizes unstructured grids so that objects with complex geometry can be
handled relatively readily, and static domain decomposition for the distribution of computational load. The
method has been used to model flow around a planetary probe using 100 million particles and 400 IBM-SP2
processors. Ivanov’s code, named SMILE, arranges the cells into ‘‘clusters” which are in turn divided among
the processors using scalable dynamic domain decomposition. The code employs a simple but effective method
of indexing particles to the grid, which reduces the computational time, and determines the direction and
amount of workload transfer using the concept of heat diffusion. LeBeau has developed the DSMC analysis
code (DAC) which uses a two-level embedded Cartesian grid, which is uncoupled from the surface geometry,
to discretize the computational domain. The code has been used to study the flow over a sphere using 128
processors with 90% parallel efficiency.

The Parallel DSMC Code (PDSC) developed by Wu’s group has been successfully used to model a number
of flows including flow through a drag pump [16], hypersonic flow past a cylinder [18] and under-expanded jet
flow [19]. PDSC will be discussed in greater detail in Section 2.2.

Unsteady rarefied flows, in which the flow structure changes significantly with time, are interesting flow
problems with a number of applications such as the development of under-expanded jets from sonic noz-
zles during the start up of rocket nozzles and during the injection and initial pump-down phases of the
pulsed pressure-chemical vapor deposition (PP-CVD) process [20]. Unsteady DSMC simulations have been
greatly neglected in the literature, primarily because sampling over a small time interval requires either a
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very large number of simulated molecules or the average of a large number of separate simulations (usu-
ally termed ‘‘ensemble-averaging”). The associated high computational expense and large memory require-
ments mean that investigations in the literature tend to be restricted to one-dimensional problems, such as
shock tube flow [21] or the shock waves generated by moving pistons [1]. Two-dimensional unsteady prob-
lems have been attempted, and one method of decreasing the statistical scatter of the results is to using
statistical smoothing procedures [22]. Bird’s two-dimensional axisymmetric code DS2V [8] incorporates
unsteady sampling techniques in which a number of time intervals close to the sampling point are aver-
aged (usually termed ‘‘time-averaging”), however this single processor code is unable to model processes
such as PP-CVD with acceptable run-times [23]. The increased computational capacities of parallel-DSMC
techniques have the potential to enable the simulation of time-dependent flow problems at the near-con-
tinuum regime.

This paper begins with a brief description of the DSMC method and the parallel DSMC code (PDSC). The
development and implementation of an unsteady sampling method for PDSC, along with a post-processing
methodology, is then outlined and simulations of a shock tube and the development of Couette flow are then
carried out as validation studies. Results of simulations for a number of applications are then presented,
including the impingement of a moving shock on several wedge configurations. These simulations are com-
pared to the results of other studies in the literature, and to experimental data where it is available.

2. Numerical method

2.1. The direct simulation Monte Carlo (DSMC) method

The DSMC method is a particle-based method for the simulation of gas flows which was developed by Bird
during the 1960s. The details of the procedures and the consequences of the computational approximations
are outlined in detail in the monograph by Bird [1], so only a brief outline of the method is presented here.

In DSMC, the gas is represented at the microscopic level by simulated particles which each represent a
much larger number of real particles. The physics of the gas flow are modelled through the motion of the par-
ticles and the collisions between them, however these two steps are decoupled over a time step which is a small
fraction of the mean collision time. Mass, momentum and energy are conserved at the particle level whereas
physical events such as intermolecular collisions are handled probabilistically using phenomenological models.
These models are designed to reproduce real fluid behavior when the flow is examined at the macroscopic
level. These models vary in their sophistication, however the models used in most applications include the var-
iable hard sphere (VHS) [24] and the variable soft sphere (VSS) [25] models. The computational domain itself
is divided into either a structured or unstructured grid of cells which are then used to select particles for col-
lisions on a probabilistic basis and also are used for sampling the macroscopic flow properties. In practice,
often the sampling cells are further divided into smaller collision cells to ensure intermolecular interactions
occur between closely spaced molecules [1].

In general, the DSMC procedure involves (1) moving the particles ballistically over a small time step and
applying boundary conditions to particles which collide with boundaries, (2) indexing the particles within the
grid of collision cells, (3) selecting particles from within the cells on a probabilistic basis and applying the col-
lision routines to these and (4) sampling the macroscopic flow properties from the collision cells.

