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Multiple lot-sizing decisions in a two-stage
production with an interrupted geometric

yield and non-rigid demand
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In a production system with random yield, it may be more cost effective to release lots multiple times towards
fulfilling a customer order. Such a decision, called the multiple lot-sizing problem, has been investigated in
various contexts. This paper proposes an efficient algorithm for solving a new multiple lot-sizing problem
defined in the context of a two-stage production system with non-rigid demand when its process yields are
governed by interrupted geometric distributions. We formulate this problem as a dynamic program (DP) and
develop lemmas to solve it. However, solving such a DP may be computationally extensive, particularly
for large-scale cases with a high yield. Therefore, this study proposes an efficient algorithm for resolving
computational issues. This algorithm is designed to reduce the DP network into a much simpler algorithm
by combining a group of DP branches into a single one. Extensive experiments were carried out. Results
indicate that the proposed reduction algorithm is quite helpful for practitioners dealing with large-scale cases

characterized by high-yield.

Journal of the Operational Research Society (2011) 62, 1075-1084. doi:10.1057/jors.2010.39

Published online 19 May 2010

Keywords: lot-sizing; interrupted geometric distribution; dynamic programming; two-stage system;

production/inventory system

1. Introduction

Multiple lot-sizing problems arise when considering varia-
tions in process yield. In a production system with a random
yield, it may be more cost effective to release lots multiple
times fulfill customer orders. In this case, it is necessary
to determine the optimal lot size for each lot release. This
problem has been called a Multiple Lot-sizing Production to
Order (MLPO) problem (Grosfeld-Nir and Gerchak, 1996).
This paper presents a new MLPO problem with the
following features. Firstly, completion of a product requires
two stages (or two manufacturing processes). The two stages
are interconnected and cannot be performed at the same time.
Secondly, the yield of each stage is random and governed by
an interrupted geometric (IG) distribution. A manufacturing
process with an IG distribution denotes that once a defec-
tive item is produced by the process, the items produced
afterwards are all defective. Thirdly, the delivery due dates
for customer orders are strictly imposed; in other words,
delivery after the due date is not acceptable, and supply
shortages will be penalised. This feature is also called non-
rigid demand because a customer’s demand may not be
completely fulfilled by the due date. Fourthly, the products are
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customised and the salvage values of over-supplied items are
negligible.

One example of a two-stage MLPO problem is a capital-
intensive machine tool (eg, a steel rolling mill) equipped with
two shape-forming dies. Each die is used to perform, can only
perform a particular shaping process. The manufacturing of a
product involves two shaping operations through the succes-
sive use of both dies. Yet, at any instance, only one die can be
equipped on the machine. Therefore, the two shaping opera-
tions cannot be simultaneously carried out—fulfilling the first
requirement above. Secondly, the process yields of both dies
are governed by IG distributions, since once a die becomes
worn out, all the parts it produces afterwards are defective.
Thirdly, the product is highly customised and has a short life
cycle. Therefore, customers are highly concerned with the due
date and any delivery after the due date is not acceptable.

At each period, the two-stage MLPO problem involves
two decisions: (1) which die or manufacturing process to
select, and (2) how large to make the lot-size for the selected
die. These two decisions are made at each period until the
customer order is completely fulfilled or the decision point
reaches the due date. In the event that the customer order is
only partially fulfilled by the due date, the manufacturer will
incur a penalty cost for shortage.

Numerous studies on the MLPO problem with IG distri-
butions have been published. Most of these studies assume
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a rigid demand scenario in which a customer order must be
completely fulfilled. A few studies examine non-rigid demand
scenarios, but limit their scope to a single-stage production
system (Guu and Zhang, 2003). To date, the two-stage inter-
locked MLPO problem described above has not been investi-
gated in the literature.

We formulated the MLPO problem as a dynamic program
(DP) and developed lemmas to solve it. For a small-scale
case, solving the DP efficiently obtains an optimum solu-
tion. However, for large-scale cases with a high yield, solving
this DP becomes computationally prohibitive. To address this
problem, this study proposes an efficient method of solving
the MLPO problem. Our idea is to reduce the complex DP
network into a much simpler algorithm by combining a group
of DP branches into a single one. Extensive experiments were
carried out. Results indicate that the proposed method is quite
helpful for practitioners dealing with large-scale cases char-
acterized by a high yield.

The remainder of this paper is organised as follows. Section
2 reviews previous multiple-stage MLPO studies. Section 3
introduces how the MLPO problem is formulated as a DP
model and develops lemmas to determine the upper bounds
of lot-sizes for the DP. Section 4 describes the DP reduction
method. Section 5 presents numerical experiments, followed
by concluding remarks in Section 6.

