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a b s t r a c t

Scheduling workflow applications in grid environments is a great challenge, because it is an NP-
complete problem. Many heuristic methods have been presented in the literature and most of them
deal with a single workflow application at a time. In recent years, several heuristic methods have been
proposed to deal with concurrent workflows or online workflows, but they do not work with workflows
composed of data-parallel tasks. In this paper, we present an online scheduling approach for multiple
mixed-parallel workflows in grid environments. The proposed approach was evaluated with a series of
simulation experiments and the results show that the proposed approach delivers good performance and
outperforms other methods under various workloads.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Grid environments are an important platform for running high-
performance and distributed applications. Many large-scale scien-
tific applications are usually constructed as workflows [1–3] due
to large amounts of interrelated computation and communication,
e.g., Montage [4] and EMAN [5]. A grid environment is composed
of widespread resources from different administrative domains.
Miguel et al. [6] indicates that a grid environment usually has the
characteristics: heterogeneity, large scale and geographical distri-
bution. Task scheduling in a grid is a NP-complete problem [7,8],
therefore many heuristic methods have been proposed. The work-
flow scheduling problem in grid environments is a great challenge.
In the past years, there have been many static heuristic methods
proposed [9–17]. They are designed to schedule only one single
workflow at a time.

In this paper, we present a new approach called Online Work-
flow Management (OWM) for scheduling multiple online mixed-
parallel workflows. There are four processes inOWM: Critical Path
Workflow Scheduling (CPWS), Task Scheduling, Multi-Processor
Task Rearrangement and Adaptive Allocation (AA). CPWS process
submits tasks into the waiting queue. Task scheduling and AA
processes prioritize the tasks in the queue and assign the task
with the highest priority to processors for respective execution. In
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data-parallel task scheduling, there may be some scheduling holes
which are formed when the free processors are not enough for the
first task in the queue. The multi-processor task rearrangement
process works for dealing with scheduling holes to improve uti-
lization.Many approaches can be adopted in this process, including
first fit, easy backfilling [18], and conservative backfilling [18].

To evaluate the proposed OWM, we developed a simulator
using discrete-event based techniques for experiments. A task-
waiting queue and an event queue keep the tasks and events for
processing. The grid environment is assumed to consist of several
dispersed clusters, each containing a specific amount of processors.
A workflow is represented by direct acyclic graph (DAG). A series
of simulation experiments were conducted and the results show
that OWM has better performance than RANK_HYBD [19] and
Fairness_Dynamic based on the Fairness (F2) [20] in handling
online workflows. For workflows composed of data-parallel tasks,
the experimental results show that OWM(FCFS) performs almost
equally to OWM(conservative), and outperforms OWM(easy) and
OWM(first fit).

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 presents the OWM approach.
Section 4 presents the experiments and discusses the results.
Section 5 concludes the paper.

2. Related work

In the past years, most works dealing with workflow schedul-
ing [9–17,21] were restricted to a single workflow application.
Recently, some works [19,20,22–24] began to discuss the issue of
multipleworkflow scheduling. Zhao et al. [20] envisaged a scenario
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that need to schedule multiple workflow applications at the same
time. They proposed two approaches: composition approach and
fairness approach.

(1) The composition approach merges multiple workflows into a
single workflow first. Then, list scheduling heuristic methods,
such as HEFT [13] and HHS [17], can be used to schedule the
merged workflow.

(2) The main idea of the fairness approach is that when a task
completes, it will re-calculate the slowdown value of each
workflow against other workflows and make a decision as to
which workflow should be considered next.

The composition and the fairness approaches are static algo-
rithms and not feasible to deal with online workflow applications,
i.e. multiple workflows come at different times. RANK_HYBD [19]
is designed to deal with online workflow applications submitted
by different users at different times. The task scheduling approach
of RANK_HYBD sorts the tasks inwaiting queue using the following
rules repeatedly.

(1) If tasks in waiting queue come from multiple workflows, the
tasks are sorted in ascending order of their rank value (ranku)
where ranku is described in HEFT [13];

(2) If all tasks belong to the sameworkflow, the tasks are sorted in
descending order of their rank value (ranku).