The DSMC method relies heavily on pseudo-random number generators for simulating the statistical nat-
ure of the underlying process. Because data variables, such as the velocity data for an individual particle, are
randomly accessed from the computer’s memory, it is very difficult to vectorize the DSMC code, however
because particle movement and collision events are treated independently and occur locally, the code is highly
suitable for parallelization.

2.2. Parallel implementation of DSMC

The DSMC algorithm is readily parallelized through decomposition of the physical domain into groups of
cells which are then distributed among the parallel processors. Each processor executes the DSMC algorithm
in serial for all particles and cells in its own domain. Parallel communication between processors is required
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when particles cross the domain boundaries requiring particles to be transferred between processors.
To achieve high parallel efficiency it is necessary to minimize the communication between processors while
maintaining a balance between the computational load on each processor. In the present study, we have
adapted the previously developed Parallel DSMC Code (PDSC) which has been described in detail in the
papers by Wu et al. [16–19] and will only be outlined briefly here.

The DSMC algorithm is implemented on a two-dimensional, axisymmetric or three-dimensional
unstructured mesh using a particle ray-tracing technique, which takes advantage of the cell connectivity
information provided by the mesh data and is able to handle complex boundary geometry. PDSC utilizes
the multi-level graph partitioning tool ParMETIS to decompose the computational domain and distribute
the cells amongst the processors. A stop-at-rise (SAR) algorithm is used to determine when to dynamically
repartition and re-distribute the computational load between processors based on the value of a degrada-
tion function which compares the computational cost of repartition to the idle time for each processor.
The transfer of particle data between the processors only occurs when particles strike the inter-processor
boundaries and after all other particles on each processor have been moved, thus minimizing communi-
cation between processors and maximizing the parallel speed-up. During calculation, the mesh can be iter-
atively refined using the h-refinement technique whereby local grid points are added to improve the cell
distribution according to the solution based on some adaptation criteria (for example, flow field density
or local Knudsen number). Cell quality control is used to maintain the integrity of the mesh during this
process.

Other special features include pressure boundary treatment, a spatial variable time-step scheme, the imple-
mentation of a conservative weighting scheme to efficiently deal with gas flows with trace species [26] and the
gas phase chemistry for simulating chemical reactions in hypersonic air flows [27]. These features have been
developed to enhance the computational efficiency, flexibility and utility of PDSC. The implementation of
a transient sub-cell module, allowing much higher density flows to be modelled with negligible computational
expense, will be discussed in a future paper along with other improvements to the code currently under
development.

2.3. Unsteady sampling method

The PDSC code discussed in Section 2.2 has been specifically designed for simulating steady flows, so some
modification is required for unsteady sampling. Two methods for unsteady sampling exist, the differences
between which are illustrated in Fig. 1. The first, termed ‘‘ensemble-averaging”, is shown in Fig. 1a and
requires multiple simulation runs. During each run, the flow field is sampled at the appropriate sampling times
and the samples from each run are averaged over the runs to provide the flow field output. The results are very
accurate, however the method is very computationally expensive because a large number of sequential runs are
required to reduce the statistical scatter to an acceptably low level and a large amount of memory is required
to record the sampling data for each simulation.

The second method, termed ‘‘time-averaging”, is shown in Fig. 1b and averages a number of time steps over
an interval centred on the sampling time. This method only requires one simulation run, however it suffers a
potential disadvantage in that the results will be ‘‘smeared” over the time during which samples are taken. This
occurs because the particles will propagate downstream over the sampling interval, resulting in a broadening
of any areas with large macroscopic gradients, such as shocks, if the sampling interval is too long. Hence, the
sample time must be sufficiently short to minimize time ‘‘smearing” and yet long enough to obtain a good sta-
tistical sample. Similar methods of time averaging have been used previously by Auld to model shock tube
flow [21] and in Bird’s DS2V code.

In PDSC, the method of time-averaging was implemented. Here, a technique called the temporal variable
time step (TVTS) method was used to reduce the simulation time by increasing the time step between sam-
pling. The code has an option for the user to choose specific output flow times or for output at regular inter-
vals. Fig. 2 shows the flow chart of the parallel DSMC method for np processors with the unsteady sampling
procedures implemented. Here, M is the output matrix for sampling interval M. Most parts of the procedure
are the same as the steady simulation except the sampling data must be reset after completing each simulation
interval.
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2.4. DSMC rapid ensemble averaging method (DREAM)

Despite the efficient implementation of unsteady sampling procedures on parallel computers, simulating
denser flows in reasonable computational times requires somewhat of a compromise on the statistical scatter
in the results. This is because reducing the statistical scatter significantly in time-averaged data necessitates a
very large number of simulation particles with consequent large computational times. Other researchers have
attempted to use data smoothing to prepare their results for presentation [22], however ultimately this removes
data which may have physical significance.