2. Research background

Two comprehensive survey papers (Yano and Lee, 1995;
Grosfeld-Nir and Gerchak, 2004) on MLPO problems have
been published. Prior studies on MLPO problems can be
categorised according to four perspectives.

The first perspective is associated with the number of
production/inspection stages, and includes two options:
single-stage and multiple-stage. Single-stage studies assume
there is only one inspection station at the end of a production
line, and that inspection results are utilised to make lot-sizing
decisions for the following period. Alternatively, multiple-
stage studies assume that the completion of a product must
involve a sequence of manufacturing stages, and that each
stage is equipped with its own inspection station. In this
case, the inspection results of a particular stage are utilised
to make subsequent lot-sizing decisions for upstream and
downstream stages.

Examples of single-stage studies include Beja, 1977;
Sepheri et al, 1986; Pentico, 1988; Grosfeld-Nir and Gerchak,
1990; Anily, 1995; Grosfeld-Nir and Gerchak, 1996; Zhang
and Guu, 1997, 1998; Guu, 1999; Guu and Liou, 1999; Anily
et al, 2002; Guu and Zhang, 2003. Example of multiple-
stage studies include Lee and Yano, 1988; Wein, 1992;
Grosfeld-Nir and Ronen, 1993; Pentico, 1994; Grosfeld-Nir,
1995, 2005; Grosfeld-Nir and Robinson, 1995; Barad and
Braha, 1996, Barad, 1999; Grosfeld-Nir and Gerchak, 2002;
Grosfeld-Nir et al, 2006; Ben-Zvi and Grosfeld-Nir, 2007.
In practice, the steel engraving process is like a single-stage

system, while the steel drawing and coating processes are
like a multiple-stage system.

The second perspective is associated with delivery
requirement, which includes two options: rigid-demand and
non-rigid demand. In the rigid-demand scenarios, partial
fulfillment of an order is not acceptable (Wein, 1992;
Grosfeld-Nir and Ronen, 1993; Pentico, 1994; Grosfeld-Nir,
1995, 2005; Grosfeld-Nir and Robinson, 1995; Grosfeld-
Nir and Gerchak, 2002; Grosfeld-Nir et al, 2006; Ben-Zvi
and Grosfeld-Nir, 2007). In the non-rigid demand scenarios,
though customers will not accept any products after their due
dates, partial fulfillment of an order is acceptable (Lee and
Yano, 1988; Barad and Braha, 1996; Braha, 1999).

Practical examples of rigid-demand scenarios involve the
order of making components for use in an assembly line.
Partial fulfillment of such an order would result in partial
fulfillment of its final assembly, and might idle some other
types of components in the assembly. Alternatively, non-rigid
demand scenarios emphasise customers’ eager concern in
meeting due dates. For example, at the due date, customers
have booked a scarce capacity to undergo a batch operation
on the products they received. Therefore, products delivered
after the due-date will not be accepted.

The third perspective is associated with the probability
distributions of process yield. These probability distributions
include the general discrete distribution (Grosfeld-Nir, 1995;
Grosfeld-Nir and Robinson, 1995; Grosfeld-Nir and Gerchak,
2002; Grosfeld-Nir et al, 2006), the binomial distribution
(Grosfeld-Nir and Ronen, 1993; Pentico, 1994; Grosfeld-
Nir, 1995, 2005; Grosfeld-Nir and Robinson, 1995; Barad
and Braha, 1996; Braha, 1999; Grosfeld-Nir and Gerchak,
2002; Grosfeld-Nir et al, 2006; Ben-Zvi and Grosfeld-Nir,
2007), the IG distribution (Grosfeld-Nir and Robinson, 1995;
Grosfeld-Nir and Gerchak, 2002; Grosfeld-Nir et al, 2006;
Ben-Zvi and Grosfeld-Nir, 2007), the all-or-nothing distribu-
tion (Grosfeld-Nir and Robinson, 1995; Grosfeld-Nir, 1995;
Grosfeld-Nir and Gerchak, 2002; Grosfeld-Nir et al, 2006;
Ben-Zvi and Grosfeld-Nir, 2007), and the stochastically
proportional distribution (Lee and Yano, 1988; Wein, 1992;
Grosfeld-Nir, 1995).

