
ROSE: A Novel Flash Translation Layer
for NAND Flash Memory Based
on Hybrid Address Translation

Mong-Ling Chiao and Da-Wei Chang, Member, IEEE

Abstract—A Flash Translation Layer (FTL) provides a block device interface on top of flash memory to support disk-based file

systems. Due to the erase-before-write feature of flash memory, an FTL usually performs out-of-place updates and uses a cleaning

procedure to reclaim stale data. A hybrid address translation (HAT)-based FTL combines coarse-grained and fine-grained address

translation to achieve good performance while keeping the size of the mapping information small. In this paper, we propose a new

HAT-based FTL, called ROSE, which includes three novel techniques for reducing the cleaning cost. First, it reduces high-cost

reclamation by preventing data in an entire-block sequential write from being placed into multiple physical blocks while eliminating the

cleaning cost resulting from mispredicting random or semisequential writes as sequential ones. Second, it uses a merge-aware

cleaning policy that considers both the block age and the merge cost in a HAT-based FTL for improving the cleaning efficiency. Third, it

delays the erasure of obsolete blocks and reuses their free pages for buffering more writes. Simulation results show that the proposed

FTL outperforms existing HAT-based FTLs in terms of both cleaning cost and flash write time by up to 47 times and 1.6 times,

respectively.

Index Terms—Storage management, performance, NAND flash memory, flash translation layer (FTL).

Ç

1 INTRODUCTION

NAND flash memory is widely applied in computer and
consumer electronic devices due to its small size, shock

resistance, nonvolatility, and low power consumption. A
NAND flash module is composed of a number of blocks,
each of which is in turn composed of a number of pages.
Typically, a NAND flash block contains 32 to 128 pages, and
read/write operations are performed in units of a single
page. In addition, a software component called Flash
Translation Layer (FTL) is usually used to emulate a block
device on top of the flash memory to support traditional
disk-based file systems.

In contrast to RAM and disk, a page in the flash memory
cannot be overwritten before being erased, and erase
operations are performed in units of a whole block.
Compared to the other flash operations, the erase operation
is time consuming. Moreover, the number of erase opera-
tions that can be done on a specific block is limited, usually
between ten thousand and hundred thousand. To avoid
erasing an entire block for each logical page overwrite,
therefore, an FTL usually directs each page overwrite to a
free physical page. The page containing the stale data is
then reclaimed by a cleaning procedure.

To locate each logical page, an FTL manages the mapping
between logical page numbers (LPNs) and physical page
numbers (PPNs). Typically, the mapping can be done at two
different granularities: page level and block level. Page-level
address translation (PAT) scheme maps each logical page to
an individual physical page. Pages belonging to the same
logical block can be mapped to different physical blocks. For
a large NAND flash memory, such a fine-grained address
translation scheme requires a large memory space to
maintain the mapping table since each logical page has a
corresponding entry in the table. In order to reduce the
space requirement of the mapping table, block-level address
translation (BAT) scheme uses a more coarse-grained
address translation approach that translates each logical
block number (LBN) to a physical block number (PBN).
Therefore, the number of entries in the mapping table can be
greatly reduced. However, due to the block-level address
translation, BAT requires each logical page to be written
only to its corresponding offset in a physical block, resulting
in poor performance due to its low space utilization, which is
defined as the ratio of the number of occupied (i.e., nonfree)
pages in a block to the total number of pages per block when
the block is going to be erased. To combine the benefits of
PAT and BAT, several FTLs based on the hybrid level
address translation (HAT) scheme have been proposed [1],
[2], [3], [4], [5], [6]. In this scheme, most of the data are
stored in data blocks managed via the BAT scheme.
However, by storing hot pages (i.e., frequently updated
pages) in a limited number of log blocks, which is managed
by the PAT scheme, the HAT scheme can delay the erasure
of some data blocks that are not fully occupied, increasing
the space utilization. Moreover, the memory requirement is
comparable to that of the BAT scheme since the pages

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011 753

. M.-L. Chiao is with the Department of Computer Science, National Chiao-
Tung University, No. 1001, University Road, Hsinchu City, Taiwan 300,
ROC. E-mail: jackciao.cs94g@nctu.edu.tw.

. D.-W. Chang is with the Department of Computer Science and Information
Engineering, National Cheng Kung University, No. 1, University Road,
Tainan City, Taiwan 701, ROC. E-mail: davidchang@csie.ncku.edu.tw.

Manuscript received 6 Mar. 2009; revised 6 Apr. 2010; accepted 28 Feb. 2011;
published online 17 Mar. 2011.
Recommended for acceptance by E. Miller.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2009-03-0108.
Digital Object Identifier no. 10.1109/TC.2011.67.

0018-9340/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

managed via the PAT scheme are limited to a small number.
Cleaning in HAT-based FTLs is done by reclaiming log
blocks. When a log block needs to be reclaimed, it is merged
with its corresponding data blocks.

In this paper, we propose a HAT-based FTL called ROSE,
which incorporates three novel techniques for reducing the
cleaning cost. First, ROSE utilizes a technique called Entire-
Block Writing (EBW) to prevent pages of an entire-block
sequential write (SW) from being placed into multiple
physical blocks, reducing the possibility of high-cost
reclamation. Previous HAT-based FTLs achieve this by
predicting sequentiality. However, mispredicting random
or less-than-a-block writes as sequential writes leads to
increased cleaning cost. EBW eliminates such mispredic-
tion, resulting in a lower cleaning cost. Second, ROSE uses a
novel policy called Merge-Aware Round rObin (MARO) to
select a victim log block for reclamation when the log area
has run out of its free space. In contrast to the previous
cleaning policies that consider only the state of the
candidates, MARO considers not only the state of the
candidates (i.e., log blocks) but also the state of the data
blocks that correspond to those candidates. Moreover,
different from previous HAT-based FTLs, both the ages
and the merge costs of the log blocks are considered at the
same time in MARO. As shown in the performance
evaluation section, such consideration reduces the cleaning
cost. Third, ROSE utilizes a technique called Free Page
Reuse (FPR) to increase the space utilization. FPR delays the
erasure of a low-utilized data block and allows the free
pages in that block to buffer further page overwrites,
resulting in a lower cleaning cost.

We present the performance improvements of the three
proposed techniques individually through simulation. We
also compare the performance of ROSE with FAST and
LAST, two well-known and efficient HAT-based FTLs,
under a variety of benchmarking and realistic workloads.
The results show that ROSE outperforms the existing HAT-
based FTLs by up to 47 times in terms of the cleaning cost.
Due to the reduction on the cleaning cost, the flash write
time is reduced by up to 1.6 times.

The rest of this paper is organized as follows: the next
section briefly describes the background and the previous
research related to ROSE. Section 3 provides a detailed
description of the three proposed techniques in ROSE.
Section 4 presents the performance results, and Section 5
concludes this paper.

2 BACKGROUND AND RELATED WORK

2.1 Background and Terminology

An FTL maintains the state of all the pages in a flash
storage. A page is free if the page has not been written after
its last erasure. Free pages can be used to accommodate
page writes. A free page becomes live after it has been
written with user data. Since a live page cannot be
overwritten before being erased, updating data in place is
inefficient because each update should be preceded by a
time-consuming erase operation. Thus, most FTLs handle
page overwrites by adopting the out-of-place update mechan-
ism, in which the new data are written to another free page

and the live page that contains the old data becomes dead.
Dead pages should be reclaimed by a cleaning procedure,
which works as follows: first, one or more victim blocks are
selected to be reclaimed according to a cleaning policy.
Second, the live pages in the victim blocks are copied to free
pages of other blocks. Finally, the victim blocks are erased.
After the cleaning, all the pages in the selected blocks
become free and can be used to satisfy future data writes.
Cleaning is time consuming since it involves live page
copying and block erasure. Therefore, the cost of cleaning is
a key factor to the performance of an FTL. In this paper, two
metrics related to the cost of cleaning are used to measure
the performance of an FTL. The first one is the cleaning cost,
which is defined as the time spent on the cleaning
procedure resulting from the execution of a given work-
load. The second one is the Write Amplification Ratio (WAR),
which is defined as

WAR ¼ ðW þ CÞ=W; ð1Þ

where W and C represent the total request write time and
the cleaning cost of the workload, respectively. The ratio 1.5
means that the time spent on cleaning is half of the total
request write time of the given workload.

