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Abstract In this paper, we present a new approach to n-person games based on the
Habitual domain theory. Unlike the traditional game theory models, the constructed
model captures the fact that the underlying changes in the psychological aspects
and mind states of the players over the arriving events are the key factors, which
determine the dynamic process of coalition formation. We introduce two new con-
cepts of solution for games: strategically stable mind profile and structurally stable
mind profile. The theory introduced in this paper overcomes the dichotomy of non-
cooperative/cooperative games, prevailing in the existing game theory, which makes
game theory more applicable to real-world game situations.

Keywords Habitual domains · Games · Coalition formation · Markov chains

1 Introduction

In [1–3], we have introduced the second-order games. These games are based on
the theory of Habitual Domains [4–8] and Markov chain theory [9]. Second-order
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games extend and generalize the normal (strategic) form games [10–14] in many
important aspects: (i) normal form games are based on more or less fixed sets of
strategies, while second-order games involve habitual domains of players instead of
an explicit set of strategies; (ii) in normal form games it is assumed that each player
have a payoff function, and know the payoff function of the others, and solutions are
formulated based on strategies and payoffs; while second-order games do not involve
a payoff function, rather they are based on states of mind of players; (iii) normal form
games ignore both the interactions among players and between the players and the
environment, that take place during the game, and cannot accommodate changes in
the structure of the game, while second-order games adapt the structure of the game to
the arriving events and the interaction among players and their psychological states.

In [1–3], we have analyzed two-person games only. In the present paper, we for-
mulate n-person second-order games. In the framework of second-order games, there
is no dichotomy cooperative (characteristic function)/ non-cooperative (normal form)
games as in the existing game theory [10]. These games can accommodate cooper-
ation and non-cooperation periods during the same game. In addition to the aspects
related to normal form games mentioned in (i)–(iii) above, second order games gen-
eralize cooperative games in many aspects: (a) cooperative games involve a charac-
teristic function, whereas second-order games involve habitual domains and states
of minds of players; (b) in cooperative games, solutions are formulated in terms of
imputations, while in second-order games solutions are formulated in terms of states
of minds of players; (c) cooperative games ignore the coalition formation process
during the game, while second-order games accommodate the interaction between
players and capture the dynamics of coalition formation. This is a considerable de-
parture from existing game theory [10]. In fact, second order games are a paradigm
shift in game theory.

This paper is organized as follows: Sect. 2 presents briefly the HD theory and some
examples, showing the importance of psychological aspects in n-person games, par-
ticularly, the coalition formation. Section 3 is devoted to the formulation of n-person
games in terms of the states of mind of players by HD theory and Markov chains the-
ory. We introduce the concepts of [t1, t2]-strategically stable and [t1, t2]-structurally
stable profiles. In Sect. 4, we estimate the average number of steps needed to reach
a strategically stable profile, when it is possible. Section 5 provides a sufficient con-
dition for the convergence of the transition probability matrices of the game to some
constant transition probability matrices. Moreover, sufficient conditions for the con-
vergence to a strategically stable profile are provided. Section 6 concludes the paper.

2 Preliminaries

In this section, we illustrate the importance of psychological aspects in games and
briefly present the Habitual Domain theory (HD).

2.1 Importance of Psychological Aspects in Coalition Formation

We show, through examples, the importance of considering the psychological aspects
in a coalition formation process.
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Example 2.1 In 1990, Synnex, an IT intermediate whole seller and other whole
sellers were competing. No retailer was fully satisfied because competition became
costly and dissatisfaction of customers increased as well. All the retailers would have
liked to move to a cooperative atmosphere, but they did not know how to achieve
it. Synnex came out with a great idea, which unified most of the retailers under its
leadership. In Example 3.1, we will explore this.

Example 2.2 Adam and his wife, Betty, used to have a peaceful life. Carol, a col-
league of Betty at work, became a friend of Betty. With time the friendship grew
stronger and stronger, and Betty often invited her new friend at her house to spend
some time. During Carol’s visits, a relationship developed between her and Adam
that Betty ignored. After some time, Betty discovered that Adam had an affair with
Carol. How did the game between Betty, Adam and Carol evolve? We will explore
this case in Example 3.2.

Examples 2.1–2.2 show clearly the importance of psychological aspects in a game
and in its coalition formation process. In fact, in these cases, the states of mind of
the players determine the coalition structure. The games in Examples 2.1–2.2 have
no formulation within the framework of traditional cooperative games or strategic
games, because the states of mind of players change over time according to arriving
events, which make the structure of the game dynamic. For instance, in the game
of Example 2.2, the relationship for Adam with respect to Betty changed gradually
from full cooperation to non-cooperation after Carol came into the game. Moreover,
the sets of strategies are not determined and the payoffs or utility functions or the
worth of the coalitions are not defined or very difficult to estimate in the dynamic
environment characterizing this example. In this paper, we will show how the game
situations of Examples 2.1–2.2 can be described and analyzed by second order games
as stochastic processes in the framework of Habitual Domain theory.

2.2 Habitual Domain Theory

In this section, because of space constraint, we briefly introduce the Habitual Do-
main Theory. For more details, we refer the reader to the books [4, 5, 7, 8] and the
papers [1, 6].

The collection of ideas and actions (including ways of perceiving, thinking, re-
sponding, acting, and memory) in our brain, together with their formation, dynamics,
and basis in experience and knowledge, is called our Habitual Domain (HD) [5].
Over time, unless extraordinary or purposeful effort is exerted, our HD will become
stabilized within a certain domain. This can be proved mathematically [4, 15]. As
a consequence, we observe that each of us has habitual ways of eating, dressing,
speaking, etc. Some individuals habitually emphasize economic gains, while others
pay attention to social reputation. Some habitually persist in their pursuit of goals,
while others change their objectives often. Some are habitually positive and opti-
mistic, while others are negative and pessimistic. Some habitually pay attention to
details, others only to generalities.

The concept of an individual’s HD can be extended to other living entities, such as
companies, social organizations, and groups in general. The following are the basic
elements of HD.
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(i) The potential domain (PD): the collection of ideas and actions that can poten-
tially be activated to occupy our attention.

(ii) The actual domain (AD): the set of ideas and actions that are actually activated
or occupy our attention.

(iii) The activation probabilities (AP): the probabilities that ideas or actions in PD
also belong to AD.

(iv) The Reachable Domain (RD): the set of ideas and actions that can be attained
from a given set in an AD.

Thus, the habitual domain can be formally formulated as

HDt = {PDt ,ADt ,APt ,RDt } (1)

where, t represents time. The theory of HD is based on eight hypotheses H1–H8:
(H1) Circuit Pattern Hypothesis, (H2) Unlimited Capacity Hypothesis, (H3) Ef-

ficient Restructuring Hypothesis, (H4) Analogy and Association Hypothesis, (H5)
Goal Setting and State Evaluation Hypothesis, (H6) Charge Structure and Attention
Allocation Hypothesis, (H7) Discharge Hypothesis, and (H8) Information Input Hy-
pothesis.

Note that, hypotheses H1–H4 describe how the brain functions and hypotheses
H5–H8 describe how the mind functions. For details on these hypotheses, we refer
the reader to [4, 7].

Remark 2.1 Clearly, an analysis of an n-person game, based on hypotheses H1–H8
and habitual domain (1), will capture more psychological aspects than the traditional
game theory does (see [12–14] and references therein). Most of aspects of hypotheses
H1–H8 are not considered in the traditional game theory framework. In fact, during
the game, most of the models of traditional game theory do not consider the psycho-
logical states of players and their changes. For example, if the players do not interact
among themselves and within the external world, they do not use hypothesis H8 at
all. H2 suggests that players have an unlimited capacity to learn if they are willing to.
According to H5, players have goal functions and an ideal state for each of them; they
continuously monitor where they are relative to the ideal states. According to H6, a
charge is a precursor of a mental force to action or inaction, which could lead to drive
or stress. In this paper, for the sake of simplicity, the charge structure will be called
charge level. At any point in time, we will pay attention to the event, which has the
most important influence on our charge level. The event or decision problem, with
the most significant charge, commands our attention at any given moment. When our
attention is allotted to an event, then we use the following modes of action to deal
with it: active problem solving or avoidance justification. The former tries to work
actively to move the perceived states closer to the ideal states (discharge H7); while
the later tries to rationalize the situation so as to lower the ideal states closer to the
perceived states. With active problem solving, charge is transferred to drive, while
with avoidance justification, charge may be reduced or transferred into stress.