The approach we have developed is outlined in Fig. 3. Here, we select a raw data set X � n produced by
PDSC n sampling intervals prior to the sampling interval of interest X. For near-continuum flow (for exam-
ple, shocks of less than approximately Mach 2) new particle data is generated from the macroscopic prop-
erties in data set X � n by assuming a Maxwellian distribution of velocities based on the three components
of temperature Tx, Ty and Tz (this version of the code is called DREAM-I). The DREAM-I method has the
advantage of easier implementations and requires no additional input/output during the initial PDSC run,
however for strongly non-equilibrium flows it may be unable to recover the correct particle velocity distri-
bution at the sampling point. Thus, for strongly non equilibrium flows (i.e. higher Mach number shocks),
the particle data is regenerated from the instantaneous particle data which can be outputted by PDSC in the
original run, thus preserving the true phase-space data (DREAM-II). The standard PDSC algorithm is then
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used to simulate forward in time until the sampling period of interest X is reached. The time steps close to
the sampling point are time-averaged in the same way as in PDSC and this process is repeated a number of
times, thus building up a combination of ensemble- and time-averaged data without having to simulate
from zero flow time for each run. This process decreases the statistical scatter in the results by adding to
the number of particles in the sample, rather than by some artificial smoothing process. Because only a
short period of the flow is processed in this way, the scheme has significant memory and computational
advantages over ensemble-averaging and results in a greater number of sampling particles than the time-
averaging scheme.

For DREAM to be accurate there must be a suitably large number of time steps between the particle regen-
eration and the sampling data sets so that (1) the velocity distribution can ‘‘relax” sufficiently quickly towards
the true distribution in any non-Maxwellian regions and (2) so that the macroscopic properties at the regen-
eration data set will not overly constrain the data at the sampling time step (i.e. to ensure that particles can
move out of their original cells before being re-sampled).
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For stronger non-equilibrium flows, DREAM-II reloads the original PDSC phase-space data. This allows
the particle data to be regenerated using the true velocity distribution in non-equilibrium regions. However,
DREAM-II does have a disadvantage in terms of storing the output particle data sets during the original
PDSC run. Fortunately, due to the low cost of hard-drive storage, the process is not overly expensive even
though particle data must be outputted from PDSC during every sampling period if the regions for post-pro-
cessing by DREAM are not known a priori.

3. Code validation

3.1. Shock tube flow

3.1.1. Validation of unsteady sampling procedures

As a validation of the unsteady sampling techniques employed in the PDSC code, we have used the test prob-
lem of shock tube flow. Fig. 4 shows the typical flow structure in a shock tube, in which a shock wave is created by
bursting a diaphragm between a high-pressure and low-pressure gas. These devices are used to investigate a wide
variety of physical phenomena including shock structures and high temperature gas reactions.

The Riemann continuum solution for a shock tube allows the properties of the flow structure, including the
shock propagation velocity W, the contact surface velocity uP along with the pressure, temperature and den-
sity, to be determined at any given time. Further details on the derivation of these equations, along with
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expressions for the variation of properties in the expansion fan, can be found in the monograph by Anderson
[28]. These expressions are summarised for completeness below:
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where ax, px, qx and Tx are, respectively, the speed of sound, pressure, density and temperature in the region x
and c is the ratio of specific heats.

To validate the PDSC code, simulations were conducted on a quasi one-dimensional shock tube of length
0.1 m and width 0.0125 m with argon as the working gas (the VHS molecular model was used). The upper and
lower walls were implemented as specular walls to preserve the one-dimensional nature of the flow, while the
end walls were simulated as diffusive walls at 300 K. The initial conditions in the high pressure and low pres-
sure ends of the shock tube are p4 = 100 Pa and p1 = 10 Pa, respectively, however the temperatures at both
ends of the tube are the same such that T4 = T1 = 300 K. This results in a shock Mach number of 1.55. This
low shock number is a challenging simulation for a DSMC method, since the thermal and macroscopic veloc-
ities will be of a similar order of magnitude. This means that insufficient sampling will result in high statistical
scatter in macroscopic properties.