An FTL may erase a block that still contains free pages,
which wastes the free pages. The free pages could have
been used to buffer more writes and this waste could
increase the cleaning cost. We define space utilization as the
ratio of the number of occupied (i.e., nonfree) pages in a
block to the total number of pages per block when the block
is going to be erased. The value is 100 percent if a to-be-
erased block contains no free pages. Increasing space
utilization usually leads to reduction of the cleaning cost.

2.2 Flash Translation Layer

An FTL emulates a block device on top of flash memory to
support traditional disk-based file systems. Typically, a
request issued from a file system consists of a single or
multiple adjacent sectors. In a flash storage system, the
sector numbers are translated into logical page numbers
and the translation is usually independent of the FTLs. In
this paper, the sizes of a sector and a page are 512 bytes and
2 Kbytes, respectively, and therefore, LPNs can be obtained
by dividing the sector numbers by 4. Such translation can be
regarded as a preprocessing task before the invocation of an
FTL. An FTL hence treats each request as a number of
adjacent logical pages and focuses on the address transla-
tion between LPNs and PPNs.

The address translation can be done at page level (i.e., the
PAT scheme) or block level (i.e., the BAT scheme). PAT-
based FTLs [7], [8], [9] directly translate each LPN to a PPN
and use the out-of-place update mechanism to handle page
overwrites. In this scheme, a logical page can be written to
any physical page and cleaning is needed only when there
are almost no free pages in the storage. Therefore, the
cleaning cost is relatively small. However, this scheme
requires a large memory space for a large-sized flash
memory. For example, for an 8-Gbyte flash memory with
page size 2 Kbytes, four million entries (i.e., 16 Mbytes if the
size of each entry is 4 bytes) are needed in the mapping table.

To reduce the memory requirement, BAT-based FTLs
[10], [11] were proposed. In the BAT scheme, each logical

754 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011

block has a corresponding data block to accommodate page
writes to that logical block. The LPN is divided by the
number of pages in a block to get the logical block number
(i.e., the quotient) and the page offset (i.e., the remainder).
The former is used to index the mapping table to get the
physical address of the data block, and the latter is used to
locate the target page in the data block. If the target page is
live (i.e., page overwrite), in-place update is used. That is, the
data block, say D, is reclaimed by copying all the up-to-date
data of the logical block from D and the write request to a
free block F and then erasing D. After the reclamation, F is
used as the new data block. This reclamation is needed due
to the limitation that each logical page can be written only to
a fixed offset of a physical block. Such limitation usually
leads to low space utilization since a significant amount of
free pages might exist in the to-be-erased blocks (i.e., the
block D mentioned above). For example, frequently updat-
ing a small number of pages in a logical block could easily
lead to low space utilization of the corresponding data block.
Erasing these free pages, instead of using them to buffer page
writes, increases the frequency of block reclamation.

Several HAT-based FTLs [2], [3], [4], [5] have been
proposed to increase the space utilization, while keeping
the size of the mapping information small. In these FTLs,
most of the blocks (i.e., data blocks) are managed via the
BAT scheme. However, by managing a small number of log
blocks via the PAT scheme to accommodate frequently
updated pages, the space utilization is increased. HAT also
utilizes the out-of-place update mechanism. Page writes
that cannot be accommodated by the data blocks are
satisfied by the log blocks, and the pages containing the
old data become dead. Since the blocks managed by PAT
are limited to a small number, the memory requirement of
HAT is comparable to that of BAT. Cleaning in HAT-based
FTLs is done by reclaiming log blocks. When a log block
needs to be reclaimed, it is merged with its corresponding
data blocks. After the merge, a free log block is obtained to
accommodate future writes.

As shown in Fig. 1, three types of merge could occur
depending on the status of the data and the log blocks. In
Fig. 1a, a full merge can be done by copying the live pages
either from the data block or the log block to a free block F ,
erasing both the data and log blocks, and then using F as
the new data block. In Fig. 1b, a partial merge can be done by
copying the live pages in the data block to the free space of
the log block, erasing the data block, and then prompting
the log block as the new data block. In Fig. 1c, all the up-to-
date data were written in the log block sequentially and
thus the merge operation can be done simply by switching
the roles of the log and data blocks and erasing the original
data block, which is called switch merge. Of the three types

of merge operations, the switch merge has the lowest cost
while the full merge results in the highest cost. Note, in
some HAT-based FTLs, a log block might correspond to
multiple data blocks (i.e., the log block accommodates page
overwrites belonging to multiple logical blocks) and thus
reclaiming the log block requires multiple merges, each of
which corresponds to a data block. In this paper, we define
the page density of a log block as the number of data blocks
corresponding to it. In the following, we describe several
HAT-based FTLs.

BAST [1] allows each data block to have at most one
dynamically allocated log block accommodating overwrites
of that data block. When an allocated log block cannot
accommodate the current write, it is reclaimed by merging
with its data block. Moreover, if all the log blocks have been
allocated, a further log block allocation would cause one of
the allocated log block to be reclaimed. This FTL suffers
from the log block thrashing problem [3] (i.e., frequent
erasure of log blocks with low utilization) if the number of
frequently updated blocks accommodating small random
writes is larger than the number of log blocks.

FAST [3] eliminates the problem by using fully associa-
tive log blocks. That is, a log block can accommodate page
overwrites of any data blocks. In FAST, one special log
block called the SW log block is reserved for sequential
overwrites and the other log blocks called RW log blocks
are for random overwrites. The SW log block corresponds
to a single data block. If a sequential overwrite cannot be
satisfied by the current SW log block, the SW log block is
merged with its corresponding data block to get a free
SW log block. A RW log block can correspond to multiple
data blocks. If a random overwrite cannot be satisfied by
the RW log blocks because all the RW log blocks are fully
occupied, FAST selects a victim RW log block in a round-
robin (RR) fashion and merges the victim with its
corresponding data blocks. FAST may still erase low-
utilized blocks. For example, a victim log block may be
merged with multiple low-utilized data blocks.

AFTL [2] allows each data block to have at most one log
block for satisfying overwrites of that data block. When a
log block becomes full, its live pages are regarded as hot
and the mapping information corresponding to these live
pages is inserted into a page-level mapping table, which
may cause the eviction of the mapping information of some
other hot pages due to the limited memory space reserved
for the mapping table. The eviction is based on LRU and
each selected victim hot page will be migrated back to the
corresponding data block or log block. Since each log block
corresponds to a single data block, AFTL also has the block
thrashing problem.

SUPERBLOCK [4] allows a group of adjacent logical
blocks to share a number of log blocks so as to increase the
space utilization while keeping the page density of the log
blocks low. The limitation of SUPERBLOCK is that it stores
the page-level mapping information of a block group in the
spare area, which reduces the space for Error Correction
Code (ECC). For example, SUPERBLOCK requires 44 bytes
of each per-page spare area, whose typical size is 64 bytes,
on flash memory modules with 64 pages per block. As a
consequence, only a 20-byte space is left for ECC, reducing

CHIAO AND CHANG: ROSE: A NOVEL FLASH TRANSLATION LAYER FOR NAND FLASH MEMORY BASED ON HYBRID ADDRESS... 755

Fig. 1. Three types of merge operations.

the quality of the ECC. This problem gets worse for NAND
flash modules with even more pages per block (e.g., 128)
[12]. Based on the block grouping concept of SUPERB-
LOCK, Park et al. proposed an offline method [6] to
determine the values of the block group size and the
maximum number of log blocks allocated for a block group,
which can be applied on systems with fixed workloads.

Similar to FAST, the LAST FTL [5] serves sequential and
random overwrites by using different log blocks. In LAST,
multiple SW log blocks are used to satisfy concurrent write
streams, and the set of the RW log blocks is divided into hot
and cold blocks to reduce the merge cost. Although
multiple SW log blocks are utilized, LAST may still erase
low-utilized blocks when less-than-a-block sequential
writes corresponding to a significant number of logical
blocks are presented.
�-FTL [14] stores the mapping information in a form of

an extent-based �-Tree [13]. In �-FTL, the mapping
information (i.e., the �-Tree) is stored in the flash memory
and only a small cache is needed in RAM to keep the
recently used mapping information. Although the required
RAM size can be reduced, the design has some overhead.
Specifically, reading a logical page in �-FTL requires at
most h page read operations for �-Tree lookup, where h is
the height of the tree. Moreover, during cleaning of the
�-Tree, at most n�h page read operations are needed to
determine whether the pages in a victim block are live,
where n is the number of pages recorded as live in that
block and h is the height of the tree.