2.3 Analysis of the Examples by Habitual Domain Theory

(i) In Example 2.1, the small retailers are competing for market share. All retailers
show somewhat non-cooperative behavior toward each other. A circuit pattern
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related to this behavior has formed in the brains of the retailers (H1). By goal
setting and state evaluation (H5), this behavior is perpetuated. With time, the
related circuit pattern in the brains of the retailers becomes stronger and they
are trapped in this behavior. Each player looks for his own interest only. In such
situations, coalitions with two retailers or more cannot be formed. If there is no
new arriving/future relevant event or effort exerted to change the game structure,
non-cooperative behavior will prevail among the retailers (H5).

(ii) In Example 2.2, a strong circuit pattern (H1) related to mutual love has formed
in the brains of Adam and Betty during their long life together. They formed
a strong coalition. When Carol started to come to their house, the relation be-
tween Betty and Carol was strong; thus, they formed a coalition. The degree of
attachment (coalition) between Betty and Carol is not as strong as that of Adam
and Betty. After some time, Adam and Carol felt attracted to each other and
a mutual emotional charge started to grow in both of them (H5 and H6). The
relation between Adam and Carol was getting stronger with time, while the re-
lation from Adam toward Betty was getting weaker. The relationship from Betty
toward Carol was stable, whereas the relationship from Carol toward Betty weak-
ened gradually. The event that Betty came to know that Adam had an affair with
Carol (H8), changed Betty’s mind (H3) and created a high level of charge (H6)
because many of her life goals including perpetuation of species and self esteem,
significantly deviated from their ideal level (H5), which required prompt action
(H6 and H7).

In the next section, we will see how the games of Examples 2.1–2.2 were solved
and how second-order games can accommodate such game situations.

3 Formulation of an n-Person Games in Terms of HD Theory

Let us consider a game situation involving n players: denoted by I = {1,2, . . . , n} the
set of players and by HDi = {PDi ,ADi , P i,RDi} for all i ∈ I . In order to simplify
the notations here, we have dropped the time in the expression of habitual domains
of players. In terms of HD theory, a state of mind of a player can be considered as a
collection of ideas or thoughts that could be activated from his potential domain PD to
his actual domain AD. It can also be considered as part of his reachable domain RD.
Hence, we will identify a state of mind of a player with its corresponding ideas or
thoughts in the potential domain of the player.

Remark 3.1 In traditional game theory [12–14], cooperation is based on utility, while
in second order games it is based on charge. A player tends to cooperates with an-
other player if he perceives or believes that this player can reduce his charge level
(discharge) or at least will not increase it; otherwise, he might show a behavior of
non-cooperation (see “Reciprocation Behavior ” [5, 7, 8]). The stronger the possibil-
ities of mutual release of charge (discharge), the better the cooperation between the
players and the stronger the willingness to form a coalition. This observation leads to
the concept of degree of cooperation (see Example 2.2)
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Let [0,L] be the period of time in which the game is considered.

Definition 3.1 Let i and j be two players. At a given time t , the degree of cooper-
ation of player i with player j is represented by a number, dij ∈ [−1,1], monoton-
ically, with “−1” being fully non-cooperative, and “1” fully cooperative. In general
dij being positive means i is cooperative with j , and negative means non-cooperative.

Remark 3.2 The number dij is the perceived feeling of discharge of player i with
respect to player j . In other words, dij is the degree of discharge (H7) that the player i

expects from player j at the given time t . When dij is positive, it means that player i

feels that player j can reduce his charge level, whereas when dij is negative, it means
that player i feels or believes that player j is hostile to him and he expects him
to increase his charge level. Note dij = 1 means extreme cooperation with respect
to player j, dij = 0 means neutrality with respect to player j and dij = −1 means
extreme hostility with respect to player j .

It is noteworthy that we may have dij �= dji . Thus dij may not be symmetric,
which means that the players i and j may not have the same perception about their
degrees of discharge with respect to each other. A player may sincerely cooperate
with another player, but the latter may show some signs of cooperation just to deceive
the former as we have seen in Example 2.2 between Betty and her husband Adam
after Carol came into the game. Also, a player may be sincere in his cooperation
with another player, but the latter may show non-cooperative behavior because he
perceives the behavior of the former as a threat for his goal functions.

As the states of mind of players determine the degree of their cooperation with
respect to the other players, the degree of cooperation of a player with respect to
another player reflects his state of mind with respect to this player. Hence, we will
use the degree of cooperation dij as a proxy for the state of mind of a player with
respect to another player.

In applications, a player could be hostile (non-cooperative) or friendly (coopera-
tive) to another player (two states of mind). If needed, the moods or states of mind
could be further decomposed or disaggregated into extremely hostile, hostile, neutral,
friendly and extremely friendly. The number of states of mind in almost all practical
cases is still finite, even if we further decompose (disaggregate) them. Therefore, we
have the following assumption.

Assumption 3.1 The number of states of mind of each player with respect to each of
the other players is finite for the game under consideration.

Definition 3.2 Player i ∈ I = {1,2, . . . , n} is in the state of mind g with respect to
another player j at time t , if g is activated from his potential domain PDi to his actual
domain ADi at time t . That is, g ∈ ADi at time t .

Assumption 3.2 At any point of time, the actual domain AD of each player contains
only one state of mind with respect to another player. That is, at any point in time,
only one state can be activated from the potential domain AP to the actual domain for
each of the other players.



J Optim Theory Appl (2011) 149: 447–473 453

This assumption reflects the fact that, at any moment, the actual domain (attention)
of each player with respect to another player is occupied by only one state of mind.

Without any loss of generality and for the sake of simplicity, we assume that each
player have the same set of states of mind with respect to each of the other players,
denoted by

T = {h1, h2, . . . , hl} ⊂ [−1,1].
Since the elements of T are the degrees of cooperation of a player with respect to
each of the remaining players, we assume that they are ranked from the weakest to
the strongest, as

−1 ≤ h1 ≤ h2 ≤ · · · ≤ hl ≤ 1.

Remark 3.3 In case the states of mind of a player be given in a nominal scale, then
a cardinal scale can be associated. For example, if the states of minds are hostility,
neutrality and cooperation, then one can associate the degrees of cooperation −1, 0,
and 1, respectively.

Definition 3.3 Let K be a subset of I , such that K �= ∅ and Card(K) ≥ 2. Let dij ,
i, j ∈ K, i �= j be the cooperation degrees between players of K at a given time t .
We define the coherence index of K at time t by

C(K) = Mini,j∈K,i �=j dij (2)

C(K) is a measurement of the potential that players in K , interacting among them-
selves, can form a coalition. When C(K) = hi , the interaction among players in K

is such that the coalition K can be formed with degree hi . When C(K) = hl , the
interaction among players in K is such that the coalition K can be formed with the
highest degree hl . When C(K) = h1, the interaction among players in K is such that
the coalition K can be formed at the weakest degree h1.

Let us explain the computation of the coherence index C(K) of a subset K of the
set of players on the game of Example 2.1. For the sake of simplicity, let us assume
that there are three players with Synex as Player I, the other two players are retailers,
denoted by Player II and Player III. Assume that each player has three possible states
of mind with respect to each of the other two players as Hostility (H), Neutrality (N)
and Cooperation (C). Let us assign degrees of cooperation to these three states from
the interval [−1,1], for example −1, 0 and 1 for H, N and C respectively. Then we
obtain T = {h1, h2, h3} = {−1,0,1}.

Consider the set of all players K = I = {I, II, III}. Let us compute C(K), the
coherence index of K . Assume that dI,III = 0 and dI,II = 0, that is, Player I is
neutral to Player II and Player III; dIII,I = 0 and dII,I = 0, that is, Player II and
Player III are also neutral with respect to Player I; dIII,II = −1, dII,III = −1, i.e.
Player II and Player III are hostile to each other. From formula (2), we get C(K) =
Min{dI,III, dIII,I , dI,II, dII,I , dII,III, dIII,II} = Min{0,0,0,0,−1,−1} = −1.
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The coherence index of K = {I, II, III} is −1, which means that at least one of
the players in K is hostile to another player. Since the coherence index of K is ex-
tremely weak, it is very difficult for players in K to form a coalition. We have also
C({I, II}) = 0, C({I, III}) = 0 and C({II, III}) = −1 with similar interpretation.

Remark 3.4 In case the cooperation degree dij is available for all i and j , one can
use other types of aggregation of the cooperation degrees than (2) with necessary
changes. For instance, the average

C(K) =
∑

i,j∈Q

dij

Card(Q)

where Q = {(i, j) ∈ K × K, i �= j}, or the maximum value

C(K) = Max(i,j)∈Qdij

or the median, which is the middle value of the set {dij /(i, j) ∈ Q}, after ordering
the dij values from the smallest to the largest.