The following section describes the various applications of
the aforementioned probability distributions. An IG distribu-
tion refers to a process that uses a tool or die to manufacture
part one at a time. However, the tool/die gradually wears out
over time. As soon as the tool/die becomes severely worn,
none of the parts produced afterwards will not the specifica-
tions. A general discrete distribution also refers to a process
which produces parts one by one, but the quality of each part is
independent due to some uncontrollable factors. This leads to
various discrete probabilistic distributions in yield-modelling,
one of which is the Binomial distribution. The all-or-nothing
distribution refers to a batch process, in which all parts in a
lot are processed together; therefore, all the parts in a batch
either pass or fail. A stochastically proportional distribution
is utilised to model continuous production process.
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The fourth perspective is associated with the solution
approach. Most prior formulations of the MLPO problems
include recursive formulas that have been widely interpreted
as DP problems. Therefore, DP has been widely used to solve
the MLPO problem. However, this approach can be very
demanding computationally. Some researchers have proposed
the use of lemmas to reduce the solution space (Beja, 1977;
Anily, 1995; Zhang and Guu, 1998), while others attempt
to develop near optimal heuristic rules (Sepheri et al, 1986;
Pentico, 1988). A few authors have roughly modelled the
DP problem using a simpler non-DP problem for cases with
extremely large or small demand quantities (Anily et al,
2002).

3. DP model

This section introduces a way to model the two-stage MLPO
problem as a DP. We first assume that the production lead
times of both processes being equal (ie, one period). Then, we
describe the MLPO problem, analyse the outcomes of a lot-
sizing decision, and model its associated cost function using
a recursive formula, which reveals that the MLPO problem
is a DP. Finally, we discuss how this DP can be used to
model scenarios in which the production lead-times of the
two processes are different.

Notation

T: total number of periods in the time horizon.

t: period index for r =T, ..., 2, 1, 0, where T denotes
the starting period and ¢ = 0 denotes the due date.

i index of production stage M;,i =1, 2.

a@:  setup cost required for releasing a lot to stage M;, i =
1,2.

ﬁ(i): variable production cost per unit at stage M;, i=1, 2.

D: initial demand (number of demand units at ¢t = T).

D,:  remaining demand at period ¢ (number of demand
units not fulfilled at 7).

h: inventory holding cost of finished goods ($/unit-
period).

m: shortage cost per unit.

0% yield parameter of the IG distribution at stage M;, i=
1,2.

k,(i): size of the lot released to M; at period t,i =1, 2
(note that k,(l) ~k,(2) =0 due to the interlock constraints
imposed on the two processes.)

W,(i): binary variable indicating whether or not a setup is
required at stage M;

()
@ _J0 if k=0
Wi _L if k>0
Yk}"): random variable denoting the number of good units
produced from lot k,(’), Vo denotes the possible

outcome of Yo, Ve = 0,1, ..., kfi), i=1,2.

—» M, M, ——»

Figure 1 The two-stage production system.

P(yk,‘”): probability of producing exactly Vo

good units from lot k,(i), where

kf”
> pyo)=1i=12

)k/(i):o

B;: inventory level of work-in-process
(WIP) buffer R at period ¢, where
Bi =B — k) + Y0,

s; = (Dy, By): production system status at period f,

also called state s;.

decision made at state s,; that is, k,( D

units are released to M; and k,(z) are

released to M,. Note that kt(l) -k,(z) =

0 due to the interlock constraints

imposed on the two processes.

NiGs) = (k" kP):

C;(N;(sy)): total expected cost incurred from
period ¢ to period 0O, for a particular
decision N, (s;).

Cr(sy) = Min {C,(N,(s;))} minimum total
K" k)

expected cost incurred from period ¢
to period 0, for all possible decisions

at state s,.

Ni(s;) = (k,(l) *, k,@*), an optimal decision made at state s;;
that is,

Ci(N/(s0) = Min {C,(N,(s))} = C{(s1)
(RN

3.1. MLPO problem

The production system of the MLPO problem involves two
stages/processes, as Figure 1 shows: M and M,. Both of these
processes are equipped with a work-in-process (WIP) buffer
R, and inspection is performed at the end of each process.
Units determined to be defective are scrapped. The produc-
tion lead-time (including inspection) for each process is one
period.

To meet a non-rigid demand quantity D, lots can be peri-
odically released to M; and proceed to M,. At the end of any
period, when the inspection results are revealed, we must first
select the process (either M or M>) to proceed with, and then
determine the lot-size for that selected process. These two
decisions can be aggregated into a single decision determining
Ni(s)= (kt(l), k,(z)). However, the condition kfl) ~k,(2) =0 must
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be maintained due to the interlock constraints imposed on the
two processes.