2.3 Cleaning Policies

A number of cleaning policies that consider reclamation
efficiency, such as greedy [15], cost-benefit [16], Cost-Age-
Time (CAT) [17], and CICL [18], have been proposed. The
greedy policy selects the block with the minimum number
of live pages as the victim in order to minimize the cost of
page copying. The cost-benefit policy selects the block with
the maximum value of the following formula as the victim:

age�ð1� uÞ=2u;

where u represents the ratio of number of live pages to the
total number of pages in the candidate block, and age
denotes the time since the last modification of the block. In
the formula, (1� u) and 2u represent the benefit and cost of
the reclamation, respectively. The age is considered to avoid
reclaiming young blocks, whose pages are likely to be
invalidated in the near future.

The CAT and CICL policies consider both reclamation
efficiency and wear leveling. CAT selects the block with the
minimum value of the following formula as the victim:

ðu�eÞ=ðage�ð1� uÞÞ;

where e and age represent the number of times the
candidate block has been erased and the elapsed time since
the last reclamation of candidate block, respectively. CICL
selects the block with the minimum value of the following
formula as the victim:

��e=ð1þ emaxÞ þ ð1� �Þ � v;

where 0 < � < 1. In this formula, emax denotes the max-
imum value of e among all the candidate blocks, and v

represents the ratio of number of live pages to the total
number of nonfree pages in the candidate block. As shown
in the formula, CICL selects the victim based mainly on
wear leveling when � is close to 1, which happens when the
difference between the maximum and the minimum
numbers of e among the candidates is large. On the
contrary, it selects the victim mainly based on the
reclamation efficiency when � is close to 0, which happens
when the difference between the maximum and the
minimum numbers of e among the candidates is small.

Basically, these policies are used in PAT-based FTLs.
They select a victim block for reclamation based on the
condition of the candidate block, which is not sufficient for
log block reclamation in HAT-based FTLs. Specifically, log
block reclamation involves merging the victim log block
with its corresponding data blocks, which was not
considered in these policies. In this paper, we propose a
merge-aware cleaning policy that considers the states of not
only the candidate log blocks but also their corresponding
data blocks. As shown in Section 4.3, such extra considera-
tion improves the reclamation efficiency.

3 DESIGN OF ROSE

As shown in Fig. 2, ROSE utilizes the HAT scheme, which
divides the flash memory into two areas, a large data area
managed by BAT and a small log area managed by PAT. The
former contains a set of data blocks while the latter contains a
set of log blocks. Each logical block has a corresponding data
block for accommodating the writes to that logical block. For
each write to a logical page, ROSE writes the data to the
target physical page in the data block if the physical page is
free. If the write cannot be accommodated by the data block
(i.e., the target page is not free), the data are written to the log
area in the log order. In contrast to FAST and LAST, ROSE
does not have special log blocks for storing sequential
(over)writes. Instead, it relies on the entire-block writing
technique mentioned in Section 3.1 to handle sequential
writes. When the log area has run out of free pages, a victim
log block is selected to be merged with its corresponding
data blocks. That is, for each live page p in the victim log
block, the live pages belonging to the same logical block as p
are copied from the corresponding data block and log blocks
(including the victim log block) to a new block, which serves
as the new data block for the logical block. After the page
copying, the victim log block and the corresponding data
blocks become obsolete and can be erased.

ROSE differs from existing HAT-based FTLs in that it
incorporates three novel techniques to reduce the cleaning
cost, namely, entire-block writing, merge-aware round robin
cleaning policy, and free page reuse. In the following, we
describe these techniques.

756 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011

Fig. 2. Architecture of ROSE.

3.1 Entire-Block Writing

In some HAT-based FTLs, a log block may correspond to
multiple logical blocks. This leads to a higher cleaning cost
for reclaiming the log block since merging the block with all
its corresponding data blocks is required. To reduce the
possibility of such high-cost reclamation, several HAT-based
FTLs such as FAST and LAST reserve one or more log blocks
to accommodate sequential overwrites. Each of such log
blocks, called a sequential write log block, corresponds to a
single logical block. In an SW log block, each logical page is
written to its corresponding offset (i.e., the data in ith logical
page of a logical block are written to the ith physical page of
the SW log block), hoping that the log block can be promoted
as a new data block later in a switch merge.

Under the SW log block approach, with a given overwrite
request R that contains pages belonging to a logical block B,
the FTLs have to predict whether or not the other pages
belonging to B will be overwritten in the near future. If they
will, all the pages belonging toB should be placed in the same
log block so that the reclamation of this log block can be done
in a switch merge (i.e., erasing the data block corresponding
to B and promoting the log block as the new data block).
Therefore, if the other pages are predicted to be overwritten
in the near future, R would be served by an SW log block.

The main problem of the SW log block approach is that
frequent misprediction would cause frequent block erasure.
Specifically, FAST uses a single SW log block and serves an
overwrite to a logical page by the SW log block if the page is
the first page of a logical block or the page corresponds to
the first free page of the SW log block. That is, FAST predicts
that an overwrite to the first page of a logical block will be
followed by overwrites to the other pages in that block. As a
consequence, in FAST, a workload that repeatedly over-
writes the first page of a logical block may cause the
(partially full) SW log block to be repeatedly merged with its
corresponding data block. LAST uses a small number of
SW log blocks and serves a write request via an SW log
block if the size of the request is equal to or larger than a
predefined threshold (e.g., 4 Kbytes). As a consequence,
semisequential write requests (i.e., requests with sizes
smaller than the block size but larger than or equal to the
threshold) corresponding to a large number of logical blocks
could lead to a large number of merges between partially
full SW log blocks and their corresponding data blocks.

ROSE utilizes a fundamentally different approach for
handling sequential overwrites. Specifically, it adopts a
technique called Entire-Block Writing, which detects se-
quentiality in the current write request instead of predicting
sequentiality. Therefore, misprediction would never occur.
EBW detects entire-block overwrites and utilizes free blocks,
instead of SW log blocks, to serve those writes. With EBW,
each write request is divided into a number of page-level
subrequests and block-level ones. For example, on a NAND
flash module with 64-page blocks, a write request with
130 pages starting from LPN 0 will be divided into two
block-level subrequests (i.e., for LPNs 0 to 63 and LPNs
64 to 127) and two page-level subrequests (i.e., for LPNs 128
and 129). For each page-level subrequest, the data are
written to the log area in the log order if the subrequest is an
overwrite. However, each block-level subrequest is served

by a free block. Specifically, given a block-level subrequest
that corresponds to logical block B, the data are written to
the data block corresponding to B if the data block is
originally free. Otherwise, the subrequest overwrites one or
more logical pages belonging to B and thus EBW uses
another free block, say F , to serve this subrequest. After the
subrequest has been served, F becomes the new data block
corresponding to B, and the original data block (which
contains no live pages) can be erased if cleaning is needed.
Note that, such a free block is always available since HAT-
based FTLs always reserve at least one free block for
buffering the result of a full merge. With the FPR technique
mentioned in Section 3.3, the erasure of the original data
block can be delayed and the free pages in it can be used to
buffer further writes.