In this paper we will use the definition given in (2) for C(K).
We assume that the degree of cooperation of a player with himself be 1, i.e. dii = 1

for all i ∈ I = {1,2, . . . , n}. Therefore, we will not consider subsets consisting of one
player. Thus, we will focus on the set of subsets of players

� = {K/K ⊂ I,K �= ∅ and Card(K) ≥ 2}.
Moreover, it happens often that, in a game some subsets of players are irrelevant
or do not deserve any attention. For instance, in Example 3.2, the subset {Adam,
Carol} was irrelevant to the game in the period before Carol became a close friend of
Betty’s. Therefore, when we analyze games, we will focus only on relevant coalitions.
Formally, an irrelevant coalition or subset of players can be defined as follows.

Definition 3.4 A subset K of players is said to be irrelevant to the game if

dij = 0, for all i ∈ K,j ∈ K\(i)
That is, no player in K has a tendency to cooperate or to be hostile to any other player
in K .

We denote by R(�, t) = {K/K ∈ �, K relevant to the game situation at time t},
the set of relevant coalitions to the game at time t . Note that the determination of
irrelevant coalitions may be difficult in real-world games. In this paper we do not deal
with this research problem, assuming that at any time the set of relevant coalitions can
be identified.

Definition 3.5 At any time t , the set {C(K),K ∈ R(�, t)} is called coalition coher-
ence structure of the game at time t .
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Note that, if some player brought new and relevant ideas from his potential domain
to his actual domain as to cause the change of the mood towards cooperation among
players in K , then the coherence index of K will be changed from one state to another.
Note also that for each subset K ∈ R(�, t), the transition from a state (coherence
index) hu to another state hv could be probabilistic.

Shifting from hu to hv depend on the interaction among players in K , arriv-
ing events, and on how the coherence index C(K) of coalition K is defined (see
(2) and Remark 3.4) at time t . We discuss the case of the formula (2), the other
cases mentioned in Remark 3.4 can be discussed similarly. Assume that hu < hv and
C(K) = hu at time t , according to (2), the subset K shifts to hv at some later time t ′
if dij ≥ hv for all i, j ∈ K, i �= j and the equality holds for at least one pair of play-
ers (i′, j ′). This means that the cooperation degree of each of the players in K with
respect to all the remaining players in K has increased to or maintained at a level at
least equal to hv and at least one player is exactly at the degree hv with respect to
some other player. In case C(K) = hv at time t , shifting from hv to hu at some later
time t ′ occurs when the cooperation degree of at least one player drops from hv to
hu with respect to another player and the other cooperation degrees do not drop be-
low hu. Any arriving relevant event or information may trigger the process of change
in the degree of cooperation among the players of K .

Since the activation of ideas from PD to AD is probabilistic, so are the arriving
events, the shifting from hu to hv can be assumed to be probabilistic. Thus, we can
formulate the evolution of the cooperation state among the players of the subset K as
a stochastic process {Xm,m = 0,1,2, . . .} with a finite number of states (cooperation
degrees) T = {h1, h2, . . . , hl}.

Now let us define the transition probability from any state to any other state. Given
that a state hu is activated at the present step, the probability that a state hv will be
brought to the actual domain in the next step is given by the conditional probabil-
ity (PK)huhv .

Remark 3.5 In practice, the probability (PK)huhv can be evaluated by two ways. The
first one is by subjective evaluation (by players or/and experts) through (2); the sec-
ond one is by frequency approach i.e. the frequency of activation of the state hv if the
present state is hu, when the game is repeated a certain number of times.

In order to increase the transition probability (PK)dudv from hu to hv , the players
in K or external players could use the techniques of restructuring game described
in [2, 6, 8] to create charge for moving to the state hv including: (a) expansion and
enrichment of HDs of players, (b) effective suggestion of new ideas to catch the
players’ attention, and (c) effective integration of the new ideas with the core of the
HDs of players.

Assumption 3.3 The state of the process in the next step depends only on the state
of the process in the present step i.e.

P
(
Xp+1 = hqp+1/Xp = hqp ,Xp−1 = hqp−1 , . . . ,X

0 = hq0

)
= Phqp+1hqp
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Assumption 3.3 may be justified as follows. According to HD theory [4], unless
extraordinary events occur or a special effort is exerted, the activation probability of
ideas and actions stabilizes over time. Thus, when there is no occurrence of an extra-
ordinary event nor a special effort is exerted by players to restructure the game, we
may assume that the transition probability of the processes has the Markov property.

Assumption 3.3 implies that the evolution of coherence index of coalition K can
be considered as a Markov chain with a finite number of states. Hence, the results of
Markov chain theory can be used to study the evolution of the considered game. The
matrix

PK = ((PK)hi ,hj
)hi ,hj ∈T

is the transition probability matrix of the process with respect to coalition K . It is a
stochastic matrix that describes the coherence index of K with respect to the game
situation. According to HD theory, it tends to be stable, but it is subject to changes
over time when some new relevant idea or event arrives or some effort is exerted by
players in K .

Thus, the game can be represented by the following model

〈
I, {{HDi}i∈I }, {H1–H8}, S, {PK}K∈R(�,t)

〉
(3)

where H1–H8 describe the dynamics and interaction of HDs of the players, S is
the profile space of the game. The space S is defined as follows. Denoted by r

the cardinality of the set of relevant subsets R(�, t), that is, r = Card(R(�, t)).
Then S = T × T

r times
×· · · × T = T r . A generic element s of S is denoted by

s = (sK)K∈R(�,t), where each subset K ∈ R(�, t) is represented by its coherence
index state C(K) = sK ∈ T . In fact, each profile underlines a coalition coher-
ence structure among the players and vice-versa. Indeed, we have the equivalence
s = (sK)K∈R(�,t) ∈ S ⇔ (C(K) = sK)K∈R(�,t). Thus, the profile space S is the set
of coalition coherence structures of the game.

For instance, in the game of Example 2.1 before Carol started to come to Betty’s
house, the relevant coalitions are {Betty, Adam}, and {Betty, Carol}. Assume that
there were three states of mind weak, neutral and good, for each player, which
can be represented by the degrees of cooperation −1, 0 and 1 respectively, that
is, T = {−1,0,1}. Then, S = T 2 = {−1,0,1}2. According to the game of Exam-
ple 2.1, the relationship between Betty and Adam and between Betty and Carol
was good, which means the coherence coalition structure was such that the coali-
tions {Betty, Adam}, and {Betty, Carol} had a good coherence index to form:
C({Betty,Adam}) = Min{dAB, dBA} = Min{1,1} = 1 (where A = Adam, B = Betty)
and similarly C({Betty,Carol}) = 1. To this coalition coherence structure corre-
sponds the profile (1,1) ∈ S = T 2 = {−1,0,1}2.

If the transition probability matrices {PK }K∈R(�,t) change at some time t , then we
obtain a new game of type (3) with new transition probability matrices that starts at
time t . Note that the matrices {PK }K∈R(�,t) are functions of time, {HDi}i∈I and the
arriving events. The matrices {PK }K∈R(�,t) capture the psychological atmosphere of
the game, which is an AD of the game situation.
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Let us now define a solution to the game (3). It is worth noting that each player
will continuously look for improving his cooperation degree with players he/she be-
lieves will reduce his charge level until he/she is convinced (correctly or erroneously)
that optimality has been obtained and no further improvement can be obtained in the
allowable time. In terms of HD theory, optimality is reached for a player at time t

when he cannot reduce further his charge level. Since the players interact with each
other and they are affected by arriving events, the game (3) cannot reach a stable
coalition coherence structure until every player is convinced that time optimality for
himself/herself is obtained. Time optimality has been defined in general in [8] as fol-
lows: A player is said to have reached a time optimal solution at time t if this solution
is unique and undominated at that time. Suppose a solution is time optimal over an in-
terval of time [t1, t2], then we say that this solution is [t1, t2]-optimal. Using this time
optimality concept, we define the following time stability concepts for the game (3).

Definition 3.6 We say that a profile s0 ∈ S is a strategically stable profile of the game
(3) over the period of time [t1, t2] or simply [t1, t2]-strategically stable profile if

(i) the transition probability matrices {PK }K∈R(�,t) and R(�, t) are constant over
the period [t1, t2], i.e. the structure of the game remains constant during the spec-
ified period,

(ii) s0
K is an absorbing state for all K ∈ R(�, t) or equivalently (PK)s0

Ks0
K

= 1, for
all K ∈ R(�, t).

Remark 3.6 Assume that s0 ∈ S is a strategically stable profile. By definition
(PK)s0

Ks0
K

= 1, for all K ∈ R(�, t), hence (PK)s0
Kh = 0, for all h ∈ T such that

h �= s0
K . This means that, once the players reach the strategically stable profile s0, the

corresponding coalition coherence structure (C(K) = s0
K)K∈R(�,t) has been reached.