The solution was first computed using Bird’s DS2V code (version 3.7.03) using its standard settings and
then a run was conducted using PDSC using a similar number of cells and particles. The solution was also
compared to the results generated by a one-dimensional ensemble-averaging code implemented in MATLABTM

(called HDSMC), using the same flow conditions but with a cell size set to approximately one-third of the
average mean free path, as recommended by Bird [1]. The DS2V and HDSMC runs were conducted on a sin-
gle processor Pentium IV 3.2 GHz (hyper-threading enabled), while the PDSC run was conducted on a PC
cluster system of ten Athlon XP2100s. Each run is detailed in Table 1. The conditions for the PDSC run were
selected to attempt to preserve the simulation conditions from the DS2V run.

Fig. 5 shows the pressure, density and temperature profiles at 27.45 ls as generated by the three methods,
along with the Riemann continuum solution. All three methods capture the flow profile accurately with the posi-
tions and general structure of each flow feature comparing well with the continuum solution. As would be
expected the sharp continuum solution is not followed exactly since it does not include viscous effects. The
PDSC results show similar scatter to the DS2V solution, however the PDSC solution does not exhibit the
‘‘spikes” in the temperature profile predicted by DS2V, which can be seen more clearly in Fig. 6. Additionally,



Table 1
Shock tube simulations using PDSC, DS2V and HDSMC

Solver DS2V PDSC HDSMC

Number of sampling cells 21,675 80,000 2,000
Number of collision cells �65,981 80,000 2,000
Number of simulated molecules 2,081,284 2,200,000 50,000
Time step Variable 9.15 � 10�8 sa 9.15 � 10�8 sa

Number of time steps averaged per sample 30 30 N/A
Number of simulations in the ensemble average N/A N/A 50
Run time (hours per second of simulated flow) �24,150 h/s �2449 h/s �579,235 h/s

a The basic time step in these runs was set to be equivalent to the basic time step employed by DS2V.
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parallelisation means PDSC runs approximately 10 times faster than DS2V, and has considerably reduced sta-
tistical scatter over the HDSMC ensemble averaging solution.

Fig. 6 shows the evolution of the shock structure predicted by PDSC and DS2V. Both methods predict
equivalent flow profiles, with equivalent amounts of statistical scatter. At 27.5 ls and 76.9 ls, the incident
shock can be seen advancing toward the right hand end of the shock tube where it impacts with the wall at
approximately 99.8 ls. After the shock has been reflected from the wall there is a sharp rise in density as
the reflected shock begins to travel to the left. This reflected shock interacts with the advancing contact sur-
face, creating the peak in density visible at 175.7 ls. At the left-hand end of the tube, the expansion fan also
reflects from the solid wall, creating the reduction in density visible at 175.7 ls. In Fig. 6, PDSC also does not
exhibit the spike in density predicted by DS2V, as mentioned earlier.

The sensitivity of the PDSC flow field solution to changes in cell size and average number of particles per
cell was also investigated. Fig. 7 shows the effect of the number of particles in each collision cell on the tem-
perature profile at 27.45 ls (which is statistically the most sensitive measurement) for a range of different num-
bers of particles per cell. The continuum solution is not shown for clarity. It can be seen from these results that
the flow profile is insensitive to the number of simulated particles, however, as would be expected, the statis-
tical uncertainty increases as the number of particles is reduced. Since the computational expense of the sim-
ulations is proportional to the number of simulated particles, it is necessary to minimize the number of
particles while maintaining a sufficient number to preserve statistical accuracy. It can be concluded that a min-
imum of approximately 25 particles per sampling cell should be maintained for accurate unsteady PDSC sim-
ulations, whilst maintaining acceptable computational times.

Fig. 8 shows the effect of the cell size on the temperature profile at 27.45 ls. Here, in each case an average of
27.5 particles per cell were used. The variable R is the ratio of the cell size to the mean free path in the high-
pressure gas. It can be seen that the cell size has a strong influence on the statistical scatter in the results, espe-
cially in the regions where the number of simulated particles is low. In this simulation accurate results can be
maintained for quite a large cell size compared to the mean free path since the scale length of the macroscopic
flow gradients are relatively large, however Bird has shown that in flows with large flow gradients the cell size
should be kept to approximately one-third of the local mean free path [1]. This may become an issue within
some simulations with large flow gradients.