Fig. 3 illustrates an example showing the difference
between EBW and the SW log block approach in FAST.
Assume that the flash memory consists of three data blocks
and two log blocks, with each block containing four pages,
and initially blocks A, B, and C are the data blocks of logical
blocks 0, 1, and 2, respectively. Figs. 3a and 3b illustrate the
handling of the page write sequence (0, 1, 2, 3, 5, 9, 4, 8)
under the SW log block approach in FAST and the EBW
approach, respectively. In Fig. 3a, pages 0, 1, and 2 are
written to the SW log block L since page 0 is the first page of
a logical block and pages 1 and 2 correspond to the first two
free pages of the SW log block after the write of page 0.
Page 3 can be served by the data block A, and pages 5 and 9
are served by the RW log block M. The same as page 0,
page 4 also needs to be written to the SW log block since it is
the first page of a logical block. This requires merging L
with A. After the merge, L becomes the new data block. The
old data block A is erased and becomes the new SW log
block to accommodate page 4. Similarly, serving page 8
requires another merge. After the merge, A becomes the

CHIAO AND CHANG: ROSE: A NOVEL FLASH TRANSLATION LAYER FOR NAND FLASH MEMORY BASED ON HYBRID ADDRESS... 757

Fig. 3. Write handling under FAST (a) and EBW (b).

new data block. The old data block B is erased and becomes
the new SW log block to accommodate page 8. Therefore,
the cleaning cost under FAST involves erasing two blocks
and copying three pages. In Fig. 3b, pages 0, 1, 2, 3 are
served by a free block, say L, which then becomes the new
data block of logical block 0 via a switch merge. The old
data block A is erased. Since writes to pages 5, 9, 4, 8 are not
entire-block overwrites, these pages are written to a log
block, say A. Therefore, the cleaning cost under EBW is only
the erasure of one block.

As a result, EBW prevents the pages of an entire-block
write from being placed into multiple log blocks, reducing
the possibility of high-cost reclamation and achieving the
goal of SW log blocks without using them. Moreover, since
there is no need to predict whether or not a request should
be served by an SW log block, log block reclamation
resulting from misprediction is eliminated.

The effectiveness of EBW depends on the frequency of
entire-block writes. Using MLC flash memory and multi-
channel architectures in SSDs might lead to increased block
size and reduced frequency of entire-block writes. Never-
theless, modern operating systems such as Windows 7 and
new versions of Linux tend to issue very large write
requests (e.g., larger than 2 Mbytes). Moreover, several
flash-aware cache management techniques such as BPLRU
[19] tend to produce entire-block writes. These help EBW to
remain effective in modern computing systems.

3.2 Merge-Aware Cleaning Policy

As described in Section 2.3, many cleaning policies such as
greedy, cost-benefit, and CAT, select a victim block based on
the condition of the candidate blocks. For example, the
greedy policy selects the block with the minimum number of
live pages as the victim in order to minimize the cost of page
copying. Although these policies perform well in PAT-based
FTLs, they are not suitable for HAT-based FTLs since log
block reclamation in a HAT-based FTL is different from
block reclamation in a PAT-based FTL. Specifically, the
former involves merging with data blocks, which was not
considered in the above policies. For example, the cost of
reclaiming a log block with three live pages is not necessarily
lower than that of reclaiming another log block with six live
pages since the former may involve copying more pages
from the corresponding data blocks and erasing more blocks.

In this paper, we propose a new cleaning policy called
MARO for a HAT-based FTL. Similar to round robin, which
is used in FAST, MARO prevents reclaiming young blocks.
According to temporal locality, live pages in the young
blocks might be invalidated in the near future. Therefore,
delaying the reclamation of a young block will likely lead to
less page copying and block erasing overhead. Moreover,
when reclaiming a log block, MARO considers the merge
cost, which is related not only to the state of the log blocks
but also to the state of the data blocks corresponding to
those log blocks.

In MARO, dead blocks will first be selected as the
victims. If no such blocks are available, MARO selects an
old block that has a low merge cost as the victim.
Specifically, it selects the log block with the maximum
value of score, where the score of a log block Li can be
expressed as

scoreðiÞ ¼ ageðiÞ�Wage � costðiÞ: ð2Þ

In (2), age(i) represents the elapsed time since the last
reclamation of log block Li, Wage denotes the weight of the
block age, and cost(i) denotes the merge cost of Li. As
mentioned before, a log block Li may correspond to
multiple data blocks and thus reclaiming Li involves
merging it with all its corresponding data blocks. For ease
of computation, we assume a full merge is performed
between Li and each of its data blocks. For each data
block Dj, two sets of live pages should be copied to a new
data block Dj’, which replaces the role of Dj after the merge.
The first set is the live pages of Dj, and the second set is the
live pages that correspond to the dead pages of Dj. The
second set of live pages is stored in the log area (including
the victim log block Li). After merging with all the
corresponding data blocks, the victim log block and the
data blocks are erased. Therefore, the merge cost can be
expressed as

costðiÞ ¼
Xn

1

ðlpcj þ dpcjÞ�Cpc þ ðnþ 1Þ�Cerase: ð3Þ

In (3), n denotes the number of data blocks correspond-
ing to Li. The lpcj and dpcj denote the numbers of live pages
and dead pages in data block Dj, where 1 <¼ j <¼ n,
respectively. Finally, Cpc and Cerase denote the cost of
copying a page and erasing a block, respectively. Note that
in (3), the first part represents the cost of page copying and
the second part represents the cost of block erasure. Since
both page copying and block erasure can be done in either
the foreground or the background, we consider the overall
cost instead of dividing the cost into foreground and
background parts.

From (3), the merge cost is related to the page density of
the log block (i.e., the value of n). Higher page density tends
to result in higher merge cost. Moreover, the cost is also
related to the state (i.e., number of live/dead pages) of data
blocks corresponding to the log block. A larger number of
live pages in the data blocks lead to higher merge cost.
Similarly, since each dead page in the data block has a
corresponding live page in the log area, which also needs be
copied to the new data block, a larger number of dead pages
also lead to higher merge cost. In summary, the merge cost
is related to the state of the log block and the corresponding
data blocks, and the cost of block erasure and page copying.
As shown in Fig. 7, considering the merge cost in a cleaning
policy results in more efficient reclamation than the
previous policies that consider only the state of the log
blocks such as CAT.

Although a dead page in the data block also results in
the copying of a page, the net cost of a dead page is lower
than that of a live page. This is because page copying
corresponding to a dead page does have some benefits.
Specifically, it causes the invalidation of a log page, say p,
and hence reduces the cost of reclaiming the log block that
contains p in the future. For example, it might reduce the
page density of that log block so that the reclamation of that
log block in the future will involve less erase operations.
Therefore, (3) is modified as

costðiÞ ¼
Xn

1

ðlpcj þ ��dpcjÞ�Cpc þ ðnþ 1Þ�Cerase; ð4Þ

758 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011

where � < 1 and it denotes the ratio of the net cost of a dead
page, when compared with the net cost of a live page.
Traditional merge cost evaluation approach, in which � is
always equal to 1, completely ignores the benefit of the
dead pages. On the contrary, MARO respects the benefit
and hence always setting � as smaller than 1. Substituting
(4) to (2) yields

scoreðiÞ ¼ ageðiÞ �Wage �
Xn

1

ðlpcj þ � � dpcjÞ � Cpc

� ðnþ 1Þ�Cerase;
ð5Þ

where � < 1. In (5), Wage and � are controlled by the system
designers. A large value of Wage leads to a policy similar to
round robin, and a zero value of Wage leads to a purely cost-
driven policy. The parameter � determines whether the
benefit of the dead pages is regarded as significant. Other
variables in (5) can be obtained from the runtime informa-
tion or the datasheet of the flash device.

The differences between MARO and previous log block
reclamation policies in HAT-based FTLs are as follows: first,
MARO considers the age and the merge cost of a log block at
the same time. FAST considers only the block age and thus
could reclaim high-cost log blocks. LAST considers the
merge cost. However, the block age is not considered when
selecting a victim according to the merge cost. As mentioned
above, live pages in the young blocks might be invalidated
in the near future and thus delaying the reclamation of these
blocks, as the MARO does, will likely lead to lower cleaning
cost. In Section 4.3, we demonstrate that lower cleaning cost
can be achieved by considering both factors at the same
time. Second, MARO uses a different merge cost evaluation
approach that treats the net cost of copying a page
corresponding to a dead page in a data block as lower than
that of copying a page corresponding to a live page in a data
block, and it uses the parameter � to control the ratio of the
former to the latter. In the previous approach such as that
used in LAST, the two types of cost are treated as equal since
the benefit of copying a page corresponding to a dead page
in a data block is totally ignored. In Fig. 10, we show that
respecting the benefit and setting � smaller than 1 could
result in the reduction of the cleaning cost.