However, the number of processors to be used by each task
is limited to a single processor. It is not feasible to deal with
workflows composed of data-parallel tasks. T. N’takpe’ et al.
proposed a scheduling approach for mixed parallel applications on
heterogeneous platforms [25]. Mixed parallelism is a combination
of task parallelism and data parallelismwhere the former indicates
that an application has more than one task that can execute
concurrently and the latter means a task can run using more than
one resource simultaneously.

The scheduling approach in [25] is only suitable for a sin-
gle workflow. T. N’takpe’ et al. further developed an approach to
deal with concurrent mixed parallel applications [26]. Concurrent
scheduling formixed parallel applications contains two steps: con-
strained resource allocation and concurrent mapping. The former
aims at finding an optimal allocation for each task. The number of
processors is determined in this step. The latter prioritizes tasks of
workflows. However, the approach in [26] is restricted to concur-
rent workflows submitted at the same time. It is infeasible to deal
with onlineworkflows submitted at different times. TheOWMpro-
posed in this paper is designed to deal withmultiple onlinemixed-
parallel workflows that previous methods cannot handle well.

3. Online workflow management in grid environments

This section presents the Online Workflow Management
(OWM)approachproposed in this paper formultiple onlinemixed-
parallel workflow applications. Fig. 1 shows the structure of
OWM . In OWM , there are four processes: Critical Path Workflow
Scheduling (CPWS), Task Scheduling, multi-processor task rear-
rangement and Adaptive Allocation (AA), and three data struc-
tures: online workflows, a grid environment and a waiting queue.
The processes are represented by solid boxes, and the data struc-
tures are represented by dotted boxes.

When workflows come into the system or tasks complete suc-
cessfully, CPWS , takes the critical path in workflows into account,
and submits the tasks of online workflows into the waiting queue.
The task scheduling process in OWM adopts the RANK_HYBD
method in [19]. In RANK_HYBD, the task execution order is sorted
based on the length of tasks’ critical path. If all tasks in the wait-
ing queue belong to the same workflow, they are sorted in the
descending order. Otherwise, the tasks in different workflows are
A1

A2 A3

B1

B2 B3 B4

B5A4 A5

Fig. 1. Online workflow management (OWM).

sorted in the ascending order. In parallel task scheduling, there
may be some scheduling holes which are formed when the free
processors are not enough for the first task in the queue. Themulti-
processor task rearrangement process inOWM works forminimiz-
ing holes to improve utilization Several techniques might be used
in the process including first fit, easy backfilling [18], and conser-
vative backfilling [18] approaches. When there are free processors
in the grid environment, AA takes the first task (the highest prior-
ity task) in the waiting queue, and selects the required processors
to execute the task.

A task in a workflow has four states: finished, submitted, ready
and unready. A finished task means the task has completed its
execution successfully. A submitted task means the task is in the
waiting queue. A task is readywhen all necessary predecessor(s) of
the task have finished, otherwise, the task is unready. Workflow
scheduling in RANK_HYBD [19] is straightforward. It simply
submits the ready tasks into the waiting queue and we call it
SimpleWorkflow Scheduling (SWS) hereafter in this paper. On the
other hand, in our OWM, when a new workflow arrives, CPWS is
adopted to calculate ranku of each task in the workflow and sort
the tasks in descending order of ranku into a list. The list is named
the critical path list. Here, ranku is the upward rank of a task [13]
which measures the length of critical path from a task ti to the exit
task. The definition of ranku is as below

ranku(ti) = wi + max
tj∈succ(ti)

(ci,j + ranku(tj))

where succ(ti) is the set of immediate successors of task ti, ci,j is
the average communication cost of edge (i, j), andwi is the average
computation cost of task ti. The computation of a rank starts from
the exit task and traverses up along the task graph recursively.
Thus, the rank is called upward rank, and the upward rank of the
exit task texit is

ranku(texit) = wexit .
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The systemmaintains an array List[] and List[workflowi] points
to the critical path list of workflowi. According to the order in each
critical path list, CPWS continuously submits the ready tasks in the
list into the waiting queue until running into an unready task. The
details of CPWS are described in Algorithm 1.