Notice that the lot size for M, must be less than the
currently available WIP in R. Lot-sizing decisions must
be made until the due date arrives or the customer order
has been completely fulfilled. Finally, the MLPO problem
only considers the inventory holding cost of finished
goods.

In the MLPO problem, the process yield is an IG
distribution. Such a probability distribution is defined as
follows:

P(Ykl(i) = ykl(f))
(- Q(i)) . (H(i))yk}”
(()(i))kf')

yk}i) :(), 1,2, ceey kt(i) -

Yo = kt(i)

This equation indicates that each process operates in two
possible states: in-control and out-of-control. While the
process is in-control, all products produced are good;
while out-of-control, all products produced are defec-
tive. To produce exactly Vo good units, the system must
be in-control for the first Vo units, until it reaches the

out-of-control state at the (ykf” + D™ unit. A mold-
based shaping process is a good example of process
yield characterised by the IG distribution. Once the mold
is worn out, the output produced afterwards will be
defective.

3.2. Outcomes of a lot-sizing decision

As stated above, the condition k,(l) ~kl(2> =0 must be maintained

due to the interlock constraints imposed on the two processes.
Figure 2 illustrates the possible outcomes at #-1 of a lotsizing
decision (k,(l), k,(z)) made at . At ¢, the state of the production
system (called state hereafter) is s; = (D;, B;), which implies
that the remaining demand is D; and the WIP level is B;.
Now either k,(1> or k,(2> units are released to M| and M,; their
respective outcomes are Vi and Vi@ With this input/output

kK +

information, we can derive that s,_; = (D, — y,@, B, — k,
1

yk’(l)).

The occurrence probabilities for Vi and Ve are
p(yk:1>) and P(yk,(”)’ respectively. With Ogyk'(ngk,(l) and
0< yo <k
possible outcomes for a lot-sizing decision (k,m , k,(z)) is
(k,“) +1)- (k,(z) + 1) where k,“) . k,(Q) = 0. That is, the occur-
rence of each outcome has a probability of p(yk:n) . p(yk:a),

), we an easily infer that the number of

K
and Zy (1)—Ozyk(z):0p(ykf“) ’ p(yk}Z)) =1L

3.3. Cost function and DP

Suppose a lot-sizing decision N,(s;) = (k,“), kl(z)) is made at
s = (Dy, By). In this case, the total expected cost incurred

from period ¢ to period O (the due date) can be formulated as
follows.

kl(l) k;l)

C(Ni(s)=Hi +H+ Y > plym

Y =0y,2=0

kl(Z)

pye) - Hs+ Y pye)-Hy (D)
)‘k’(2>=0

where
K k=0

H, = O((I)W,(]) + ﬁ(l)kt(l)

Hy = o®@ Wt(2) + B(Z) k{(2)

H3 = Cz*—l(sl—l)’ where Si—1 = (D, — yk,m’ B, — kt(z) + yktm)

H4=h'(t_1)'ykf2’

In Equation (1), the terms H; and H, respectively denote
the production cost incurred at s, for M; and M,. The

third term Z‘ m—OZy =0 p(ykm) p(ykm) H; denotes the
minimum total expected cost for all possible states of s,_;.

The fourth term ZV =0 p(y,@) - Hy denotes the expected
J k‘— t

inventory holding cost for all possible outcomes of k,(2).

Equation (1) is a recursive formula due to the inclusion
of H3 = C;_,(s;—1). To make an optimal lot-sizing decision
at state s,, we must know the optimal decision at s,_;. This
recursive feature indicates that the MLPO problem is a DP.

The DP has two boundary conditions (BCs). The first BC is
defined at s, = (0, B;). When the order is completely fulfilled,
no more lots are must be released and the corresponding cost
is zero. That is,

N{(s: = (0, B)) = (0,0) @)

Ci(s:=(0,B))=0 3)
The second BC is defined at so = (Dy, By). At the due date,
any further production is useless, and only the shortage cost
is incurred. That is,

Cy(so = (Do, Bo)) =mDy )

3.4. Upper bounds for the DP

To solve the DP, we developed three lemmas that give
upper bounds  for k,(]) and k,(z) . Lemma 1 states that
k(z) < min(D;, B;). Lemmas 2 and 3 as a whole state

that k7" < mm{([%} —1),((t — )D, — B)}. The

Appendix provides the proofs of these three lemmas as well
as one supporting proposition.
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Probability: p(y,0)P(V,e)

N(s)= (k" k)

Stage: -1

p(0)p(0)

PP

s,=(D,,B,)

(R

(k" - =0)

State

Decision

— 5 2)
5= (D, =y B—k 43,

Pk pk™)

5= (D, =k, B~k + k")

Figure 2 A decision structure in the DP model.