Although MARO tends to select an old block as the
victim, which is helpful in wearing the log blocks evenly,
global wear leveling that considers both the log blocks and
the data blocks is beyond the scope of MARO. To achieve
global wear leveling, an erased block is not used to serve the
incoming write directly. Instead, it is returned to the free
block pool of the storage, and the free block with the
minimum erase count in the pool is used to serve the write.
The erase count of a block represents the number of times
the block has been erased. Moreover, a simple wear-leveling
technique proposed in eNvy [20] is utilized. Assume that
the blocks with the minimum and maximum erase counts
are C and H, respectively. If the difference between the
erase counts of C and H is larger than a threshold Thc, the
data of C and H are swapped.

Note that, the computation overhead needs to be
addressed for the implementation of MARO. Instead of
recomputing scores for all the log blocks every time when
cleaning is required, we amortize the score computation

and the search of the maximum score over multiple flash
memory operations. We maintain SdataðjÞ, the subscore of
each data block Dj, expressed as

SdataðjÞ ¼ �ðlpcj þ ��dpcjÞ�Cpc; ð6Þ

which is a part of (5) related to the state of a data block.
When a page write causes the association between a data
block D and a log block L (i.e., the write causes L to
correspond to D), the subscore of D is added to the score of
L. Each time when a page write changes the state of D, the
subscore of D is updated and the scores of the log blocks
corresponding to D are also updated. Finally, when a page
write causes the disassociation between D and L, the
subscore of D is subtracted from the score of L. Similarly,
according to (5), the score of a log block L is added/
subtracted by (�1�Cerase) each time when the page density
of L is increased/decreased by 1.

Upon the first page write to a log block, the score of the
log block is initialized as H minus Cerase, where H
represents the initial block age multiplied by Wage and
Cerase reflects the cost of erasing the log block. As mentioned
before, the block age represents the elapsed time since the
last reclamation of a log block, which can be implemented
by using 0 as the initial block age and adding the ages of all
the log blocks other than the erased log block by 1 when a
log block is erased. However, this requires updating a large
number of scores upon block erasure. Therefore, when a log
block is erased, we keep the ages of the other log blocks
intact and subtract the initial block age by 1. Consequently,
H is decreased by Wage each time when a log block is
erased.

Searching the maximum scores efficiently is also an
implementation issue. To reduce the search time during the
cleaning procedure, the log area is divided into multiple
clusters, each of which is in turn divided into multiple
eight-block segments. Each time the score of a log block is
updated, the maximum score in the corresponding cluster is
searched and recorded. Therefore, during the cleaning
procedure, only the maximum scores of the clusters need
to be compared. To speed up the search time further,
hardware circuits were implemented for the search of the
intracluster maximum scores and the maximum score
among the clusters.

From the above description, amortizing the score
computation eliminates the multiplication operations. In
addition, although � is a floating-point value, floating-point
operations can be avoided by multiplying (5) by a constant
so that all the terms in (5) become integers. The multi-
plication can be done offline. As a result, the implementa-
tion of MARO does not require the SSD controller to
perform multiplications or floating-point operations, suita-
ble for current integer-processor-based SSD controllers.

With the above amortization method, the worst case
execution time of a page write occurs when the write
changes the state of a data block associated with K log
blocks, where K is equal to the number of pages per block.
In this case, K scores need to be updated and the maximum
scores in the corresponding clusters need to be searched
and recorded, which take OðK�NSCÞ time where NSC is the
number of segments in a cluster. Since K and NSC are both

CHIAO AND CHANG: ROSE: A NOVEL FLASH TRANSLATION LAYER FOR NAND FLASH MEMORY BASED ON HYBRID ADDRESS... 759

constants, the time complexity of a page write is O(1). The
time complexity of the cleaning procedure is OðNLÞ, where
NL is the number of log blocks in the storage. Such
complexity is the same as LAST. In addition, the space
complexity of ROSE is OðND þNLÞ, where ND is the
number of data blocks in the storage, the same as many
HAT-based FTLs such as FAST and LAST.

3.3 Reusing Free Pages of Obsolete Blocks

As mentioned above, low space utilization can lead to high
cleaning cost. In ROSE, we propose the Free Page Reuse
technique to increase the space utilization. FPR reuses free
pages of obsolete blocks, which are to-be-erased blocks
whose live pages have already been copied out. Therefore,
an obsolete block contains only dead or free pages and FPR
tries to reuse these free pages to buffer more page writes.

In ROSE, log blocks become obsolete only after they are
full. However, obsolete data blocks could still contain free
pages since they are managed by BAT [2]. Thus, FPR
considers reusing free pages of obsolete data blocks. Instead
of erasing an obsolete block O, FPR tries to select a full log
block, say L, and swaps the roles of O and L. The procedure
of the swap operation is as follows: first, the live pages of L
are copied to O. Second, O is migrated to the log area (i.e.,
become a new log block) and L is erased. Note, L is not
migrated to the data area since it is not swapped with a
valid data block. Instead, it is swapped with an obsolete
block that originally needs to be erased.

The cost and benefit of the swap operation depends
highly on both the number of free pages in the obsolete
block, say f , and the number of live pages in the full log
block selected for swap, say l. Specifically, l page copy
operations are required and (f � l) free pages can be
obtained to buffer further page overwrites after the swap.
For effectiveness of the swap, FPR selects the full log block
with the minimum number of live pages to swap. Note that
a swap is performed only when the value of (f � l) is larger
than zero. Otherwise, no swap is performed and ROSE just
erases the obsolete block.

Fig. 4 illustrates an example of the swap procedure.
Assume that the flash memory consists of three data blocks
(A, B, C) and three log blocks (L, M, N) (and an extra free
block F for buffering the result of a full merge), with each
block containing four pages. We also assume that data
blocks A, B, and C correspond to logical blocks 0, 1, and 2,
respectively. The top of Fig. 4 illustrates the state of the
blocks after the page write sequence (0, 1, 0, 1, 4, 5, 8, 4, 5, 0,
1, 0, 8, 0, 1, 4, 4, 6). When a further write to logical page 6
arrives, the log area is full and thus a log block, say M, is

reclaimed by merging the block with its corresponding data
block (i.e., data block C). The merge involves not only live
page copying but also erasure of the two blocks. Specifi-
cally, without swapping, M and C are erased after the
merge. FPR tries to avoid erasing C since it still has plenty
of free pages. To avoid erasing C, FPR swaps log block L
with C since the former is the full log block with the
minimum number of live pages. As a result, page 5 is
copied to C, which replaces the role of log block L, and L is
erased. Therefore, with swapping, M and L are erased. Two
more free pages are obtained due to the swap operation,
and the cost is the copying of one page.

The above example illustrates the reclamation of a log
block with page density of 1. In general, reclaiming a log
block with page density of n may trigger m swap
operations, where 0 <¼ m <¼ n, and the benefit Bswap

and extra cost Cswap of these swap operations can be
expressed as

Bswap ¼
Xm

1

ðfi � liÞ; Cswap ¼
Xm

1

li; ð7Þ

where fi denotes the number of free pages in obsolete (data)
block i that is involved in swap, and li denotes the number
of live pages in the full log block swapped with block i.
From (7), a swap is beneficial if there are a large number of
free pages in the obsolete blocks and a small number of live
pages in the log blocks selected for swap. Generally, small
random write dominated workloads can lead to a large
number of free pages in the obsolete data blocks. Moreover,
in a flash storage system with moderate number of log
blocks, FPR can usually select a full log block with a very
small number of live pages to swap.

Note that, the effectiveness of FPR might drop with the
growth of the number of logical pages utilized by the file
system. Traditionally, there is no way to allow a file system
to notify the storage that a specific logical page is no longer
utilized. Therefore, with the aging of the flash storage, the
number of utilized logical pages grows and the expected
value of the number of free pages in each obsolete data
block might decrease. With the support of TRIM, a recently
proposed ATA command [21], the logical pages no longer
been utilized by the file system can be released. Therefore,
the drop in the effectiveness of FPR due to the aging of the
flash storage can be avoided.

3.4 Metadata Bookkeeping

In this section, we describe the overhead of metadata
bookkeeping in ROSE. An FTL maintains metadata such as
LPN-to-PPN mapping, page state, etc. Typically, the
metadata are stored in RAM to allow fast updating.
However, some information should be stored in the flash
memory to allow the reconstruction of the metadata during
power-on initialization.