Moreover, the members of any coalition K ∈ R(�, t) cannot change their coherence
index unilaterally or multilaterally in the interval of time [t1, t2]. Given the structure
of the game, the transition probability matrices {PK }K∈R(�,t) and the set of players,
when the players reach a [t1, t2]-strategically stable profile, it means that they have
reached an absorbing or stable profile from strategic point of view by using all strate-
gies available to them. However, some of the players may not be satisfied with this
coalition coherence structure. In this case, the players with a high charge level have a
strong incentive to take action or generate new strategies or look for external informa-
tional input (H8) to restructure the game, that is, to change the transition probability
matrices {PK }K∈R(�,t) or change the set of players, so that in the new game their
charge level will be lower. The restructuring process may continue until the charge
level of the players is such that no player wants to restructure the game. This leads us
to the following definition of time stability.

Definition 3.7 We say that s0 ∈ S is a structurally stable profile of the game (3) over
a period of time [t1, t2] or simply [t1, t2]-structurally stable profile iff

(i) the transition probability matrices {PK }K∈R(�,t) and R(�, t) are constant over
the period [t1, t2], i.e. the structure of the game remains constant during the
specified period,
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(ii) s0
K is an absorbing state for all K ∈ R(�, t) or equivalently Ps0

Ks0
K

= 1, for all
K ∈ R(�, t),

(iii) the charge levels of players are low, such that they do not want to change the
structure of the game i.e. {PK}K∈R(�,t) and R(�, t).

Remark 3.7 A [t1, t2]-structurally stable profile is a [t1, t2]-strategically stable pro-
file, where players do not have an incentive to restructure the game because they are
satisfied with its structure. Thus, the concepts of stability considered in traditional
games are special cases of strategically stable profiles.

Remark 3.8 Assume that s be a strategically stable profile during a period. By defini-
tion, (PK)sK,sK = 1, hence PsK,s′

K
= 0, for all s′

K �= sK and for all K ∈ R(�, t). This
means that any deviation, unilateral or multilateral, from s is impossible, once the
players reach it. Thus, a strategically stable profile is stable locally and globally. This
makes it definitely different and more general than Nash equilibrium [11]. Indeed,
Nash equilibrium is immune to unilateral deviations but it is not immune to multilat-
eral deviation. Many researchers have introduced various refinements of Nash equi-
librium that are immune against multilateral deviations (coalition deviation) such as
the strong equilibrium [16], Coalition Proof Nash equilibrium [17] and Strong Berge
equilibrium [18]. However, the major difficulty with these equilibria is that they do
not exist in most of the games and the few existence results established are restrictive
e.g. [19]. Furthermore, Nash equilibrium is based on strategies and utility function,
while the strategically stable profile is based on states of mind and charge level.

Remark 3.9 In order to avoid distraction, we show the most important differences
between the traditional games [10] and the second-order game (3) as follows:

(i) In traditional games, there are two major classes: the non-cooperative games
and the cooperative games. The two classes are studied by two totally differ-
ent models: the former is studied in the framework of games in normal form or
strategic form; the latter is studied in the framework of characteristic function
games. In non-cooperative games, the coalition formation process is missing,
while in cooperative games, the strategic aspect is missing. This artificial di-
chotomy does not completely reflect reality. In fact, in real games, most of the
time, a game goes through cooperative and non-cooperative stages according
to the arriving events, the interaction of players and their psychological states;
moreover, coalition formation and strategic aspects cannot be separated, they oc-
cur at the same time. Thus, this artificial dichotomy is one of the major reasons
that hinder traditional game theory from handling the evolution of real-world
games. The second-order games accommodate well the non-cooperative and co-
operative (strategic and coalition formation) aspects, that occur simultaneously
during a game.

(ii) In traditional games, the outcomes of the game and the worth of coalitions are
expressed in terms of a utility function. In the game (3), the outcomes are not
in terms of payoff, rather they are evaluated in terms of charge level [5, 8] and
states of mind of players. The objective of each player is to reduce his/her charge
level.
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(iii) In traditional games, the players look for a strategically stable profile. Such play-
ers are called ordinary or regular or first order players because they assume that
the structure of the game is given and then they do their best to reduce their
charge level within that structure. However, restructuring games for reaching a
structurally stable profile requires more effort, patience, negotiation skills, cre-
ativity and sometimes power or force. Generally, it can be achieved by superior
or second order players in the framework of second-order games.

(iv) In [20], Aubin has introduced the notion of fuzzy coalition in cooperative games
for the first time. This notion considerably improved the original characteristic
function model. However, the basic elements of the model remained unchanged
and restructuring the game was not considered. In second order games, coalition
formation is studied as a dynamic process.

From this comparison, we can conclude that the difference between the two mod-
els is conceptual and structural, and second-order games are closer to real-world game
situations.

Now let us illustrate by Example 2.1 how the game (2) can be constructed.

Example 3.1 The game of Example 2.1 had evolved as follows. Synex Inc. built a
good computer information system, inventory delivery system and a group of profes-
sional technicians. These services were offered to small retailers, who usually need
capital for inventory and technical support, if they subscribed to Synex network for
a nominal fee. Synex guaranteed 24 hours supply of inventory (products) and com-
pletion of needed repair within 24 hours. This was a big success with the majority of
retailers who formed a coalition with Synex Inc. The business for Synex prospered
and customers and retailers were happy.

Let us explain this solution by HD theory. Synex restructured the game in such
a way that made the other retailers change their minds and proceeded to cooperate
with it (H3). The other retailers thought that the Synex’s offer was an opportunity to
improve their income (H4 and H5). Therefore, this offer was perceived by retailers
as an opportunity to decrease their charge level (H6), which became the drive for
change in the game situation that generated a cooperative atmosphere. They accepted
the offer in order to release the charge (H7). By (H3), their behavior shifted from
non-cooperation to cooperation. It is very important to note here, that the game went
through two phases. The first one was a non-cooperative phase; the second one was a
cooperative phase. In literature, there is no game theory model, which accommodates
such a shift from a non-cooperative game to a cooperative one.

For the sake of simplicity, let us assume that there be three players with Synex as
Player I, the other two players, II and III are retailers. The game could be divided into
two distinct phases. Phase I covers the period before Synex made the offer; Phase II
covers the period after Synex’s offer. Phase I is a non-cooperative phase; Phase II is a
cooperative phase. Thus, the game cannot be studied in the framework of traditional
game theory. We also assume that the set of states mind of each player, with respect to
each of the other players, is non-cooperation, neutrality and cooperation respectively
to which we associate the cooperation degrees −1, 0 and 1, respectively. Then T =
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{h1, h2, h3} = {−1,0,1}. The game can be represented by the model (3) as follows

〈{I, II, III}, {HDi}i∈{I,II,III}, {H1–H8}, S, {PK}K∈R(�,t)

〉

where, the set of profiles is S = T 4 = {−1,0,1}4, R(�, t) = {{I, II}, {I, III}, {II, III},
{I, II, III}}. Assume the transition probability matrices for the coalitions {I, II},
{I, III}, {II, III} and {I, II, III} be respectively

P{I,II} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 1 0.0 0.0

0 0.1 0.3 0.6

1 0.1 0.2 0.7

⎞

⎟⎟⎟⎠, P{I,III} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 1 0.0 0.0

0 0.1 0.5 0.4

1 0.15 0.1 0.75

⎞

⎟⎟⎟⎠,

P{II,III} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 1 0.0 0.0

0 0.1 0.4 0.5

1 0.1 0.1 0.8

⎞

⎟⎟⎟⎠, P{I,II,III} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 1 0.0 0.0

0 0.3 0.3 0.4

1 0.3 0.2 0.5

⎞

⎟⎟⎟⎠

Here, it is important to note that the determination of the entries of the above four
transition probability matrices is a challenging task. The provided values are our eval-
uations based on the game situation. In Remark 3.5, we have mentioned two possible
ways for the determination of these entries: the subjective evaluation by the players
and/or by experts; and the frequency approach by using historical data. Thus, the
implementation of these two methods can be a topic for further research.