3.5. Embellishment of the DP model

The DP model can be embellished to model a more complex
MLPO problem, in which the production lead-times of the two
stages are different. Denote the production lead-time of the
first stage by p; and that of the second stage by p,. In such a
scenario, not all periods may be used to release a lot because
the machine is not always free at the end of each period.
This embellished DP model assumes that a lot-sizing decision
can be made at each period but some additional constraints
must be imposed on k,(l) and k,(z), as Equations (5)—(8) indi-
cate Moreover, H in Equation (1) should be modified as in
Equation (9).

If k" >0, then k", =0

and k2, =0fort=1,..., py—1 5)

If K > 0, then k', =0
and kZ, =0fort=1,..., po—1 (6)
kY =0, forperiod t=p; —1, ..., 1 @)
kf2)=0, forperiod t=p, — 1, ..., 1 (8)
Hy=h-(t—p2)-ye ©

Equations (5) and (6) ensure that whenever a manufacturing
stage is triggered, no more lots can be released until the
machine is free again. Equations (7) and (8) show that we are
not allowed to any lot if the remaining time to the due date
is less than the production lead-time. Equation (9) highlights
the reduction of inventory-holding cost while the production
lead-time of stage M, is increased.

Owing to inclusion of additional constraints on k,(]) and
k,(z), the embellished DP network is a subset of the original
DP network. Therefore, the lemmas in the Appendix, which

define the upper bounds for kt(l) and k,(z) , are also valid in the
embellished DP model.

4. Reduction of DP network

This study proposes a method for reducing the DP network
into a much simpler one by consolidating the outcomes of
a lot-sizing decision. The proposed method includes three
major steps. First, we cluster all the possible outcomes of a
lot-sizing decision into several groups. Second, we define a
representative outcome for each group. Third, we simplify the
DP network by including only the representative outcomes of
each group.

The first step is to group outcomes. For a lot-sizing deci-
sion (kl(l), k,(z)), the total number of possible outcomes is

(k,(l) + 1) - (kt(z) + 1). For the outcomes of kt(l), there are

k,(l) + 1 options (ie, 0, 1, ..., kt(l)). By consolidating every n

. . . RO
consecutive outcome into a group, we obtain [“—-17 groups.

n

For example, when n =2 and k,(l) =6, we would create four
groups: {0, 1}, {2, 3}, {4, 5}, {6}. Likewise, for the outcomes

(2) k(2)+1
of k,~ we would create [~——1 groups.

The second step is to define each group’s representative
outcome. Define Q; = {y|n(j — 1) <y<nj — 1} as the jth
group that comprises n consecutive outcomes of either kl(l)
or kt(z), where y denotes the possible outcome and its prob-
ability is denoted by p(y). The representative outcome of
group Q; is Round(XvL,; 11y p(0)/ XL, p(»), and
its corresponding probability is ZZ’: _n]( j—1yP(y). For example,
consider group j =2 (O, = {2,3} with p(2) =0.1 and
p(3) =0.2. Then, the representative outcome of group Q5 is
Round(%) =Round(2.7)=3, and its corresponding
probability is 0.1+0.2 =0.3.

The third step is to simplify the DP network by modelling
each group with its representative outcomes. After this simpli-
K41 @ has

fication method, kt(l) has only [ ] outcomes and k,
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Table 1 C) and T), of the solutions obtained by the comprehensive algorithm

O, 0%) (T, D)
(10 100) (10200) (20 100)
Cp($) Tp (sec) Cp ($) Tp (sec) Cp ($) Tp (sec)

0.9 0.9 8070.76 220 18 070.80 1019 6228.48 1875
0.9 0.99 5058.79 169 15 026.30 707 2151.69 821
0.9 0.999 3578.58 158 13 304.30 710 1437.32 789
0.99 0.9 5016.30 2394 14 972.70 19 489 2629.97 23 309
0.99 0.99 1018.96 2412 2561.08 22 080 1017.97 23 057
0.99 0.999 689.91 2324 1363.89 20 789 689.90 22 979
0.999 0.9 3984.39 2754 13 742.00 39 414 234391 57 688
0.999 0.99 847.77 2738 1846.54 43 191 847.77 57 377
0.999 0.999 541.07 2703 1057.13 41 408 541.07 57 056