To allow the reconstruction of the page state (i.e., live/
dead/free) and the LPN-to-PPN mapping, most FTLs store
the LPN and a sequence number, which is a monotonically
increasing number associated with each write, in the spare
area of each written page. By scanning all the pages in the
flash memory during the power-on initialization, the states
of all the pages can be determined. A page is free if the spare

760 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011

Fig. 4. An example of the swap operation.

area is empty (i.e., containing all 1s), live if it has the newest
sequence number among all the pages with the same LPN,
and dead otherwise. The mapping information can be
reconstructed from the LPNs of the live pages. In addition,
erase counts can be stored in extra flash pages to handle the
wear-leveling issue.

Besides the above information, HAT-based FTLs such as
FAST, LAST, and ROSE generally also store a 1-bit flag in the
spare area to tell if a given block is a data or a log block (i.e., 0
for data block and 1 for log block). Traditionally, examining
the flag in one of the written pages in a given block is
sufficient to determine if the block is a data or log block.
However, since FPR may change the role of a data block to a
log block, the flags in all the written pages in a block may
need to be examined in ROSE. If a given block has any
written page(s) with the flag set as 1, the block is a log block.
Compared to traditional HAT-based FTLs, ROSE maintains
two more types of metadata, the age and score of each log
block. According to Section 3.2, the age can be stored in the
spare area upon the first page write to a log block, allowing it
to be reconstructed easily upon power-on initialization. With
the presence of the page state and block age information, the
scores can be reconstructed.

From the above description, all the metadata of ROSE
can be constructed by scanning the spare areas and extra
flash pages of the storage during initialization, which is
O(N) in time complexity where N is the number of pages in
the storage, the same as those in FAST and LAST. Note that,
it is also possible to maintain all the metadata in extra flash
pages so as to reducing the frequency of page scanning. In
that approach, the time to construct the metadata would be
proportional to the size of the metadata. Compared to
FAST, the additional time for constructing the metadata in
ROSE is the loading of the (age, score) pair for each log
block, which is OðNLÞ in time complexity where NL is the
number of log blocks in the storage.

4 PERFORMANCE EVALUATION

4.1 Experimental Setup and Traces

We develop a trace-driven simulator to evaluate the
performance of ROSE. In addition to ROSE, we also
implement FAST and LAST, two well-known and efficient
HAT-based FTLs, in the simulator for performance compar-
ison. Table 1 shows the default values of the parameters in the

simulator. An 80-Gbyte flash storage (i.e., 655,360 blocks) is
simulated. In all the experiments except from the one
corresponding to Table 5, 2.5 percent of the storage (i.e.,
16,384 blocks) is reserved for the log area. In Table 5, the
cleaning cost of the FTLs under different log area sizes is
reported. In the LAST FTL, one-eighth log blocks are SW log
blocks, which serve write requests with sizes equal to or
larger than 8 Kbytes. The 8-Kbyte threshold is used since it
results in the best performance in most of the traces. All the
time-related values in Table 1 are obtained from the
specification of the Samsung K9K4G08U0M NAND flash
chip [22]. Note that, the values ofWage and� shown in Table 1
are used in all the experiments except for those correspond-
ing to Figs. 9 and 10. In the experiments corresponding to
Figs. 9 and 10, the values of Wage and � are varied,
respectively, to evaluate their effect on the cleaning cost.

As shown in Table 2, six device-level traces are used in the
experiments. The LinuxPC trace is a 10-day workload on a
Linux laptop computer, which includes daily user activities
such as web browsing, file browsing and editing, multi-
media file playing, and program compilation. The Postmark
trace is generated from the execution of the PostMark file
system benchmark [23], which emulates the workload of an
Internet email server. PostMark first creates 80,000 small
files, and performs 1,000,000 transactions such as create,
delete, read, and append on the files. This causes a large
number of small random writes to the storage. The LargeFile
trace is the workload of creating and deleting MP3 files,
whose average size is about 4 Mbytes, and is dominated by
large sequential writes. The ratio of file creation to deletion is
set as 10 and the workload terminates until the total number
of existing files exceeds 10,000. The Fin1 and Fin2 traces
obtained from [24] are workloads of OLTP applications
running at two large financial institutions. The 4VMs trace is
a mixed workload generated from the execution of four
virtual machines on top of the VirtualBox-3.1.2 hypervisor.
Each virtual machine, equipped with 768-Mbyte memory
and 20-Gbyte virtual disk, runs one of the following
workloads on the Linux kernel 2.6.31: file server, web proxy,
mail server, and OLTP. The workloads are obtained from
the FileBench file system benchmark [25]. The number of

CHIAO AND CHANG: ROSE: A NOVEL FLASH TRANSLATION LAYER FOR NAND FLASH MEMORY BASED ON HYBRID ADDRESS... 761

TABLE 2
Traces

TABLE 1
Default Values of the Parameters

512-byte sectors written and the average size of the write

requests in each trace are also shown in Table 2.
In the following sections, we first present the perfor-

mance of the three proposed techniques (i.e., EBW, MARO,

and FPR) in ROSE. An overall performance comparison
among FAST, LAST, and ROSE is then presented.

4.2 Effect of Entire-Block Writing

The effectiveness of EBW is demonstrated by comparing its

performance with different sequentiality prediction meth-
ods. Fig. 5 shows the cleaning cost, which includes block

erase time and page copying time, of different methods for

handling sequential overwrites. In the figure, EBW corre-

sponds to ROSE with EBW enabled, and both MARO and

FPR disabled. FP, LP, and CP correspond to three different

prediction methods. FP denotes the FAST FTL, which

predicts sequentiality based on LPN. It serves a page

overwrite by the SW log block if the following condition

holds: the write is to the first page of a logical block or

corresponds to the first free page of the SW log block. LP
denotes a modified version of FAST that utilizes the

prediction method of the LAST FTL (i.e., serves a write

request via the SW log block if the following condition

holds: the request size is equal to or larger than 8 Kbytes).

CP denotes another modified version of FAST that utilizes a

prediction method based on the combination of FP and LP.

Specifically, it serves a write request via the SW log block if

both of the conditions of FP and LP hold. Finally, NP

denotes a modified version of FAST that does not utilize

any techniques for detecting or predicting sequentiality
(and thus, no SW log blocks are used). Since the values of

the traces have different orders of magnitude, they are

normalized to the cleaning cost of EBW for easy illustration.

From Fig. 5, although the prediction methods could result
in lower cleaning cost in sequential write dominated work-
loads, mispredictions could occur quite frequently in ran-
dom write dominated workloads such as Postmark, Fin1, and
Fin2, leading to increased cleaning cost in the latter work-
loads when compared to the FTL without using any
techniques to predict or detect sequentiality. The mispredic-
tion ratio, which represents the ratio of the number of merges
of the SW log block when the block is partially full to the total
number of merges of the SW log block, is shown in Fig. 6. A
high misprediction ratio indicates that the SW log block is
usually merged when it is only partially full. The total cost of
such partially full SW log block merges, normalized to the
overall cleaning cost, is also presented in Fig. 6.

Fig. 5 also reveals that, when compared to NP, EBW
results in lower cleaning cost in sequential write dominated
workloads, but without the negative effect (i.e., increased
cleaning cost) in random write dominated workloads. Table 3
shows the percentage of the number of pages written by
entire-block writes under each trace when EBW is used. From
the table, entire-block writes occur more frequently in
sequential write dominated workloads such as LinuxPC
and LargeFile, allowing EBW to achieve lower cleaning cost
under these traces.

4.3 Effect of MARO Cleaning Policy

To evaluate the performance of MARO, we compare it with
two policies, Round Robin, which is used in FAST, and Cost-
Age-Time, an efficient block reclamation policy. Fig. 7 shows
the cleaning cost of RR and CAT normalized to that of MARO.
From the figure, MARO outperforms RR by up to 3.5 times
and CAT by up to 31 percent, respectively, under the traces.
We also implement MARO in the LAST FTL to compare the

762 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011

Fig. 5. Cleaning cost of the methods for handling sequential overwrites
(normalized to the cleaning cost of EBW).

Fig. 6. Misprediction ratios and cost of partially full SW log block merges
in the sequentiality prediction methods.