Figs. 2 and 3 show the difference between SWS and CPWS . Fig. 2
shows an example of SWS . Black nodes are finished tasks, i.e., A1,
A2, B1 and B3. White nodes are ready tasks, i.e., A3, A4, B2 and B4.
White nodes with dotted lines are unready tasks, i.e., A5 and B5.
SWS submits all ready tasks into the waiting queue, i.e., A3, A4, B2
and B4. Fig. 3 shows an example of CPWS . The critical path list of
each workflow is sorted in descending order of ranku. The critical
path list for workflow A is A1 → A2 → A3 → A5 → A4 and the
critical path list for workflow B is B1 → B3 → B4 → B5 → B2.
A1, A2, B1 and B3 have been finished. A3, A4, B2 and B4 are ready.
A5 and B5 are unready. According to the order in the critical path
lists, CPWS submits tasks A3 and B4.

The following presents the Adaptive Allocation (AA) process. To
better describe the process, we define the following quantities:

• The Estimated Computation Time ECT(t, p) is defined as the
estimated execution time of task t on processor group p.

• The Estimated File Communication Time EFCT(t, p) is defined
as the estimated communication time required by task t on
processor group p to receive all necessary files before execution.

• The Estimated Available Time EAT(t, p) is defined as the
earliest time when processor group p has a large enough time
slot to execute task t .

• The Estimated Finish Time EFT(t, p) is defined as the
estimated time when task t completes on processor group p:

EFT (t, p) = EAT (t, p) + ECT (t, p) + EFCT (t, p).

The main idea of AA is described below:

(1) When the number of clusters that can immediately execute the
first task is 1, said Ci, AA first finds the cluster, said Cj, with the
earliest estimated available time among other clusters. If the
estimated finish time of the first task on Cj is earlier than that
on Ci, the task will be kept in the waiting queue. Otherwise, AA
allocates the task to Ci for immediate execution.

(2) When the number of clusters that can accommodate the
highest priority task is larger than 1, AA allocates the highest
priority task to the cluster that has the earliest estimated finish
time.
The details of AA are described in Algorithm 2. When there
are free processors and the waiting queue contains at least one
task, AA selects the first tasks and follows the above allocation
rules. In parallel task scheduling, if the number of free processors
is not enough for a task, the idle processors become a scheduling
hole. To overcome this problem, we perform multi-processor
task rearrangement to minimize the scheduling hole as shown
in lines 4–5. The techniques which can be applied in multi-
processor task rearrangement include first fit, easy backfilling [18]
and conservative backfilling [18]. The first fit approach allocates
the first waiting task that can fit into the scheduling hole. The
conservative backfilling approachmoves tasks forward only if they
do not delay previous tasks in the queue. The easy backfilling
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Fig. 2. An example of SWS .
Fig. 3. An example of CPWS .
approach is more aggressive and allows tasks to skip ahead
provided they do not delay the job at the head of the queue [18].
Lines 25–31 show a function (allocateNumberOfClusters(R, ti)). It
returns the number of clusters that can accommodate the first task.
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Fig. 4. A grid environment.
If the function returns 1, the steps in lines 8–16 work for rule 1
described previously. If the function returns a number larger than
1, the steps in lines 17–22 work for rule 2.

4. Simulation environments

We developed a software simulator to conduct a series of
simulation experiments for evaluating the scheduling performance
of OWM in a multi-cluster grid environment. In the simulator,
a workflow application is represented by a direct acyclic graph
(DAG). A DAG is defined as G = (V , E), where V is a set of
nodes, each representing a task, and E is the set of links, each
representing the computation precedence order between two
tasks. For example, a link (x, y) ∈ E represents the precedence
constraint that task tx must completes before task ty starts.

In the simulator, a grid is assumed to be composed of several
clusters. A cluster contains an amount of processors. The grid
is heterogeneous in that the processors at different clusters
might run at different speed. On the other hand, each cluster is
homogeneous, consisting of identical processors. The cost for a
task includes computation and communication costs where the
former means the execution time, and the latter means the data
transfer time between processors. The computation cost of a task
is the same for different processors in the same cluster, but may
be different in different clusters. The communication cost between
any two processors in the same cluster is set to be zero, but not in
different clusters. Fig. 4 shows an example of a grid environment
in our simulator. The processor speeds and network link speeds
are homogeneous in the same cluster, but they are heterogeneous
between different clusters.