Table 2 Rcand R7 of the solutions obtained by the reduction algorithm for n =5

O, 02y (T, D)
(10100) (10200) (20100)
Re (%) Ry (%) Re (%) Ry (%) Re (%) Ry (%)

0.9 0.9 0.28 3.29 0.13 2.05 0.72 2.36
0.9 0.99 0.05 5.19 0.02 4.48 0.33 4.70
0.9 0.999 0.07 491 0.00 4.36 0.29 4.45
0.99 0.9 0.58 3.68 0.06 3.34 1.18 3.16
0.99 0.99 0.31 3.75 0.14 3.50 0.17 3.32
0.99 0.999 0.06 3.64 0.03 3.38 0.06 3.15
0.999 0.9 0.33 3.67 0.64 3.24 4.30 2.94
0.999 0.99 0.15 3.75 0.21 3.42 0.15 3.03
0.999 0.999 0.01 3.57 0.03 3.31 0.01 3.03

Table 3 Rc and Ry of the solution obtained by the reduction algorithm for n = 10

O, 9@, (T, D)
(10100) (10200) (20100)

Rc (%) R (%) Rc (%) Rt (%) Rc (%) R (%)
0.9 0.9 0.27 2.18 0.12 1.25 0.56 1.39
0.9 0.99 0.14 4.45 0.04 2.85 1.70 3.22
0.9 0.999 0.19 3.35 0.03 2.77 2.61 2.92
0.99 0.9 0.92 2.15 0.08 1.92 11.51 1.76
0.99 0.99 1.01 2.23 0.22 2.01 1.11 1.76
0.99 0.999 0.09 2.13 0.07 1.91 0.09 1.73
0.999 0.9 6.10 2.14 0.12 1.77 6.71 1.59
0.999 0.99 0.77 2.23 0.16 1.91 0.77 1.61
0.999 0.999 0.03 2.10 0.17 1.82 0.03 1.60
only (k’(z:,—“l outcomes. The total number of outcomes for ~ While that of solving the reduced DP is called the reduction

(1) (0] .

(k,(l), kt(z)) is (k’"—ﬂl . (k’ n“l, which greatly reduces the DP algorithm.
network.

Notice that while n =1, the reduced DP becomes the 5. Numerical experiments
original DP. To facilitate comparison, the method of solving This study proposes two methods for solving the MLPO
the original DP is called the comprehensive algorithm, problem—the comprehensive algorithm and the reduction
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Table 4 R and Ry of the solution obtained by the reduction algorithm for n = 15

O, 0%) (T, D)
(10 100) (10200) (20 100)
R (%) Rt (%) R (%) Rt (%) Rc (%) Rt (%)
0.9 0.9 0.59 1.49 0.26 0.75 1.06 0.99
0.9 0.99 0.29 2.59 0.07 1.91 3.83 2.23
0.9 0.999 0.54 2.48 0.03 1.89 18.44 2.10
0.99 0.9 0.87 1.65 0.22 1.44 14.67 1.23
0.99 0.99 1.28 1.66 0.58 1.48 1.27 1.27
0.99 0.999 0.85 1.61 0.26 1.41 0.85 1.25
0.999 0.9 0.87 1.61 10.65 1.28 12.36 1.05
0.999 0.99 3.10 1.68 0.92 1.36 3.10 1.12
0.999 0.999 0.05 1.61 0.24 1.32 0.05 1.12
Table 5 R and Ry obtained by the reduction algorithm for n = ks + 1
(9(1)’ 9(2)) (T, D)
(10 100) (10200) (20 100)
Rc (%) R7 (%) Rc (%) RT (%) Rc (%) RT (%)

0.9 0.9 1.31 0.18 0.58 0.04 2.96 0.21
0.9 0.99 4.67 0.73 1.73 0.24 30.71 0.26
0.9 0.999 3.88 0.62 1.61 0.42 53.22 0.26
0.99 0.9 3.30 0.38 1.00 0.12 18.22 0.18
0.99 0.99 103.94 0.35 32.27 0.19 104.14 0.20
0.99 0.999 54.80 0.33 90.92 0.17 54.80 0.19
0.999 0.9 2.36 0.56 0.76 0.18 20.47 0.15
0.999 0.99 87.78 0.59 60.76 0.28 87.78 0.18
0.999 0.999 25.02 0.56 91.44 0.26 25.02 0.17

algorithm. Extensive experiments were carried out to justify
both algorithms using personal computers equipped with a
3.4G CPU and 504MB of RAM.