TABLE 3
Portions of Entire-Block Writes

Fig. 7. Cleaning cost of different cleaning policies (normalized to the
cleaning cost of MARO).

performance of MARO and the cleaning policy used in the
LAST FTL (or simply the LAST policy). Fig. 8 shows the
cleaning cost of the two policies normalized to that of MARO.
From the figure, MARO outperforms the LAST policy by up
to 1.1 times. The results of Figs. 7 and 8 reveal that the
performance improvement of MARO comes mainly from the
reduction of page copying cost. This is because the per-bit
data copying cost is higher than the per-bit data erasing cost.
From Table 1, the cost of copying only six pages is higher than
erasing a whole block. Therefore, MARO would prevent a log
block to be reclaimed if the reclamation involves copying a
large number of pages. This leads to an effective reduction on
the page copying overhead.

Next, we evaluate the performance of MARO under
different values of Wage and �. Fig. 9 illustrates the cleaning
cost of MARO with Wage ranging from 0 to infinity. Note
that, setting Wage as infinity means that MARO selects
victims only based on the block age (without considering
the merge cost) when dead log blocks are not available. For
each trace, five Wage settings are tested, and the results
normalized to the minimum cleaning cost under these
settings are reported. From the figure, setting Wage as 0
results in a relatively large cleaning cost in the LinuxPC,
Fin1, and LargeFile traces, and setting Wage as extremely
large values also results in large cleaning cost in the
LinuxPC and 4VMs traces. This demonstrates that both the
block age and the merge cost need to be considered.
Exceptions appear in the Postmark and Fin2 traces, under
which Wage does not have significant effect on the cleaning
cost. Note that, according to Figs. 7 and 9, setting Wage as
infinity still results in lower cleaning cost than RR. This is
because, as mentioned in Section 3.2, MARO still reclaims
dead log blocks, i.e., blocks with lowest reclamation cost,
before selecting victims based on (5), whereas RR does not
consider merge cost at all.

Fig. 10 shows the cleaning cost of MARO with � ranging
from 0 to 1. For each trace, five � settings are tested, and the
results normalized to the minimum cleaning cost under these
settings are reported. As mentioned before, � is always
smaller than 1 in MARO. The results corresponding to � as 1
are reported to compare the existing merge cost evaluation
approach and that used in MARO. As illustrated in the figure,
setting � as 1 does not always lead to the best performance,
indicating that respecting the benefit of copying pages
corresponding to dead pages of the data blocks helps to
reduce the cleaning cost. For example, under the LinuxPC
trace, the cleaning cost with � as 1 is 15 percent larger than
that with� as 0.25. According to Figs. 9 and 10, we set Wage as
1 and � as 0.5 in the other experiments of this paper.

Below, we present the time of score computation and
maximum score searching. The execution time of the
software part of MARO is obtained by ARMulator, which
simulates a 200 MHz ARM926 processor (16-Kbyte I-cache,
16-Kbyte D-cache, and no floating-point unit). The perfor-
mance of the simulated processor is common for the
processor units in state-of-the-art SSD controllers. The
hardware part is implemented by Verilog HDL and
synthesized by SYNOPSYS DesignVision with TSMC’s
0.18 um cell library. The layout for the hardware design is
generated with SYNOPSYS Astro (for auto placement and
routing), and verified by MENTOR GRAPHIC Calibre (for
DRC and LVS checks).

For each page write, the worst case execution time of the
MARO implementation is 7.6 us (including computation of
scores and search of intracluster maximum scores), which
can be totally hidden from the page write time (263 us). The
size of a cluster is eight segments. During cleaning, 1.2 us is
used for searching the maximum score among the clusters,
which is insignificant when compared to the minimum
cleaning cost (i.e., the block erase time, 2,000 us). In
addition, the gate count of the hardware is 2.5 K, accounting
for only a tiny percentage of the total number of gates in an
SSD controller, which generally has more than one million
gates (for the ECC algorithm, host interface, etc.).

4.4 Effect of Free Page Reuse

To evaluate the performance of FPR, we measure the
cleaning cost with and without the presence of FPR. As
shown in Fig. 11, FPR is effective in Postmark and Fin2.
Specifically, it reduces the cleaning cost by 70 and 19 percent
in the Postmark and Fin2 traces, respectively. The reason can
be seen in Fig. 12, which shows the average space utilizations
with and without the presence of FPR. In Fig. 12, the two

CHIAO AND CHANG: ROSE: A NOVEL FLASH TRANSLATION LAYER FOR NAND FLASH MEMORY BASED ON HYBRID ADDRESS... 763

Fig. 8. Cleaning cost of MARO and LAST (normalized to the cleaning
cost of MARO).

Fig. 9. Cleaning cost with different Wage.

Fig. 10. Cleaning cost with different �.

traces have lower space utilizations when FPR is not present,
meaning that some free pages, which can originally be used
to accommodate more writes, are erased. FPR increases the
space utilizations under these traces, which leads to
reduction of the cleaning cost.

As mentioned in Section 3.3, FPR reuses the free pages of
an obsolete block through a swap operation. Table 4 shows
the average number of pages copied during each swap
operation, the average number of free pages obtained by
each swap operation, and the FPR ratio, under each trace.
The FPR ratio is the ratio of the number of swap operations
to the number of block erase operations under a trace. In
ROSE, an obsolete block can be migrated to the log area
through the swap operation at most once before being
erased, and therefore, FPR ratio can never be larger than 1.
A higher FPR ratio means that swap operation occurs more
frequently in that workload. From Table 4, the cost (i.e., the
number of copied pages) of each swap operation is usually
small compared to the benefit (i.e., the number of obtained
free pages) it brings. FPR is more effective in reducing the
cleaning cost under the Postmark and Fin2 traces due to their
higher FPR ratios.

4.5 Overall Performance

In this section, we compare the overall performance of
FAST, LAST, and ROSE. Fig. 13 shows the cleaning cost
normalized to that of ROSE, in which all the proposed
techniques are enabled. We also show the cleaning cost of
ROSE with FPR disabled for performance comparison.
From the figure, ROSE outperforms FAST and LAST by
34 percent to 47 times and two to six times, respectively.
Even with FPR disabled, ROSE still outperforms FAST and
LAST significantly under almost all the traces. Fig. 14 shows
the write amplification ratio, which is defined in Section 2.1,
of each FTL under each trace. As shown in the figure, ROSE
achieves the lowest WAR among the FTLs under all the
traces. Specifically, it reduces the WAR by up to 1.1 and 1.8
when compared to LAST and FAST, respectively, leading to
up to 39 and 61 percent reduction in the total write time.

Fig. 15 shows the cleaning cost of LAST with different
numbers of SW log blocks. The results are normalized to the
cleaning cost of ROSE. In the figure, all the values are larger
than 1, meaning that ROSE always results in superior
performance than LAST. Moreover, increasing the number
of SW log blocks could help reducing the cleaning cost when
there are few SW log blocks. However, when a large number

764 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011

Fig. 11. Cleaning cost w/ and w/o FPR (normalized to the cleaning cost
w/ FPR).

Fig. 12. Average space utilizations w/ and w/o FPR.

TABLE 4
Statistics of FPR

Fig. 13. Cleaning cost of FAST, LAST, and ROSE (normalized to the
cleaning cost of ROSE).

Fig. 14. Write amplification ratios of FAST, LAST, and ROSE.

Fig. 15. Effect of the number of sequential write log blocks.

of SW log blocks have already been used, further increasing
the number of SW log blocks increases the cleaning cost. This
is not surprising since little space is left for random writes if
too many SW log blocks are used. Table 5 presents the
cleaning cost of FAST, LAST, and ROSE under different log
area sizes, ranging from 1.5 to 3.5 percent of the storage size.
From the table, the cleaning cost usually decreases with the
growth of the log area size. Moreover, ROSE consistently
outperforms the other two FTLs when the log area size is
equal to or larger than 2 percent of the storage size.

Finally, Table 6 shows the result of wear leveling in
ROSE. In this experiment, each trace is executed repeatedly
until the average erase count of the blocks is larger than 20.
From the table, the standard deviations of the erase counts
are small for all the traces, showing that ROSE achieves
wear leveling with the support of the global wear-leveling
technique. Moreover, the overhead of the global wear-
leveling technique (i.e., the cost of swapping the data of hot
and cold blocks) is insignificant compared to the overall
cleaning cost (i.e., less than or equal to 2.01 percent of the
cleaning cost under all the traces) since hot-cold swapping
is not triggered frequently.