Clearly, the state −1 is absorbing for all coalitions, which means that no coali-
tion can form, thus, the game is non-cooperative. Moreover, in Phase I of this
game, the players are in competition, which means that they are in the profile
s = (−1,−1,−1,−1) ∈ S = {−1,0,1}4. Since the players are in the absorbing pro-
file s = (−1,−1,−1,−1), they will remain there until some relevant event arrives
or an effort is exerted by some or all players to restructure the game. In other words,
if there is no restructuring of the game that brings changes in the minds of some of
the players, i.e. in transition probability matrices, the players will remain in the com-
petition atmosphere s = (−1,−1,−1,−1). Thus, we can conclude that the profile
s is strategically stable from the time the game begun until the present time, and it
will continue to be so until restructuring of the game occurs. This means that all the
strategies that the players develop and implement will be to enhance or perpetuate
the profile s = (−1,−1,−1,−1). With time, competition may be very costly and
harmful. Therefore, the persistence of competition may increase the charge level of
some or all players (H5 and H6). The increasing charge level will make them look
for cooperative solutions. Moreover, in business, one of the most important goals is to
increase profit (H5); therefore, players welcome any idea or event that may increase
their profit, including cooperation with the competitors. In other words, the players
are willing to restructure the game when they perceive that it is beneficial for them
to do so, or when they see that it will reduce their charge. This shows that the profile
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s = (−1,−1,−1,−1) is not structurally stable, because the players’ charge levels
are still high. At the beginning of Phase II, Player I, Synex, came out with an offer to
restructure the game that triggered the cooperative spirit among players.

At the beginning of Phase II, we assume that the transition probability matrices
for the four coalitions {I, II}, {I, III}, {II, III}, {I, II, III} be respectively:

P{I,II} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 0.0 0.2 0.8

0 0.0 0.1 0.9

1 0.0 0.0 1

⎞

⎟⎟⎟⎠, P{I,III} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 0.0 0.15 0.85

0 0.0 0.05 0.95

1 0.0 0.0 1

⎞

⎟⎟⎟⎠,

P{II,III} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 0.2 0.5 0.3

0 0.0 1 0.0

1 0.1 0.2 0.7

⎞

⎟⎟⎟⎠, P{I,II,III} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 0.1 0.6 0.3

0 0.0 1 0.0

1 0.1 0.2 0.7

⎞

⎟⎟⎟⎠

Clearly, the states 1,1,0 and 0, become absorbent for {I, II}, {I, III}, {II, III} and
{I, II, III}, respectively, and s = (−1,−1,−1,−1) is no more absorbing. The ob-
tained coherence coalition structure (1,1,0,0) can be explained as follows. The co-
herence index of {I, II} and {I, III} is good because players II and III accepted the
offer of Player I, a cooperative atmosphere is established within these two subsets of
players. The coherence index of {II, III} becomes moderate because of the coopera-
tive spirit triggered by the offer of Player I. As for the set of all players {I, II, III},
according to the aggregation principle (2) we have adopted in this paper, its coher-
ence index becomes moderate because the coherence index of {II, III} is moderate,
although the coherence indexes of {I, II} and {I, III} are good. In Sect. 4, we will
compute an estimate of the average number of steps needed for the game to reach the
strategically stable profile (1,1,0,0).

The profile (1,1,0,0) is strategically stable and structurally more stable since all
the players are satisfied with the new game structure. However, we cannot claim that it
is structurally stable because the cooperative spirit among players can be improved by
proposing similar offers to reduce costs (inventory, transportation, etc) and improve
the quality of the products. Using the concepts of supply chain management may
be very helpful to restructure the game as to make the profile (1,1,1,1) structurally
stable. Indeed, a game where firms compete is structurally less stable than a game
where all firms form a supply chain, because in competition the players increase the
charge level of each other, whereas in a supply chain, the players reduce the charge
level of each other.

Example 3.2 The game of Example 2.2 eventually ended as follows. After Betty
came to know that her husband had an affair with Carol, the relations between Adam
and his wife started to deteriorate, they eventually divorced. Then Adam married
Carol. Let us explain the end of this game by HD theory.
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When Betty came to know that her husband had an affair with her friend (H8),
her relationships with both Adam and Carol deteriorated because she felt that her
life goals were seriously hurt (H5) and her charge level became very high (H6). She
immediately cut her relation with Carol (H3 and H7). After a fierce conflict with
Adam, they eventually divorced (H7). Adam and Carol married to release their mutual
emotional charge (H7). It is worth noting here, that this game cannot be formulated
in the framework of traditional game theory because coalition structure and the set of
players changed over time. Second order games can accommodate the change of the
set of players (H8).

Let us formulate this game as a three-person second-order game: denoted by Play-
ers I, II and III, Adam, Betty, and Carol respectively. The evolution of this game can
be divided into four Phases: Phase I, the period when Player I and II were living in
love and harmony; Phase II, the period where a new player, Player III, entered the
game and became a friend of Player I; Phase III, the period when Player III used to
come to the house of Player II; Phase IV the period after the Player II came to know
that Player I had an affair with Player III.

In Phase I, the game can be formulated using the model (3) as follows.
As in the previous example, assume that the set of states of mind of each player,

with respect to each of the other players, be T = {−1,0,1}, with −1 representing
non-cooperation, 0 neutrality and 1 cooperation, respectively. The game can be rep-
resented by the model (3) as follows

〈{I, II}, {{HDi}i∈{I,II}}, {H1–H8}, S, {PK }K∈R(�,t)

〉

with the set of profiles S = {−1,0,1} and R(�, t) = {{I, II}} over the Phase I. Note
here at the Phase I, the coalitions {I, III}, {II, III} and {I, II, III} are irrelevant to the
game situation. Assume the transition probability matrix for the coalition {I, II},

P{I,II} =
⎛

⎝

−1 0 1

−1 0.0 0.0 1
0 0.0 0.0 1
1 0.0 0.0 1

⎞

⎠.

During the Phase I, the Players I and II were in the state 1. Since the state 1 is ab-
sorbing and no player wants to restructure the game, the players will remain in the
profile 1. Thus, the profile 1 is strategically and structurally stable during the period
of Phase I.

A change of the game started with the appearance of the Player III in Phase II. The
game became a three person game

〈{I, II, III}, {{HDi}i∈{I,II}}, {H1–H8}, S, {PK}K∈R(�,t)

〉

with the set of profiles S = {−1,0,1}3, where R(�, t) = {{I, II}, {I, III}, {II, III}}.
The coherence index of the subset {I, II}, C({I, II}) was still good because Player I

did not have any close relation with Player III. The coherence index of coalition
{I, III}, C({I, III}) was moderate because the interaction between Players I and III
was formal. The coherence index of coalition {II, III}, C({II, III}), was good because
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Players II and III were friends. The game can be characterized by the following tran-
sition probability matrices

P{I,II} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 0.0 0.2 0.8

0 0.0 0.1 0.9

1 0.0 0.0 1

⎞

⎟⎟⎟⎠, P{I,III} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 0.0 0.5 0.5

0 0.0 1 0.0

1 0.0 0.5 0.5

⎞

⎟⎟⎟⎠,

P{II,III} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 0.0 0.15 0.85

0 0.0 0.05 0.95

1 0.0 0.0 1

⎞

⎟⎟⎟⎠

(4)

Thus, we conclude that the profile (1,0,1) is absorbing. Given the relations between
players, (1,0,1) is strategically and structurally stable during this phase.

A second change occurred when Player III started to come to the house of Player II
in Phase III. Player I and Player III developed a relationship that Player II ig-
nored. The set of relevant coalitions becomes R(�, t) = {{I, II}, {I, III}, {II, III},
{I, II, III}}. This change affected the transition probability matrices (4) of the game
in the Phase II as follows.

The coherence index of the subset {I, III}, C({I, III}) = Min{dI,III, dIII,I } became
good because of the developed relation between Players I and III. As a result, the
coherence index of the coalition {I, II}, C({I, II}) = Min{dI,II, dII,I } decreased be-
cause dI,II decreased and dII,I remained constant because Player I ignored the rela-
tion that developed between Players I and III. The coherence index of subset {II, III},
C((II, III)) = Min{dII,III, dIII,II}, decreased because of the relation between Player III
and Player I. The coherence index of the subset {I, II, III}, C({I, II, III}) was also
weak. One can characterize this phase by the following transition probability matri-
ces

P{I,II} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 0.8 0.1 0.1

0 0.6 0.2 0.2

1 0.5 0.2 0.3

⎞

⎟⎟⎟⎠, P{I,III} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 0.0 0.15 0.85

0 0.0 0.05 0.95

1 0.0 0.0 1

⎞

⎟⎟⎟⎠,

P{II,III} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 0.0 0.0 1

0 0.0 0.0 1

1 0.0 0.0 1

⎞

⎟⎟⎟⎠, P{I,II,III} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 1 0.0 0.0

0 1 0.0 0.0

1 1 0.0 0.0

⎞

⎟⎟⎟⎠

(5)

We notice that in this phase, there is no absorbing profile because the matrix P{I,II}
has no absorbing state. Therefore, there cannot be any strategically or structurally
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stable profile. This phase is a turbulent phase. The continuous increase in the charge
level of the Players I and III indicates that an imminent change/restructuring of the
game will occur.

A third change of the game took place in Phase IV, when the Player II came to
know that the Players I and III had an affair that she ignored. This information af-
fected the transition probability matrices (5) of the game in Phase III.