In the simulator, we implemented a DAG_Generator module
responsible for generating inputworkload consisting of a sequence
of DAGs in their arrival order. The attributes and operations in
DAG_Generator are described as follows.

Attributes:

1. Node: the number of tasks in a DAG.
2. Shape: the shape of a DAG.
3. OutDegree: the maximum of out degree of tasks in a DAG.
4. CCR: communication cost to computation cost ratio.
5. BRange (β): distribution range of computation cost of tasks

on processors. It is the heterogeneous factor for processor
speeds. A high range indicates significant differences in task’s
computation costs among the processors and a low range
indicates that the expected execution time of a task is almost
the same on each processor.

6. WDAG: the average computation cost of a DAG.
7. Cluster: the number of clusters in a grid environment.

Operations:
1. Generator(): randomly generates aDAGaccording to the 7 input

parameters mentioned above. It invokes ShapeGenerator(),
RelationGenerator(), CostGenerator() in turn.

2. ShapeGenerator(Node, Shape): generates the shape of a DAG
using the Node and Shape parameters. The height (depth) of a
DAG is randomly generated from a uniform distribution with
themean value equal to

√
Node/Shape. The width for each level

is randomly generated from a uniform distribution with the
mean value equal to Shape×

√
Node. If Shape >> 1, it generates

a shorter graph with a high parallelism degree. Otherwise, if
Shape << 1, it generates a longer graph with a low parallelism
degree.

3. RelationGenerator(Node, OutDegree): generates the connect
relation of a DAG according to the input parameters Node
and OutDegree defined above. Out degree of each task is
randomly generated from a uniform distributionwith the range
[1,OutDegree].

4. CostGenerator(Node, BRange, WDAG, Cluster, CCR): generates
the computation cost and the communication cost of a DAG. The
average estimated computation cost of each task tx, i.e., wx is
randomly generated from a distribution ranged [1, 2×WDAG].
The estimated computation cost of each task tx on each cluster
Cy, i.e., wx,y is randomly generated from a uniform distribution
with the range:

wx × (1 − BRange/2) ≤ wx,y ≤ wx × (1 + BRange/2).

5. Experimental results

This section presents the simulation experiments used to eval-
uate the proposed OWM approach and discuss the experimental
results. The performance metrics used in our experiments are de-
scribed below:
• makespan: the time between submission and completion of a

workflow, including execution time and waiting time.
• Schedule Length Ratio (SLR): makespan usually varies widely

among workflows with different sizes and other properties.
To measure the scheduling efficiency objectively, we can
use another performance metric derived from the makespan,
which calculates the ratio of a workflow’s makespan over the
best possible schedule length in a given environment. The
performance is called the Schedule Length Ratio (SLR) and
defined by SLR =

makespan
CPL where CPL represents the Critical

Path Length of a workflow. SLR is not sensitive to the size of
a workflow.
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(a) RANK_HYBD. (b) Fairness_Dynamic. (c) OWM.

Fig. 5. The difference between RANK_HYBD, Fairness_Dynamic and OWM.
• win (%): used for the comparison of different algorithms. For
a workflow, one of the algorithms has the shortest makespan.
The win value of an algorithm means the percentage of the
workflows that have the shortestmakespanwhen applying this
algorithm. From users’ perspective, a higher win value leads to
a higher satisfaction.
In the following experiments, we compare OWM with two

other approaches: RANK_HYBD and Fairness_Dynamic . To better
clarify the differences between these three approaches, we
partition the complete scheduling process into three components,
workflow scheduling, task scheduling and allocation approaches.
Fig. 5 describes these three approaches according to the three
components. RANK_HYBD [19] is shown in Fig. 5(a). The Fairness
approach (F2) in [20] is a static algorithm and cannot deal with
online workflows. In the following experiments, we modify the
Fairness (F2) approach to handle online workflows by replacing
the original workflow scheduling and allocation approaches in
this approach with SWS and SA respectively. We call this new
approach Fairness_Dynamic in Fig. 5(b). Here, SWS stands for
Simple Workflow Scheduling , which simply submits each ready
task into the waiting queue, and SA represents Simple Allocation,
which selects the highest priority task and allocates it to the free
processor group that has the earliest estimated finish time.