5 CONCLUSIONS

In this paper, we propose a HAT-based flash translation
layer, called ROSE, for NAND flash memory. ROSE
integrates three novel techniques, namely, EBW, MARO,
and FPR, to reduce the cleaning cost. Existing HAT-based
FTLs handle sequential overwrites by predicting sequenti-
ality. EBW takes a fundamentally different approach. It
detects sequentiality instead of predicting it, eliminating the
cleaning cost resulting from mispredictions that treat
random or semisequential writes as sequential ones. The
MARO cleaning policy selects a victim log block by
considering the states of both the log blocks and their

corresponding data blocks, improving the cleaning effi-
ciency. In contrast to existing cleaning policies in HAT-
based FTLs, both the ages and the merge costs of the log
blocks are considered at the same time. Finally, the FPR
technique reuses the free pages of obsolete blocks to buffer
further page overwrites, which increases the space utiliza-
tion and reduces the cleaning cost. Through trace-driven
simulation, we have demonstrated the effectiveness of each
proposed technique. Moreover, the results also show that
ROSE can outperform previous HAT-based FTLs by up to
47 times in terms of cleaning cost and by up to 1.6 times in
terms of flash write time.

In the future, further optimizations of the cleaning policy
will be explored. Moreover, techniques that allow ROSE to
satisfy the sequential write constraint of MLC will also be
developed.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
and the editor for their helpful comments on this paper.
This research was supported in part by grant NSC 97-2221-
E-006-138-MY3 from the National Science Council, Taiwan,
Republic of China.

REFERENCES

[1] J. Kim, J.M. Kim, S.H. Noh, S.L. Min, and Y. Cho, “A Space-
Efficient Flash Translation Layer for Compact-Flash Systems,”
IEEE Trans. Consumer Electronics, vol. 48, no. 2, pp. 366-375, May
2002.

[2] C.H. Wu, H.H. Lin, and T.W. Guo, “An Adaptive Flash
Translation Layer for High-Performance Storage Systems,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems,
vol. 29, no. 6, pp. 953-965, June 2010.

[3] S.W. Lee, D.J. Park, T.S. Chung, D.H. Lee, S. Park, and H.J. Song,
“A Log Buffer-Based Flash Translation Layer Using Fully-
Associative Sector Translation,” ACM Trans. Embedded Computing
Systems, vol. 6, no. 3, July 2007.

[4] J.U. Kang, H. Jo, J.S. Kim, and J. Lee, “A Superblock-Based Flash
Translation Layer for NAND Flash Memory,” Proc. Sixth ACM and
IEEE Int’l Conf. Embedded Software, pp. 161-170, 2006.

[5] S. Lee, D. Shin, Y.J. Kim, and J. Kim, “LAST: Locality-Aware
Sector Translation for NAND Flash Memory-Based Storage
Systems,” ACM SIGOPS Operating Systems Rev., vol. 42, no. 6,
pp. 36-42, Oct. 2008.

[6] C. Park, W. Cheon, Y. Lee, M.S. Jung, W. Cho, and H. Yoon, “A
Re-Configurable FTL (Flash Translation Layer) Architecture for
NAND Flash Based Applications,” ACM Trans. Embedded Comput-
ing Systems, vol. 7, no. 4, July 2008.

[7] Intel Corporation, “Understanding the Flash Translation Layer
(FTL) Specification,”Application Note AP-684, Dec. 1998.

CHIAO AND CHANG: ROSE: A NOVEL FLASH TRANSLATION LAYER FOR NAND FLASH MEMORY BASED ON HYBRID ADDRESS... 765

TABLE 6
Result of Wear Leveling

TABLE 5
Cleaning Cost with Different Log Area Sizes (Seconds)

[8] Intel Corporation, “Software Concerns of Implementing a Re-
sident Flash Disk.”

[9] Intel Corporation “FTL Logger Exchanging Data with FTL
Systems.”

[10] A. Ban, “Flash File System,” US Patent No. 5,404,485, 1995.
[11] A. Ban and R. Hasharon, “Flash File System Optimized for Page-

Mode Flash Technologies,” US Patent No. 5,937,425, 1999.
[12] Toshiba “1G � 8 Bit NAND Flash Memory (TC58NVG3D1DT

G00),” Datasheet, 2007.
[13] D. Kang, D. Jung, J.-U. Kang, and J.-S. Kim, “�-Tree: An Ordered

Index Structure for NAND Flash Memory,” Proc. Seventh ACM and
IEEE Int’l Conf. Embedded Software (EMSOFT ’07), pp.144-153, Oct.
2007.

[14] Y.G. Lee, D. Jung, D. Kang, and J.S. Kim, “�-FTL: A Memory
Efficient Flash Translation Layer Supporting Multiple Mapping
Granularities,” Proc. Eighth ACM and IEEE Int’l Conf. Embedded
Software (EMSOFT ’08), pp. 21-30, Oct. 2008.

[15] P. Torelli, “The Microsoft Flash File System,” Dr. Dobb’s J., pp. 62-
72, Feb. 1995.

[16] A. Kawaguchi, S. Nishioka, and H. Motoda, “A Flash-Memory
Based File System,” Proc. USENIX 1995 Winter Technical Conf.,
pp. 155-164, Jan. 1995.

[17] M.L. Chiang and R.C. Chang, “Cleaning Policies in Mobile
Computers Using Flash Memory,” J. Systems and Software,
vol. 48, no. 3, pp. 213-231, 1999.

[18] H.J. Kim and S.G. Lee, “An Effective Flash Memory Manager for
Reliable Flash Memory Space Management,” IEICE Trans.
Information and Systems, vol. E85-D, no. 6, pp. 950-964, 2002.

[19] H. Kim and S. Ahn, “BPLRU: A Buffer Management Scheme for
Improving Random Writes in Flash Storage,” Proc. Sixth USENIX
Conf. File and Storage Technologies, pp. 239-252, 2008.

[20] M. Wu and W. Zwaenepoel, “eNVy: A Non-Volatile, Main
Memory Storage System,” Proc. Sixth Int’l Conf. Architectural
Support for Programming Languages and Operating Systems
(ASPLOS ’94), pp. 86-97, Dec. 1994.

[21] T13 Technical Committee, ATA/ATAPI Command Set-2, 2010.
[22] Samsung Electronics, “512M x 8 Bit/256M x 16 Bit NAND Flash

Memory,” Datasheet,http://www.datasheetcatalog.org/
datasheets/700/389215_DS.pdf, 2005.

[23] J. Katcher, “PostMark: A New File System Benchmark,” http://
rpmfind.net/linux/RPM/opensuse/factory/x86_64/postmark-
1.51-19.42.x86_64.html, 2009.

[24] K. Bates and B. McNutt OLTP I/O Traces, http://traces.cs.umass.
edu/index.php/storage/storage, 2007.

[25] Filebench File System Benchmark, http://hub.opensolaris.org/
bin/view/Community+Group+performance/filebench, 2009.

Mong-Ling Chiao received the BS degree in
business mathematics from Soochow Univer-
sity in 1996 and the MS degree in computer
science from National Chung Cheng University
in 1998. He is currently working toward the Phd
degree in computer science at National Chiao
Tung University. He is also a firmware devel-
opment manager responsible for NAND flash
firmware development at Silicon Motion Tech-
nology Corporation. His research interests

include flash memory storage systems, file systems, and embedded
systems.

Da-Wei Chang received the BS, MS, and PhD
degrees in computer and information science
from National Chiao Tung University, Hsinchu,
Taiwan, in 1995, 1997, and 2001, respectively.
He was a postdoctoral researcher in National
Chiao Tung University in 2002-2005, and an
assistant professor in electrical engineering at
National Sun Yat-Sen University, Kaohsiung,
Taiwan, in 2006. He is currently an assistant
professor of computer science and information

engineering at National Cheng Kung University, Tainan, Taiwan. His
research interests include operating systems, file and storage systems,
and embedded systems. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

766 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011