The Player II felt very frustrated and her life goals were seriously hurt. As a re-
sult, she cut her relation with Player III and divorced Player I. Therefore, the co-
herence index of the subsets {I, II}, {II, III} and {I, II, III}, C({I, II}), C({II, III})
and C({I, II, III}) respectively became weak in the sense of (2) because dII,I , dII,III

significantly decreased. The cooperation tendency of coalition {I, III}, C({I, III})
reached the maximum degree, since Player I and Player III got married. One can
characterize this phase by the following transition probability matrices

P{II,III} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 0.0 0.0 1

0 0.0 0.0 1

1 0.0 0.0 1

⎞

⎟⎟⎟⎠,

P{I,II} = P{I,II,III} = P{I,III} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 1 0.0 0.0

0 1 0.0 0.0

1 1 0.0 0.0

⎞

⎟⎟⎟⎠.

According to the form of the transition probability matrices {PK }K∈R(�,t), the
players shift to the profile (−1,−1,1,−1), in one step. Since (−1,−1,1,−1) is ab-
sorbing, they will remain there as long as the structure of the game remains the same.
The coherence coalition structure of the game that corresponds to {PK }K∈R(�,t) and
the profile (−1,−1,1,−1) is such that the coherence index of {I, II}. {I, III} and
{I, II, III} is weak, and the coherence index of {II, III} is maximum. No player has
incentive to restructure the game. The profile (−1,−1,1,−1) is structurally stable.

4 Reaching Stable Profiles

Consider the game (3) with transition probability matrices {PK }K∈R(�,t) at time t1.
We address the following problem. Assume that the game has a [t1, t̄]-strategically
stable profile s0 ∈ S. Is it possible to reach s0 within the interval [t1, t̄]? If yes, then
what is the average number of steps required to reach it?

First, we determine the class of transition probability matrices {PK}K∈R(�,t) for
which s0 can be certainly reached from any starting state when there is no time con-
straint. Then we study the possibility of reaching s0 within the time constraint [t1, t̄].
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4.1 A Class of Transition Probability Matrices for Which s0 Can Be Reached

In this section, we address the following problem: Given a profile s0 what are the
classes of transition probability matrices {PK }K∈R(�,t) for which s0 will be certainly
reached?

Here we assume that the reader is familiar with basic notions of recurrent and
transient state, and recurrent and transient class in a finite Markov chain. For more
details, we refer the reader to [9]. Let us first recall some important results from
Markov chain theory.

Theorem 4.1 In a finite Markov chain, as the number of steps tends to infinity, the
probability that the process is in a transient state tends to be zero irrespective of the
state at which the process starts.

In other words, starting at any state, the process will ultimately join a recurrent
class and remain there.

Henceforth, when we say that a profile will be reached, we mean that it will be
reached with probability 1, i.e. with certainty.

Proposition 4.1 Consider the game (3). Assume the set R(�, t) and transition prob-
ability matrices {PK }K∈R(�,t) become constant on [t0,+∞[ and for each coalition
K ∈ R(�, t) the corresponding Markov chain has only one recurrent class RK , and
that RK = {s0

K } i.e. s0
K is absorbent and it forms the unique recurrent class in the

Markov chain corresponding to coalition K , then starting from any profile s, the pro-
file s0 will be reached. Let tK be the first time s0

K is reached for all K ∈ R(�, t) then
the profile s0 will be reached at the time defined by

t∗ = Sup
{
tK,K ∈ R(�, t)

}
(6)

In case tK is finite for all K ∈ R(�, t), then s0 is also reached at the finite time
t∗ = Max{tK,K ∈ R(�, t)}.

Remark 4.1 Note that this is possible because R(�, t) is finite. Otherwise, s0 may
be reached at infinity.

Proof Let K be any coalition in R(�, t) and PK its transition probability matrix.
Let (PK)RK

be the transition probability matrix within RK = {s0
K }. If the process

starts in the unique recurrent class RK = {s0
K }, then it will remain there because s0

K

is absorbent. If the process starts in a transient state, then according to Theorem 4.1,
certainly the process will join the unique recurrent class RK = {s0

K}. The second part
of Proposition 4.1 is straightforward. �

Proposition 4.2 Assume that in the game (3), R(�, t) and the matrices {PK}K∈R(�,t)

be constant over some interval [t1,+∞[, the profile s0 ∈ S be absorbing and the
Markov chain of each coalition K ∈ R(�, t) have a unique recurrent class, namely,
{s0

K }. Then, the game (3) will reach the [t1, t̄]-strategically stable profile s0 within the
interval [t1, t̄], if t∗ ≤ t̄ , where t∗ is defined in (6).
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Proof According to Proposition 4.1, starting from any profile s, the profile s0 will be
reached at time t∗ = Sup{tK,K ∈ R(�, t)}, where tK is the first time s0

K is reached
for all K ∈ R(�, t). Let t̄ > t1, by Definition 3.6, the profile s0 is [t1, t̄]-strategically
stable. Then, if t∗ ≤ t̄ , the profile s0 will be reached within the interval [t1, t̄]. �

Remark 4.2 In the game (3), according to Propositions 4.1–4.2, when s0 is absorbing
and for each coalition K , the corresponding Markov chain has only one recurrent
class, namely, {s0

K }, then the profile s0 will be reached. In all other cases, it may be
impossible for the game to reach the profile s0. Let us explain this. Recall that in a
finite Markov chain there is at least one recurrent class [9]. Moreover, it is well known
that once the process joins a recurrent class, it will stay there forever [9]. Therefore,
when there is at least one coalition K ∈ R(�, t) having more than one recurrent class,
the process may enter a class different from the class {s0

K} and remain there, before it
visits the state s0

K . Thus, it would be impossible for the process to reach the profile s0.
It is important to note that, the assumption that s0 is absorbing is essential because
in case s0 is not absorbent, it may be impossible that all (s0

K)K∈R(�,t) are reached
simultaneously.

4.2 Average Time for Reaching a Strategically Stable Profile

In Sect. 4.1, we have proved that under some conditions the game converges to a
[t1, t̄]-strategically stable profile without precision on the time it takes to reach such
a profile. In this section, we will provide an estimation of the average time the game
takes to reach a strategically stable profile.

Proposition 4.3 [9] Let K ∈ R(�, t) be a subset of players in the game (3) and PK

be the corresponding transition probability matrix. Let R be the unique recurrent
class of the Markov chain corresponding to K and R = {s0

K }. Let us use the standard
notations: denote by s0

K = i, and by j any other state in TR (the set of transient
states). Consider the matrix

P̃K =
(

1 0
S̃ Q

)
(7)

where, Q is obtained from PK by deleting its ith row and the ith column and S̃

is obtained from the ith column of PK by deleting its ith entry. Then, the expected
number of steps starting at any state j in TR until reaching state i is given by

Nj =
∑

k �=i

Fj,k

where, Fj,k is the expected number of visits to k, starting at j , which is given by the
(j, k)th entry of the fundamental matrix F = (I −Q)−1, here I is the identity matrix.
Moreover, let V (Nj ) denote the variance of the number of steps the process stays in
transient states before reaching the state i starting from state j and V = (V (Nj )j �=i )

the column vector where the j th component is V (Nj ). Then

V = (2F − I )N − H
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where N = (Nj )j �=i is a column vector where the j th component is Nj and H =
(N2

j )j �=i , where the j th component is the square of Nj .

Proposition 4.4 Assume that in the game (3), R(�, t) and the matrices {PK}K∈R(�,t)

be constant over some interval [t0, t1], the profile s0 ∈ S be absorbing and the
Markov chain of each coalition K ∈ R(�, t) have a unique recurrent class, namely,
R = {s0

K }. Then, starting from some profile s ∈ S, the average time T̄ for the game
to reach the profile s0 is finite and can be taken as T̄ = Max{t̄K ,K ∈ R(�, t)},
where t̄K is the average time for the coalition K ∈ R(�, t) to reach s0

K , start-
ing from the state s. Moreover, assume that T̄ = t̄K for some K ∈ R(�, t) and
t1 > T̄ + 3

√
V (NsK ). Then, the probability that the [t0, t1]-strategically stable pro-

file s0 ∈ S is reached within the interval [t0, t1] is 0.89, given by P(|T − T̄ | <

3
√

V (NsK )) ≥ 1 − 1/9 = 0.89.