As mentioned in Section 2.3, one potential disadvantage of time averaging is that the flow structures will be
‘‘smeared” as the flow field develops over the sampling interval. For this reason, the sampling interval must be
kept as short as possible to ensure smearing is minimised. To investigate the effect of smearing, the shock
thickness was measured for Mach 4 and 8 moving shocks. Here, a propagating one-dimensional shock was
set up in PDSC from Eqs. (1)–(4), with the initial conditions being a Maxwell–Boltzmann distribution on both
sides of the shock. The shock was allowed to propagate downstream for 30k for the Mach 4 case and 50k for
the Mach 8 case, to allow the true particle velocity distribution and shock structure to establish before the
thickness was measured. Fig. 9 shows a comparison of the shock thickness d measured using the current
method with the experimental results and other data from the paper by Schmidt [29]. The results are normal-
ized with the mean free path upstream of the shock wave (k/d). These results show the shock thicknesses
obtained by unsteady sampling in PDSC are consistent with Schmidt’s results. As long as the sampling period
is constrained so that the majority of particles cannot migrate beyond the sampling cell during this time,
smearing is minimised and accurate shock structures are maintained.
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The results of the shock tube validation study confirm that the unsteady sampling procedures have been
implemented correctly in PDSC. The results produced by PDSC are very similar to those produced by the
established DS2V code and compare well with the continuum solution. Furthermore, the time-averaging
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sampling method gives comparable results to the ensemble-averaging method and PDSC using ten processors
is approximately ten times faster than the single-processor DS2V code.

3.1.2. Validation of DREAM module

To test the DREAM-I scheme for improving the statistical scatter in the results, it was necessary investigate
the validity of assuming a Maxwellian velocity distribution at every point in the flow when regenerating the
particle data n sampling intervals prior to the output time for near-equilibrium (i.e. low shock Mach number)
flows. To do this, the particle velocity distribution in the shock structure of the DREAM-processed data was
compared to that in the raw data generated by PDSC.
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Fig. 10 shows the velocity distributions in the normal shock region at 76.9 ls for the shock tube case given
above. Both the distributions from the raw PDSC data and from those processed by DREAM-I are given,
along with the curve for a Maxwellian distribution at the same temperature. Particle velocity v has been nor-
malized by the macroscopic temperature T and macroscopic velocity vm as (v � vm)(m/2kT)1/2. The parameter
NDtW/k2 represents the number of mean-free-paths which an average particle will traverse in the N time steps
of length Dt between regeneration and sampling, where W is the shock propagation velocity and k2 is the equi-
librium mean free path immediately upstream of the shock.

The peak in the velocity distribution in the PDSC raw data is shifted to the left of the Maxwellian distri-
bution, indicating the shock is sufficiently strong to be non-equilibrium. For the assumption of an initial
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Maxwellian distribution in DREAM-I to be valid, DREAM-I must reproduce the same profile as unsteady
PDSC, rather than a Maxwellian distribution, thus indicating that the flow has relaxed rapidly enough
towards an accurate distribution. When the particles have traveled less than one mean free path been regen-
eration and sampling, the distribution remains close to the Maxwellian. However, after approximately four
mean free paths (NDtW/k2 = 3.8), the particles have relaxed towards a similar distribution to that obtained
by unsteady PDSC. This indicates that the assumption of a Maxwell–Boltzmann distribution in the regener-
ation step of DREAM-I is reasonably valid for Mach number flows below approximately Mach 2, providing
the particles in the non-equilibrium regions are allowed to travel approximately four mean free paths between
the regeneration and sampling time steps.

Fig. 11 shows the temperature profile in the shock tube at 76.9 ls as predicted by PDSC and after process-
ing by DREAM-I with 10 ensembled runs. Note temperature represents one of the macroscopic properties
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which has the highest statistical uncertainty in DSMC simulation. DREAM-I maintains the correct profile,
while significantly reducing the statistical scatter in the results.

A quantitative measure in the reduction in statistical scatter obtained by DREAM-I can be determined by
comparing the standard deviation of macroscopic properties in the region of undisturbed flow. This represents
the minimum reduction in statistical scatter, since the undisturbed flow is stationary and will therefore be the
most scattered data in the simulation domain. Fig. 12 shows the reduction in density scatter after DREAM
processing with different numbers of ensemble runs and different starting points, compared to the original
PDSC data. Here the number N of time steps Dt between regeneration and output are normalized with the
velocity v1 and mean free path k1 in the dense region of the flow. The scatter is normalized with the scatter
in the unprocessed data.