To experiment with different workload characteristics, we use
the following parameters to generate different types of workflows.
A workflow is represented as a Directed Acyclic Graph (DAG).
• Node = {20, 40, 60, 80, 100}
• Shape = {0.5, 1.0, 2.0}
• OutDegree = {1, 2, 3, 4, 5}
• CCR = {0.1, 0.5, 1.0, 1.5, 2.0}
• BRange = {0.1, 0.25, 0.5, 0.75, 1.0}
• WDAG = 100–1000.

The values of these parameters are randomly selected from the
corresponding sets given above for each DAG. The arrival interval
value between DAGs is set based on a Poisson distribution. Each
experiment involves 20 runs, and each run has 100 unique DAGs
in a grid environment that contains 3 clusters each containing
30 ∼ 50 processors respectively.

In the experiment, we also take other factors into account:
the distribution of tasks’ computation cost (Wi_DisType) and the
computation intensity of a workflow represented by CCR (compu-
tationIntensity). The average computation cost of each task is ran-
domly generated from a probability distribution within the range
[1, 2 × WDAG]. We experimented with both a uniform distribu-
tion and an exponential distribution for the tasks’ computation
cost. CCR is randomly selected from the set {0.1, 0.5, 1.0, 1.5, 2.0}.
For computation-intensive workflows, CCR is randomly selected
form the set {0.1, 0.5}, and for communication-intensive work-
flows, CCR is randomly selected from the set {1.5, 2.0}.
Fig. 6. Results of different mean arrival intervals for average makespan.

5.1. Impact of arrival interval of workflows

Figs. 6–8 show the results of different mean arrival intervals ac-
cording to different performancemetrics: averagemakespan, aver-
age SLR andwin (%) respectively. It can be easily seen thatwhen the
system is more crowded, i.e., smaller arrival interval in the figures,
OWM outperforms the other two algorithms significantly. When
all DAGs are submitted at the same time, i.e., the zero arrival in-
terval in the figures, OWM outperforms Fainess_Dynamic by 26%
and 49%, and outperformsRANK_HYBD by 13% and 20% for average
makespan and average SLR respectively, as shown in Figs. 6 and 7.
Fairness_Dynamic has poor performance for average SLR, because
it achieves fairness by the cost of enlarging the makespan of the
workflowswith shorter critical path length.OWM wins in terms of
makespan in 94.55% of workflows as shown in Fig. 8. From a users’
perspective, it means that 94.55% users may prefer OWM . When
workflows arrive at an interval about 400 time units, these three
algorithms perform almost equivalently for averagemakespan, av-
erage SLR andwin (%) because oneworkflow almost comes in after
another one finishes. In real environments,most high-performance
centers are overloaded, therefore OWM can outperform others in
such environments.

5.2. Impact of computation intensity with different distributions of
tasks’ computation cost

Figs. 9–11 show the results of different levels of computa-
tion intensity for average makespan, average SLR and win (%), re-
spectively, with a uniform distribution of tasks’ computation cost.
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Fig. 7. Results of different mean arrival intervals for average SLR.

Fig. 8. Results of different mean arrival intervals for win (%).

Fig. 9. Results of different computation intensity for average makespan with a
uniform distribution of tasks’ computation cost.

Figs. 12–14 show the results with an exponential distribution of
tasks’ computation cost. In these experiments, the arrival interval
of workflows is set according to a Poisson distribution with the
mean value of 20. It represents a situation that several workflows
may be simultaneously running in the system. Obviously, OWM
outperforms the other two algorithms. The superiority of OWM
over the other twomethods is that it consistently achieves the best
performance for all types of workflows.
Fig. 10. Results of different computation intensity for average SLR with a uniform
distribution of tasks’ computation cost.

Fig. 11. Results of different computation intensity for win (%) with a uniform
distribution of tasks’ computation cost.

Fig. 12. Results of different computation intensity for average makespan with an
exponential distribution of tasks’ computation cost.