Proof The first part of the proposition is a straightforward consequence of Proposi-
tion 4.3. The second part of the proposition can be easily derived from the Cheby-
chev inequality [21] that states that P(|T − T̄ | > ε) ≤ V (NsK )/ε2, by taking ε =
3
√

V (NsK ), we get P(|T − T̄ | ≤ 3
√

V (NsK )) ≥ 1 − 1/9 = 0.89. �

Example 4.1 Let us consider the profile (1,1,0,0) at the Phase II of Example 3.1.
The profile (1,1,0,0) is [t0, t1]-strategically stable in Phase II (t0 is the beginning
of Phase II), because the states 1, 1, 0 and 0 are absorbing states. We note also that,
{1}, {1}, {0}, {0} are the unique recurrent classes in their transition probability matri-
ces, respectively. Thus, according to Proposition 4.3, the profile (1,1,0,0) will be
reached and the average number of steps needed to reach it can be calculated using
Propositions 4.2–4.4.

First, we calculate the average number of steps to reach the corresponding absorb-
ing state for each coalition.

For the coalition {I, II}. Rearranging the states, we get

P{I,II} =

⎛

⎜⎜⎜⎝

1 0 −1

1 1 0.0 0.0

0 0.9 0.1 0.0

−1 0.8 0.2 0.0

⎞

⎟⎟⎟⎠, P̃ =
(

1 0
S̃ Q

)
=

⎛

⎜⎜⎜⎝

1 0 −1

1 1 0 0

0 0.9 0.1 0

−1 0.8 0.2 0

⎞

⎟⎟⎟⎠,

Q =
(

0.1 0
0.2 0

)
,

then,

(I − Q) =
(

0.9 0
−0.2 1

)
, F = (I − Q)−1 =

(
0.9 0
2/9 1

)
.

The average number of steps for reaching the state 1, starting from the state −1,
is E(1|−1) = 2/9 + 1 = 1.2 steps. It is the sum of the entries of the row of F



468 J Optim Theory Appl (2011) 149: 447–473

corresponding to the state −1 (the second row). The average number of steps for
reaching the state 1, from the state 0, is E(1|0) = 0.9 + 0 = 0.9. Thus, we can
take the average number of steps needed to reach 1, starting from any state as
μ{I,II}(1) = Max{E(1/ − 1),E(1|0)} = Max{0.9,1.2} = 1.2.

Using similar calculations on the transition probability matrix P{I,III} of the coali-
tion {I, III} in Phase II, the average number of steps for reaching the state 1, start-
ing from the state −1, is E(1|−1) = 0.16 + 1 = 1.16. The average number of steps
for reaching the state 1, from the state 0, is E(1|0) = 1/0.95 + 0 = 1.05. Thus we
can take the average number of steps needed to reach 1, starting from any state as
μ{I,III}(1) = Max{E(1|−1),E(1|0)} = Max{1.16,1.05} = 1.16.

Similarly, the average number of steps for reaching the state 0 for the coalition
{II, III} are computed based on the matrix P{II,III} as follows.

The average number of steps for reaching the state 0, starting from the state, 1 is
E(0|1) = 1/2.1+8/2.1 = 4.28. The average number of steps for reaching the state 0,
from the state −1, is E(0|−1) = 3/2.1 + 3/2.1 = 2.85. Thus we can take the average
number of steps needed to reach −1, starting from any state as

μ{II,III}(0) = Max{E(0|1),E(0|−1)} = Max{4.28,2.85} = 4.28.

Similarly, the average number of steps for reaching the state 0 for the coalition
{I, II, III} are computed based on the matrix P{I,II,III} as follows.

The average number of steps for reaching the state 0, starting from the state −1,
is E(0|−1) = 3.5/1.9 + 0.33/1.9 = 2.01. The average number of steps for reaching
the state 0, from the state 1, is E(0|1) = 1/1.9 + 1/1.9 = 1.05. Thus, we can take the
average number of steps needed to reach 0, starting from any state as μ{I,II,III}(0) =
Max{E(0|−1),E(0/1)} = Max{2.01,1.05} = 2.01.

Finally, the average number of steps, that is necessary for reaching the strate-
gically stable profile (1,1,0,0), during the Phase II, is the maximum among the
four calculated averages T̄ = Max{μ{I,II}(1),μ{I,III}(1),μ{II,III}(0),μ{I,II,III}(0)} =
Max{1.2,1.16,4.28,2.01} = μ{II,III}(0) = 4.28. Let us now compute the variance of
T for the coalition {II, III}, we have

P{II,III} =

⎛

⎜⎜⎜⎝

−1 0 1

−1 1 0.0 0.0

0 0.1 0.4 0.5

1 0.1 0.1 0.8

⎞

⎟⎟⎟⎠,

P̃ =
(

1 0
S̃ Q

)
=

⎛

⎜⎜⎜⎝

0 −1 1

0 1 0 0

−1 0.5 0.2 0.3

1 0.2 0.1 0.7

⎞

⎟⎟⎟⎠,

F = (I − Q)−1 =
(

3/2.1 3/2.1
1/2.1 8/2.1

)
.



J Optim Theory Appl (2011) 149: 447–473 469

Then, by Proposition 4.3, we have

V = (2F − I )N − H =
(

5/2.1 6/2.1
2/2.1 15/2.1

)(
6/2.1
9/2.1

)
−

(
36/4.41
81/4.41

)

=
(

10.88
12.24

)
.

Hence, the maximum variance of the number of steps for reaching the profile
(1,1,0,0) is the variance for reaching the state 0 from the state 1, V (N0) = 12.24,
hence the variance of T is V (T ) = 12.24. Using Proposition 4.3, we conclude that
if t1 > T̄ + 3

√
12.24, and (1,1,0,0) is [t0, t1]-strategically stable profile, (1,1,0,0)

will be reached within [t0, t1], with probability 0.89.

Remark 4.3 As we see, the game of Example 2.1 consists of two phases: non-
cooperative and cooperative. The shift from the non-cooperative phase to cooperative
phase took place via restructuring the game by the offer of Player I. Here, Player I can
be considered as a second order player because he could restructure the game so as
to reduce his own charge level and the charge level of the other players. Clearly, the
traditional game theory framework cannot accommodate such games, while second
order games can.

5 On the Convergence of the Transition Probability Matrices

By definition, a necessary condition for the games (3) to reaches a [t0, t1]-
strategically stable profile s0 is that the transition probability matrices {PK }K∈R(�,t)

become constant after t0. In Sects. 4.1–4.2, we have established sufficient conditions
for the game (3) to reach a [t0, t1]-strategically stable profile s0 after the time t0.
However, we did not consider the period before the transition matrices become con-
stant. The following question arises: Are there any sufficient conditions for the tran-
sition probability matrices {PK}K∈R(�,t) to converge to constant matrices? In this
section, we address this question. In [4], it has been proven that the activation proba-
bilities from the potential domain to the actual domain of a decision maker stabilize
over time (by using differential equations as a means of expression of the dynamics
of these probabilities). We provide another sufficient condition for the stability of
these probabilities that is based on monotonicity. Then, using this result, we provide
some sufficient conditions for the transition probability matrices {PK}K∈R(�,t) of the
game (3) to converge to constant matrices.

Proposition 5.1 Consider a player in the game (3), and x an idea or state or concept
in his PD (potential domain). Let P t(x) be the activation probability of x from his
PD to his AD (actual domain) at time t . Assume that starting from some time t0, the
activation probability P t (x) becomes monotonic, that is,

(i) P t+1(x) ≥ P t(x), for all t ≥ t0, or
(ii) P t+1(x) ≤ P t(x), for all t ≥ t0.
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Then, there exists a constant probability P ∈ [0,1], such that limt→+∞ P t (x) = P .

Proof Without loss of any generality, assume that (i) takes place, that is, P t (x)

is non-decreasing. Since {P t(x)|t ≥ t0} ⊂ [0,1], this means that {P t(x)|t ≥ t0} is
upper bounded, then Sup{P t(x)|t ≥ t0} exists and Sup{P t(x)|t ≥ t0} ∈ [0,1]. Let
us prove that limt→+∞ P t(x) = Sup{P t(x)|t ≥ t0}. Let ε > 0, we need to prove
that there exists tε ≥ t0 such that for all t > tε, |P t (x) − Sup{P t(x)|t ≥ t0}| < ε.
By definition of Sup{P t (x)|t ≥ t0}, there exists tε ≥ t0 such that Sup{P t (x)|t ≥
t0} − ε < P tε (x) ≤ Sup{P t(x)|t ≥ t0}. Since P t (x) is non-decreasing, we have
Sup{P t (x)|t ≥ t0} − ε < P tε (x) ≤ P t (x) ≤ Sup{P t(x)|t ≥ t0}, for all t > tε , which
means |P t (x) − Sup{P t (x)|t ≥ t0}| < ε, for all t > tε . �

The following proposition is a generalization of Proposition 5.1.