Fig. 12 allows the appropriate number of ensemble runs and regeneration data set to be determined. It
shows that it is necessary to start sufficiently far from the output time step of interest to ensure good reduction
in statistical scatter in the results. Regenerating the particle data at a time step too close to the output time
results in a poor reduction in scatter, because the particles do not move far enough away from their regener-
ation positions, effectively constraining the final solution to be too close to the macroscopic properties of the
regeneration data. Using a greater number of time steps and more ensemble runs results in a further reduction
of scatter, however it is interesting to note that reduction in statistical scatter remains almost the same or only
slightly different at larger NDtW/k2(=7.8) for both the ten and fifty ensembled runs. Thus, using larger number
of ensembled runs with larger NDtW/k2 is a case of diminishing returns and it should be noted that DREAM
processing time is directly proportional to both the number of time steps and the number of ensembles in the
sample.

Fig. 13a shows the velocity distributions in a Mach 4 shock obtained using the assumption of a Maxwell-
ian distribution (DREAM-I) in the regeneration data set. The data generated using DREAM-I (44,195 sam-
pled particles) is compared to a separate ‘‘high resolution” PDSC run with a large number of particles
(62,824 sampled particles). Although the velocity distribution has relaxed somewhat by NDtW/k2 = 9, there
is still a considerable discrepancy in the peak of the distribution. For ‘‘engineering” type simulations, the
use of the Maxwellian distribution assumption in higher Mach number flows may be justified, however,
when the correct particle velocity distribution profile is required in non-equilibrium regions, the use of par-
ticle data obtained from the original PDSC run is necessary. Fig. 13b shows the velocity distributions
obtained in the Mach 4 shock using this method (DREAM-II) for NDtW/k2 = 4.5 (44,195 sampling parti-
cles), showing a much greater agreement with the velocity distribution from the high resolution PDSC run.
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The velocity distribution in the cell of interest at the sampling temporal point from the original PDSC run,
which contains 2076 sampling particles, is also shown. This run was used to generate the input phase-space
data for DREAM-II and thus illustrates a major advantage of the method: initially PDSC can be run with a
low number of simulated particles and DREAM-II can still obtain an accurate particle velocity profile,
despite the scatter in the original data.

Fig. 14 shows the particle velocity distribution obtained for a Mach 8 shock using DREAM-II which again
demonstrates the ability of this method to obtain the correct particle velocity distribution in the shock. Here
the high resolution PDSC data has 49,387 sampled particles and the DREAM-II result has 104,407 particles.

We have found a rule of thumb for selecting an appropriate regeneration data set is that the parameter
NDtv1/k1 about four or greater where a Maxwellian is assumed for lower Mach number flows (i.e. Mach
<2) in DREAM-I. This allows the particle velocities to relax to the correct distribution while ensuring good
reduction in the scatter of the macroscopic data while not incurring excessive computational expense. Where
the full phase-space data is used for higher Mach number flows in DREAM-II, NDtv1/k1 should also be set
to about four to prevent constraining the macroscopic results to be close to the macroscopic data at the time of
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regeneration. We have also found that using approximately 10 ensembles in the sample results in good reduc-
tion in statistical scatter while maintaining acceptable processing times.

3.2. Development of Couette flow

Another method used to validate both the unsteady sampling techniques in PDSC and DREAM was the
simulation of the development of Couette flow. The computational domain for this simulation is shown in
Fig. 15. Here argon gas is initially at rest between two parallel diffuse plates at the same uniform temperature
as the gas, in this case 300 K. At time t = 0 the upper plate begins moving instantaneously at speed
U1 = 96.6 m/s. These conditions correspond to a Mach 0.3 flow with a Knudsen number of 0.02, based on
the initial mean free path and the distance between the walls. Although this problem is one-dimensional, a
1 m � 1 m, 100 � 100 cell two-dimensional grid was used to help validate the code. This grid spacing was cho-
sen to be half of the mean free path in the undisturbed gas. The simulation time step Dt was set at
3.11 � 10�5 s and TVTS was not used. (Dt/tc = 0.62, where tc is the mean collision time of the stationary equi-
librium gas).

A continuum solution for the velocity at the vertical position y and time t can be obtained from the incom-
pressible Navier–Stokes equations [30]:
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Fig. 15. Computational domain for the developing Couette flow verification case.
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Fig. 16 shows a comparison of the velocity profile from the raw PDSC data and the data after processing by

DREAM-I as the flow reached steady state, illustrating the reduction in statistical scatter achieved by using
DREAM. Without DREAM the level of velocity slip at the walls cannot be determined over the statistical
scatter, however after processing the amount of slip is clearly discernable. Fig. 17 shows the velocity profiles
for a number of flow times as the Couette flow developed. All data has been processed by DREAM-I. In all
cases time has been normalized such that T = tU1/H.