We measured the effectiveness and efficiency of the reduc-

. . . .. c,—C,
tion algorithm using two performance indices: Rc = ~5—"
»

and Ry = ;—] where C, is the total expected cost of the lot-
sizing decision suggested by the reduction algorithm and 7,
is its computation time; C, and T}, are defined accordingly
for the comprehensive algorithm.

Experimental results suggest that the reduction algorithm
should be used to solve a large-scale problem (ie, large TD)
with a high yield in the first stage (eg, 0" >0.99). For
other scenarios, we suggest the use of the comprehensive
algorithm.

According to Table 1, when 0(1)20.99 and (T, D) €
{(10, 200), (20, 100)}, solving the MLPO problem using
the comprehensive algorithm is computationally extensive
taking about 5.4-16.0 hours. This is essentially due to that

« D _1nm .
k" < min{(FME—m) — 1), (¢ = DD, — By}, which

indicates that higher values of 9(1), D, and T increase the
upper bound of k,m , which in turn increases computational
complexity.

Table 6 Average computation time required by the
comprehensive algorithm for solving some low-yield MLPO
problems (unit: sec)

T D

10 50 100 200
10 0.13 4.17 13.13 21.20
15 0.34 12.74 43.03 167.95
20 0.33 26.32 123.21 496.78

In contrast, such complex MLPO problems can be effi-
ciently and satisfactorily solved using the reduction algorithm.
As shown in Table 2, n =5 Ry ranges from 2.94% to 3.50%,
while R, ranges only from 0.06% to 4.30%. For the scenario
with (T D) = (20,100) and (0", 0®) = (0.999, 0.999), the
computation time is greatly reduced from 16 hours to 30 min.
Moreover, as Tables 3-5 indicate, increasing the value of n
tends to decrease Ry at the cost of increasing R..

Alternatively, the comprehensive algorithm is better-suited
to scenarios with a relatively low yield in the first process
(ie, 0 <0.9). Table 6 shows the average computation times
for solving some MLPO problems using the comprehensive
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algorithm. Each (T, D) scenario in this table includes
16 instances, which are generated by setting 0V, 0@ ¢
06,08}, BV = p@ e (1,2}, m € {100,200}, and
oM =o® =50.

In practice, a manufacturing processes with a yield
higher than 0.99 (ie, 0™ >0.99) is not unusual. In shaping
processes, the yield of a die is generally higher than 0.99.
Otherwise the die would be frequently changed, increasing
processing/production costs. Therefore, the proposed reduc-
tion algorithm can help practitioners quickly and effectively
solve the MLPO problem.

6. Conclusions

This paper examines a novel two-stage MLPO problem with
an IG yield distribution and non-rigid demand. The processing
times for the two stages may be different. Once a stage
completes the manufacturing of a lot, we need to decide which
of the two stages to proceed further and make the lot-size
decision.

We first formulate this MLPO problem as a DP. Then by
developing lemmas forr the upper bounds of lot-sizes, we
propose an exact approach (ie, the comprehensive algorithm)
to solve the DP. However, solving the DP using an exact
approach may be computationally extensive, and particularly
for large-scale, high-yield scenarios. To resolve this computa-
tional difficulty, we further develop an efficient algorithm—an
approximation approach—that reduces the DP network into
a much simpler algorithm by consolidating a group of DP
branches into a single one.

Numerical experiments indicate that the approximation
approach (ie, the reduction algorithm) can effectively and
efficiently solve large-scale, high-yield problems. For a prac-
tical MLPO problem requiring 16 hours of computation
to solve, the reduction algorithm can obtain a satisfac-
tory solution in only 30 min. Yet, for small-scale cases,
we suggest solving the DP using the comprehensive algo-
rithm because it requires only a few minutes or less of
computation.

A possible extension of this research is to apply the reduc-
tion method to solve other MLPO problems. For example,
many other MLPO problems in the literature are modelled as
a DP, and various heuristic methods have been developed for
dealing with large-scale cases. Comparing the performance
of these heuristic methods and the reduction method would
be an interesting topic for further research.
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Appendix

Proposition 1 C;_ (5,1 = (D;, B, — n))>2C/_((si—1 =
(D¢, By)) for B;=n>1 and n is an integer.