In Fig. 9,OWM outperforms Fairness_Dynamic by 23%, 22% and
27%, and outperforms RANK_HYBD by 12%, 17% and 11% in terms
of average makespan for general, computation, and communica-
tion intensive workflows respectively. In Fig. 10, OWM outper-
forms Fairness_Dynamic by 44%, 45% and 45%, and outperforms
RANK_HYBD by 16%, 19% and 14% in terms of SLR for general, com-
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Fig. 13. Results of different computation intensity for average SLR with an
exponential distribution of tasks’ computation cost.

Fig. 14. Results of different computation intensity for win (%) with an exponential
distribution of tasks’ computation cost.

putation, and communication intensive workflows respectively.
OWM wins in terms of makespan by about 82% for all the three
types of workflows as show in Fig. 11.

In Fig. 12, OWM outperforms Fairness_Dynamic by 17%, 14%
and 20%, and outperforms RANK_HYBD by 16%, 20% and 15% in
terms of average makespan for general, computation, and com-
munication intensive workflows respectively. In Fig. 13, OWM
outperforms Fairness_Dynamic by 24%, 20% and 26%, and outper-
formsRANK_HYBD by 20%, 23% and 18% in terms of average SLR for
general, computation, and communication intensiveworkflows re-
spectively. OWM wins in terms of makespan by about 72% for all
the three types of workflows as shown in Fig. 14.

5.3. Impact of the number of clusters

The following investigates the effects of the number of clusters
in a grid environment. In the experiment, the grid environment is
composed of 120 processors, and divided equally into a different
number of clusters, 2, 4, 6, 8, 10 and 12, for each test case.
We assume that the arrival interval of workflows conforms
to the Poisson distribution with the mean value of 20. The
results of the following figures indicate that OWM performs the
best in all amounts of clusters. In average, OWM outperforms
Fairness_Dynamic by 22%, and outperforms RANK_HYBD by
11% in terms of average makespan as shown in Fig. 15.
OWM outperforms Fairness_Dynamic by 48%, and outperforms
Fig. 15. Results of different numbers of clusters for average makespan.

Fig. 16. Results of different numbers of clusters for average SLR.

Fig. 17. Results of different numbers of clusters for win (%).

RANK_HYBD by 15% in terms of average SLR as shown in Fig. 16.
OWM wins in terms ofmakespan by about 82% as shown in Fig. 17.
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Fig. 18. Results of inaccurate execution time estimates for average makespan.

Fig. 19. Results of inaccurate execution time estimates for average SLR.

5.4. Impact of inaccurate execution time estimates

The execution time of each task on a specific processor is neces-
sary information for workflow scheduling algorithms. In practice,
the execution time of a task is usually difficult to know before the
execution completes. Therefore, the estimated execution timeused
in scheduling algorithms is not precise. The following experiments
investigate the effects of inaccurate estimation of task execution
time. The simulator picks the actual execution time of a task ran-
domly from the range:[
1,


et + 2 ×

uncertainty
100

× et
]

where et is the estimated execution time of the task. For example,
when the uncertainty is 400 and et of a task is 100, the actual exe-
cution time of the task is randomly picked from the range: [1, 900].
We also assume that the arrival interval of workflows conforms
to the Poisson distribution with the mean value of 20. Figs. 18–20
show the results of inaccurate execution time estimates for aver-
age makespan, average SLR and win (%) respectively. It can be eas-
ily observed that OWM outperforms the other two algorithms for
the uncertainty levels from 50% to 400%. In average, OWM outper-
forms Fairness_Dynamic by 19%, and outperforms RANK_HYBD
by 8% for average makespan as shown in Fig. 18; OWM outper-
forms Fairness_Dynamic by 38%, and outperforms RANK_HYBD
by 12% for average SLR as shown in Fig. 19. OWM wins in terms
of makespan by about 74% as shown in Fig. 20. These results indi-
cate that OWM is more resilient to inaccurate estimation of task
execution time than the other methods.
Fig. 20. Results of inaccurate execution time estimates for win (%).