Fig. 17 shows that the PDSC/DREAM solution lags the incompressible continuum solution. This is
because of compressible effects and because the high level of rarefaction effectively results in slip between
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gas particles and the walls. The PDSC/DREAM solution also exhibits the expected phenomenon of velocity
slip at the walls.
4. Applications

4.1. Shock wave reflection over a wedge

The impingement of planar shock waves over wedges is a frequently studied problem for all levels of rar-
efaction. Experimental studies of relatively rarefied flows have been carried out by Walenta [31,32] and com-
parable simulations using both DSMC and BGK solvers have been carried out by Xu et al. [22,33]. At the
continuum level, the impingement of a planar Mach 2 shock of ideal air over a 46� wedge is frequently used
as a bench mark test for advanced numerical schemes in gas dynamics. A number of experimental and sim-
ulation results from various researchers are given in the paper by Takayama and Jiang [34].

To demonstrate the capability of the proposed unsteady PDSC sampling procedures in successfully mod-
elling these types of flow fields, a number of simulations of shock impingement over various wedge configu-
rations were conducted. The test case was chosen to correspond to one of the experimental conditions of
Walenta [32] and subsequently investigated using a BGK scheme by Xu and Honma [33]. Here, a 25� wedge
was simulated with a shock Mach number of 2.75 and VHS krypton as the molecular model. The Knudsen
number based on width of the wedge normal to the flow and the high density flow to the left of the shock
is 0.0019. The computational domain, shown in Fig. 18 consists of 77,899 unstructured sampling cells which
were in turn divided into transient adaptive quadrilateral sub-cells which enabled nearest-neighbour collisions
to be enforced. This sub-cell scheme will be described in more detail in a future publication. All domain
boundaries were set as specular walls, except for the left hand inlet boundary which was set to the same con-
ditions as behind the shock. A basic time step of 3 � 10�8 s was used (Dt/tc = 0.0085) with TVTS allowing the
time step to increase by a factor of 10 outside the sampling region. The number of particles in the domain
peaked at approximately 7.2 million at the end of the simulation at which the shock reached a point 175k1

from the leading edge of the wedge. The simulation time was 1.36 h of simulation time on a 20-processor clus-
ter similar to that described in Section 3.1. A similar run without TVTS required 19.2 h of simulation time.
Post-processing of each data set using DREAM resulted in a reduction in the standard deviation of the density
in the undisturbed region of flow from 20% in the original data to 9.6% in the processed data.

Fig. 19 shows a comparison between the raw data from PDSC and the data processed by DREAM-I as the
shock reaches approximately 175k1 from the leading edge. Here, the contours have been normalized by the
densities in the undisturbed region q1 and behind the shock q2. In both cases, the reflected cylindrical shock,
Mach stem and slip layer which form the triple point are clearly visible, however the structure is much better
resolved in the DREAM processed data. In this figure, a density contour of q�q1

q2�q1
¼ 1:2 from the equivalent

case simulated by Xu and Honma [33] is also given, which shows good qualitative agreement with the present
results.
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Fig. 18. Computational domain for shock impingement on a 25� wedge.



Fig. 19. Comparison of (a) raw PDSC data and (b) data processed by DREAM-I for the impingement of a shock on a 25� wedge
(Kn = 0.0019). The white markers show the 1.2 contour from the equivalent numerical simulation by Xu and Honma [33].
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Fig. 20 shows the density contours at a further two points in the flow: when the shock reaches approxi-
mately 40k1 and 110k1, respectively. In both cases the data has been processed by DREAM-I. Again, in each
case the resolution of the flow structure is greatly enhanced by using DREAM.

Fig. 21 shows a comparison of the normalized density profile between the experimental data by Walenta
[32], the BGK simulation by Xu and Honma [33] and the data from the present simulation at a point approx-
imately 17.5k1 behind the leading edge when the shock reaches 40k1. Both the simulated profiles agree qual-
itatively, as they both use specular walls, however they differ from the experimental data due to the different
wall conditions in the experiment. The PDSC/DREAM solution appears to exhibit higher density for y/
k1 < 10 than the BGK solution.

4.2. Development of a shock wave structure passing a wedge in a channel

A further test problem used as a demonstration is the impingement of a planar Mach 1.3 shock over a two
dimensional wedge in a channel. This problem was first studied in the classic experiment by Schardin who used
high speed cinematography to study the flow [35]. The flow results in a complex evolution of interacting shock
and vortex structures. Numerous authors have also studied similar problems numerically using a Navier–
Stokes solver by Huang [36], and using Euler equation solvers by Sivier et al. [37] and Chang and Chang
[38], among others. The present simulation was developed as a point of comparison, however it should be
noted that the present conditions are more rarefied than any of the cases mentioned above.