Proof Consider a case in which we intentionally hold n
WIP units in station R until the due date. In our cost model,
the n WIP units will be scrapped after the due date, and
therefore add no more cost. By intentionally scrapping the n
WIP units, the lot-sizing decision for s,_; = (D, B,) in this
case becomes the lot-sizing decision for s,_; = (D,, B, — n).
That is, C;_,(s,—1 = (D;, B, — n)) can always be obtained
from the lot-sizing decision at s;,_; = (D,, B,). This implies
that C,*_] (si—1 = (Dy, B; — n)) >C,*_1(514 =Dy, B)) O

Lemma 1 Given t>1, D;>1, s, = (D;, B;), we have
k@ <D, and k*" < B,.

Proof kt(z)* < B; is trivial because B, is the available WIP
that can be released at stage 2.
To prove k,(z) < Dy, consider two cases.

Case 1 £V >0

We have kt(z)* = 0< D, because kt(l)* . kt(z)* =0
Case 2 k,(l)* =0

Let N/(s;) = (0, D;) and N, (s;) = (0, D, +n)
Then
C(N/(s)) =e® + B2 - (D) + h(t = 1) - E[Yp,]

D,

+ > pOp,) - €y (si21=(Di—yp,. B.—D,))
yp, =0

and

C/(N/(s)) = o® + B - (D, +n) + h(t — 1)

D;+n

ElYpl+ Y.

YDy +n=0

P(yp+n) - €y (s1-1=(Dy=yp,+n, Bi—(Dy+n)))

Ci(N/(5))) — Ce(N/(s) =n- B +h-(t —1)- (E[Yp,4n]

— E[Yp,]) + A — B, where

D,—1

A= > p(nn)

}’v,+n=0
: Cl*_l(st—l = (D; — yp,4n, B — (D; + n)))

D,—1

B=Y" p(yp) - Ci (=1 =(Di — yp,. B, — (D))
yp; =0

Based on Proposition 1, A > B. Therefore,
Ci(N/(s1)) = C/(N/(s))=n - B +h
- (t—D-(E[Yp,+x]1—E[Yp,])>0

This implies that X" <D,. O
Lemma 2 k,(l)* <@-1)-D,—B,.

For any ¢, D, > D,_;. Based on Lemma 1, we can infer

[T_:llkéz)* <(t — 1) - D,. That is, for stage 2, the sum of lot-
sizes from period + — 1 to 1 are at most (¢ — 1) - D,. This
implies that stage 2 at period —1 at needs a WIP level of
(t — 1) - D, at most. At period ¢, the WIP level at stage 2
is B;. Therefore, the units to be produced from stage 1 at
period r—1 are at most (¢ — 1) - D; — B,. Consider stage 2 as
a customer, the customer’s demand at period r—1 is at most
(t —1)- D, — B,. According to a prior study (Guu and Zhang,
2003), in a single-stage production system with an IG distri-
bution, the optimal lot-size will not exceed the demand. This
implies that the lot-size released from stage 1 at period ¢ is at
most (t+ — 1) - D, — B,. That is, the upper bound for k,(])* is
(t—1)-D;, — B,.

Lemma 3 [ft>1, D;>1, and s; = (D;, B;) where B, >0

n*_ i p
then k& g(%} 1.

Proof Let N/(s;) = (k,0) for k>1

k
C(N/Gs) = 0D + BV )+ D p(ye)

=0
: C,*_1(Sr—l = (Dy, B, + Yyk))
Let N/(s;) = (k+1,0) for k>1
Ci(N/ () = oV + BV - (k + 1)

k+1

+ > pws) - Cry

Yk+1=0
(si—1 = (Dy, B; + yr+1))
C:(N/(s1)) — C:(N/(s1))
=B = @) ICE i
= (D, B; +k)) — C:_1(St—1 =(Dy, B +k+1))]

Consider a particular state (D;, B, + k), which is changed by
adding one more unit of WIP, becoming a new state (D,, B, +
k + 1). This newly added WIP unit could become a unit
of finished goods before the due date. In the best case, this
decreases the shortage cost by one unit. In other words,

Cl*,l(stfl = (Dy, B; + k)) — C,*fl(szfl
=(D;, B +k+1)<m

Accordingly, C,(N/(s;)) — C;(N/(s,)) =BV — (0D)+1 . m
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Namely, if B> (0V)**! . m we conclude C,(N/(s,)) —
G, (N;(St)) =0.

This implies that if lot-size k is in the range imposed by
/3(1) > (V)1 . 1 then we cannot achieve a better solution
by increasing one more unit in lot-size.

Therefore, " = (0")**! . m defines the upper bound of
lot-size k.

(1) *
That is, k = mﬁ]% — 1 is the upper bound of k"""
n

* (1)
Thus, we conclude that k" < [%1 -1. O
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