5.5. Results for workflows composed of data-parallel tasks

In this section, we compare different multi-processor task re-
arrangement processes, including first fit, easy backfilling [18]
and conservative backfilling [18], with the basic FCFS (First Come
First Serve) approach. The FCFS approach does not try to choose
among waiting tasks to fit the scheduling hole. In the following
experiment, OWM(FCFS), OWM(conservative), OWM(easy) and
OWM(first fit) stand for FCFS, conservative backfilling, easy back-
filling and first fit approaches respectively.

The experimental setups for data-parallel tasks are the same
as that for single-processor tasks, but each run has 50 unique
workflows. To be more realistic, the maximal required processors
of all tasks (maxTaskNP) and the distribution of the processors
that tasks require (NP_DisType) are taken into account. In the
experiment, maxTaskNP is defined with maximum, half and
minimum.

• maxTaskNP is maximum: maxTaskNP = the number of proces-
sors in the smallest cluster in the grid’s environment.

• maxTaskNP is half: maxTaskNP = 1/2 × the number of
processors in the smallest cluster in the grid’s environment.

• maxTaskNP is minimum: maxTaskNP = 1/5 × the number of
processors in the smallest cluster in the grid’s environment.

The required processors of each task is randomly generated
from a probability distribution within the range [1,maxTaskNP].
The experiment was conducted with uniform distribution, expo-
nential distribution and normal distribution for NP_DisType.

Each experiment is configured by the following four parame-
ters. Their values are assigned from the corresponding sets below:

• Wi_DisType = {uniform, exponential}
• maxTaskNP = {maximum, half, minimum}
• NP_DisType = {uniform, exponential, normal}
• computationIntensity = {general, computation, communica-

tion}.

The combinations of the above parameter values give 54 dif-
ferent experiments. These 54 experiments lead to an interesting
observation forworkflow scheduling. In independent task schedul-
ing, it iswell known that the FCFS approach hasworse performance
than conservative backfilling [18], easy backfilling and first fit
approaches. However, for workflow scheduling, the experiments
show thatOWM(FCFS) is almost equal toOWM(conservative), and
outperformsOWM(easy) andOWM(first fit) for averagemakespan
and average SLR. Moreover, it outperforms the other three
approaches for win (%). The results indicate that that when the
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Fig. 21. Results of different computation intensity for average makespan with
(uniform, min, uniform).

Fig. 22. Results of different computation intensity for average SLR with (uniform,
min, uniform).

waiting tasks are rearranged by the multi-processor task rear-
rangement process, it does not result in better performance as ex-
pected. The following example helps to explain the reason. The
tasks in the waiting queue are sorted by their critical path in as-
cending order. Suppose that aworkflow is near completion, and the
last task in theworkflowwill get the highest priority in thewaiting
queue. If the task cannot be allocated due to the lack of free pro-
cessors, the multi-processor task rearrangement process will find
a waiting task to fit the scheduling hole. The above rearrangement
technique may make the last task wait for a long time, and it in
turn increases the makespan of the workflow. So, the performance
may be reduced correspondingly. Therefore, frequent task rear-
rangement may contrarily lead to poor performance. For example,
OWM(first fit) has the highest frequency of task rearrangement,
and results in the worst performance in the experiments.

All the 54 experiments give the same trend of performance
results. Figs. 21–23 are an example among the 54 experiments
and show the results of different computation intensity for
average makespan, average SLR and win (%) respectively, with
Wi_DisType = uniform, maxTaskNP = min, and NP_DisType =

uniform.
Fig. 23. Results of different computation intensity for win (%) with (uniform, min,
uniform).

6. Conclusions

Most workflow scheduling algorithms are restricted to handle
only one single workflow. There are few researches for scheduling
online workflows. In the paper, we propose an online workflow
management (OWM) approach for scheduling multiple online
mixed-parallel workflows in a grid environment. Our experiments
show thatOWM outperformsRANK_HYBD and Fairness_Dynamic
for average makespan, average SLR and win (%) under different
experimental workloads.

Moreover, RANK_HYBD and Fairness_Dynamic do not work
with mixed-parallel workflows composed of data-parallel tasks.
There are few studies focused on mixed-parallel workflow
scheduling. Our OWM takes this issue into account. OWM incor-
porates well-known approaches, e.g. first fit, easy backfilling and
conservative backfilling, to deal with the allocation issue for work-
flows composed of data-parallel tasks.
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