The computational domain for the problem is shown in Fig. 22. Here, the channel wall and wedge surfaces
were implemented as specular walls, and the inlet boundary was set to the same conditions as the behind the
Fig. 20. The impingement of a shock on a 25� wedge when the shock reaches approximately (a) 40k1 (t = 280 ls) and (b) 110k1 (t = 600 ls)
from the leading edge of the wedge (Kn = 0.0019). All data are processed by DREAM-I.
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moving shock. Argon gas was used as the working gas, and the Knudsen number based on the width of wedge
normal to the flow and the high density flow to the left of the shock was 0.012. For completeness the flow
conditions are: p1 = 10 Pa, T1 = 300 K, p2/p1 = 1.8625, T2/T1 = 1.2922 and u2 = 128.5 m/s, with these values
being determined by the same method as in Section 3.1.

The computational domain was divided into 147,011 unstructured elements, with the element size in the
region of the wedge being approximately equal to the equilibrium mean free path of the conditions to the left
of the shock. A sampling time step of 2 � 10�8 s (Dt/tc = 0.049) was set such that no particle could traverse
more than approximately one third of the mean free path over the sampling period, which consisted of 50 time
steps. The TVTS scheme was employed, enabling the time step to be increased by a factor of 10 when sampling
was not occurring. The number of particles within the simulation domain peaked at approximately 21 million,
and the total simulation required was approximately 3.5 h of computational time on a 10-processor cluster
with similar specifications as the cluster mentioned in Section 3.1 (a run without TVTS required approximately
24 h). The data sets at the points of interest generated by PDSC were then post-processed using DREAM-I to
improve the statistical accuracy of the simulations. In each case the solution was approached from 500 time
steps before the point of interest and 10 ensembles were used. This procedure was found to reduce the stan-
dard deviation of the density in the undisturbed region of flow from 9.27% in the original data to 2.82% in the
processed data and resulted in better resolution of the flow structure.

Fig. 23 shows a series of density contours at different times as the shock passes over the wedge. The results
reveal some very interesting flow field features, which are quantitatively consistent with the experimental and
numerical results of the other authors mentioned above, although exhibit greater levels of rarefaction. As the
incident shock passes over the wedge, the reflected cylindrical shock and Mach stem become clearly visible. At
the end of the wedge, the Mach stem diffracts around the corner forming a further cylindrical shock and an



Fig. 23. Contours of density [kg/m3] for shock impingement on a wedge in a channel (Kn = 0.012). Each image is separated by 20 ls.
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expansion fan which moves in the opposite direction. The vortex structure formed behind the wedge then
begins to move downstream. The cylindrical shocks from the upper and lower corner of the wedge cross each
other (or, in the case of the simulation, reflect from the line of symmetry), which can be faintly seen in the
figure. As the reflected shock from the front of the wedge grows larger, it reflects from the channel wall
and then interacts with the shock structure below it.
5. Conclusions

In the current study, unsteady sampling methods for a parallel DSMC code were developed. To overcome
the large computational expense and memory requirements usually involved in DSMC simulations of
unsteady flows, several techniques were used. Firstly, a method of time-averaging the flow near the sampling
point was implemented which has considerable computational advantages over ensemble-averaging a large
number of separate runs. Secondly, a temporal variable time step (TVTS) scheme was employed enabling fas-
ter processing between the sampling points without compromising simulation accuracy. TVTS resulted in sub-
stantial reductions in run-times due a larger time step outside the sampling zone resulting in reduced
computational outlay on indexing and sampling the particles within the flow field. Thirdly, a method of
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post-processing certain sampling points, called DREAM, was developed whereby a combination of time- and
ensemble-averaged data was build up by regenerating the particle data a short time prior to the sampling point
of interesting, assuming either a Maxwell–Boltzmann distribution of particle velocities for Mach numbers less
than about two or the original phase-space data obtained from the PDSC run for higher Mach number flows.

The validity of the unsteady sampling schemes was tested by simulating shock tube and unsteady Couette
flow and a number of rules for appropriate use of the technique were developed. The code was then used to
simulate a number of test cases involving the shock interaction over wedges. In each case, the technique pro-
duced accurate results comparable to other work in the literature with relatively low computational costs. In
general it was found that ten ensembled runs of DREAM processing could reduce the statistical uncertainty in
the raw PDSC data by 2.5–3.3 times, based on the limited number of test cases in the present study.
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