Proposition 5.2 Consider a player in the game (3), and x an idea or state or concept
in his PD (potential domain). Let P t(x) be the activation probability of x from his
PD to his AD (actual domain) at time t . Assume that starting from some time t0, the
activation probability P t (x) satisfies one of the following two conditions

(i) P t+1(x) ≥ P t (x), for all t ≥ t0, and there exists an integer number q ≥ 2 and a
positive number a such that P t+q(x) − P t(x) ≥ a, t ≥ t0, for all t ≥ t0.

(ii) P t+1(x) ≤ P t(x), for all t ≥ t0, and there exist an integer number q ≥ 2 and a
positive number a such that P t (x) − P t+q(x) ≥ a, for all t ≥ t0.

Then, there exists a constant probability P ∈ [0,1], and a finite time t∗ ≥ t0 such that
P t (x) = P , for all t ≥ t∗, that is, the probability P t(x) reaches a constant probability
in a finite time.

Proof Without loss of any generality, assume that (i) take place. The fact
limt→+∞ P t(x) = Sup{P t (x)|t ≥ t0} can be proved as in Proposition 5.1. Let us
now prove that the limit probability Sup{P t(x)|t ≥ t0} will be reached in a finite
time. Let b = Sup{P t (x)|t ≥ t0} − P t0

(x), the case b = 0 is trivial. Assume that
b �= 0. Let [b/a] be the integer part of b/a. Let m = [b/a] + 1. Then P t0+mq(x) =
Sup{P t (x)|t ≥ t0}. Indeed, we have P t+mq(x) − P t0

(x) = ∑m−1
i=0 P t0+(i+1)q(x) −

P t0+iq (x) ≥ ∑m−1
i=0 a = ma ≥ (b/a) × a = b. On the other hand, b = Sup{P t (x)|

t ≥ t0} − P t0
(x), hence P t0+mq(x) − P t0

(x) ≥ Sup{P t (x)|t ≥ t0} − P t0
(x). Then,

P t0+mq(x) ≥ Sup{P t(x)|t ≥ t0}. Thus, P t0+mq(x) = Sup{P t (x)|t ≥ t0}. By taking
t∗ = t0 + mq we get the desired result. �

Proposition 5.3 Consider the game (3). Assume that the following conditions are
met

(i) The time horizon of the game is not limited and R(�, t)is constant over time.
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(ii) For all subset K ∈ R(�, t) of players, there exists a time tK such that for all sates
sK, s′

K ∈ T , the transition probability (PK)sK,s′
K

is monotonic after tK , that is

for all t ′ ≥ t ≥ tK, (P t
K)sKs′

K
≥ (P t ′

K)sKs′
K

for all sates sK, s′
K ∈ T or

for all t ′ ≥ t ≥ tK, (P t
K)sKs′

K
≤ (P t ′

K)sKs′
K
, for all states sK, s′

K ∈ T .

Then, the transition probability matrices (P t
K)K∈R(�,t) converge to some constant

matrices (PK)K∈R(�,t), i.e. limt→+∞(P t
K) = PK for all K ∈ R(�, t).

Proof Let ε > 0, we need to prove that there exists tε such that for all t > tε ,
for all subset of players K ∈ R(�, t) and for all states sK, s′

K ∈ T , |(P t
K)sKs′

K
−

(PK)sKs′
K
| < ε. Without loss of any generality, assume that (P t

K)sKs′
K

is non-

decreasing, i.e. for all t ′ ≥ t ≥ tK, (P t
K)sKs′

K
≤ (P t ′

K)sKs′
K

. Let K ∈ R(�, t) and

sK, s′
K ∈ T ′. We have (P t

K)sK,s′
K

∈ [0,1], for all t ≥ tK , then the set {(P t
K)sKs′

K
,

t ≥ tK} is bounded. Therefore, Sup{(P t
K)sKs′

K
, t ≥ tK} exists. Let Sup{(P t

K)sKs′
K
,

t ≥ tK} = (PK)sK,s′
K

. Then, there exists

t
K,sK ,s′

K
ε ≥ tK such that

∣∣((P t
K,SK ,S′

K
s

K

))
sKs′

K
− (PK)sKs′

K

∣∣ < ε.

Since (P t
K)sK,s′

K
is non-decreasing, then for all t ≥ t

K,sK ,s′
K

ε , |(P t
K)sKs′

K
)sKs′

K
−

(PK)sKs′
K
| < ε. Taking tε = Max{tK,sK,s′

K
ε /K ∈ R(�, t), sK, s′

K ∈ T ′}, we get

for all t ≥ tε, K ∈ R(�, t), and sK, s′
K ∈ T ′, |(P t

K)sKs′
K

− (PK)sKs′
K
| < ε.

This ends the proof. �

In next proposition, we extend the results of Proposition 5.3 to the case of subsets
of players of the game (3).

Proposition 5.4 Consider the game (3), assume that the following conditions be
met.

(i) The time horizon of the game is not limited and R(�, t) is constant over time.
(ii) For all subset of players K ∈ R(�, t), there exist a time tK , a positive number

aK and an integer number qK such that for all sates sK, s′
K ∈ T the transition

probability (PK)sK,s′
K

satisfies one of the following conditions

(P t
K)sK,s′

K
is non-decreasing and , and for all

t ≥ tK, (P
t+qK

K )sK,s′
K

− (P t
K)sK,s′

K
≥ aK, or

(P t
K)sK,s′

K
is non-increasing and for all

t ≥ tK, and (P t
K)sK,s′

K
− (P

t+qK

K )sK,s′
K

≥ aK.
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Then, there exists some constant matrices (PK)K∈R(�,t) a time t∗, such that
(P t

K)sKs′
K

= (PK)sKs′
K

, for all t ≥ t∗, for all K ∈ R(�, t) and sK, s′
K ∈ T .

Proof The proof of this proposition is similar to the proof of Proposition 5.2. �

Now we provide sufficient conditions for the convergence of the game (3) to a
strategically stable profile.

Proposition 5.5 Consider the game (3), assume that the assumptions (i) and (ii)
of Proposition 5.4 be satisfied. Then there exists constant matrices (PK)K∈R(t,�)

and some time t∗ such that (P t
K)sKs′

K
= (PK)sKs′

K
, for all t ≥ t∗, for all K ∈

R(�, t) and sK, s′
K ∈ T . Assume that the game (3) with transition probability ma-

trices (PK)K∈R(t,�) has an absorbing profile s0 = (sK)K∈R(t,�) ∈ S. Then, s0 is a
[t∗,+∞[-strategically stable profile. Moreover, assume that the Markov chain as-
sociated with the transition probability matrix PK of each subset of players K ∈
R(t,�) has a unique recurrent class, namely {s0

K }. Then, starting from any profile s,
the profile s0 = (sK)K∈R(t,�) will be reached.

Proof Since the transition probability matrices (PK)K∈R(t,�) are constant on the in-
terval [t∗,+∞[, then by Definition 3.6, the profile s0 = (sK)K∈R(t,�) is a [t∗,+∞[-
strategically stable profile. The fact that s0 will be reached is a direct consequence of
Proposition 4.1. �

The results in [4] and Propositions 5.3–5.5 reflect what happens in real game sit-
uations, in general. Indeed, when a game or conflict starts, the players do not know
each other (each other’s habitual domains) well. Therefore, the game goes through an
unstability period during which it is very difficult to predict the dynamics of the tran-
sition probability matrices (P t

K)K∈R(�,t). Over time, through interaction, the players
get to know better each other’s habitual domains. Then, if no major relevant external
event occurs or some effort is exerted by some players, their behaviors, including
the transition probability matrices, converge to some stable patterns. In [4], it is as-
sumed that the dynamics of the activation probabilities are described by a differential
equation, which is a kind of behavioral pattern. In Propositions 5.3–5.5, we assume
monotonicity as a behavioral pattern. The reader may explore other behavioral pat-
terns that can lead to stability.

6 Conclusions

In the present paper, a HD theory based model for n-person games has been for-
mulated and presented. In the proposed model, sets of strategies, utility functions and
characteristic function are not involved; it focuses on the states of mind of players and
their charge level. Unlike traditional game theory models, the presented model cap-
tures both cooperative and non-cooperative aspects of an n-person game and the dy-
namic process of coalition formation. Thus, the model could significantly enlarge the
scope of applications of n-person games. The assumptions of our model allowed us
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to use the theory of Markov chains to analyze the game. Furthermore, we have stud-
ied the anatomy of the transition probability matrices {PK }K∈�. Particularly, when
it is possible to reach a strategically stable profile s0, during some period, we have
provided the average number of steps needed for the process to reach s0. It would
be interesting to investigate the following problem of practical interest: assume that
a game with transition probability matrices {PK}K∈R(�,t) has no structurally stable
profile, how to restructure the game to obtain a new game, with transition probability
matrices {P ∗

K}K∈R(�,t), which have a structurally stable profile? Solving this problem
may help solve real-world social, political and business conflict issues.
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