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a b s t r a c t

This study proposes a selection index technique, namely a compactness rate based on Rough Set Theory
(RST), for improving data analysis, eliminating data amount and reducing the number of decision rule.
This study uses an empirical real-case involving a personal investment portfolio to demonstrate the
ccepted 30 January 2011

eywords:
ough Set Theory (RST)
ompactness rate
trength rate

proposed method. The presented case includes 75 rules generated by the RST. The rules are vague and
fragmentary, making it very difficult to interpret the information. Many rules have the same strength and
number of support objects and condition parts. These are creating a critical problem for decision making.
The new method proposed in this study not only enables the selection of interesting rules, but it also
reduces the data amount, and offers alternative strategies that can help decision-makers analyze data.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.
upport
nvestment portfolio

. Introduction

Real-world data can suffer incompleteness and inconsistency.
ata preprocessing techniques can improve data quality as well
s the accuracy and efficiency of subsequent mining. Data prepro-
essing is an important step in knowledge delivery, since quality
ecisions require quality data. Early detection of data anomalies
nd reducing the amount of data requiring analysis can improve
ecision making. A database may contain data objects that do not
omply with the general data behaviour or model. These objects
re outliers.

Data mining can help business managers find and reach more
uitable customers, and gain critical business insights that can help
ncrease market share and profits. Decision rules, generated from
ata mining, can provide business managers with information on
arket competition.
Recently, research on attitudes towards personal wealth has

ncreased and can be found in various places, including The Wall

treet Journal [22], Dalal Street Investment Journal [23], and finance
eports [4,17]. A well-designed financial plan can help optimize
sset allocation and meet customer needs. Asset management is
losely linked to personal experience and behaviour. Researchers
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E-mail addresses: shyng@mail.fit.edu.tw (J.-Y. Shyng), hmshieh@mgt.ncu.edu.tw
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568-4946/$ – see front matter. Crown Copyright © 2011 Published by Elsevier B.V. All ri
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are increasingly interested in customer retention and relationship
marketing, as well as how firms can create profitable relationships
with clients. Such relationships are crucial to the success of finan-
cial institutions, and recognise the ongoing nature of relationships
between firms and their clients and the longevity of many financial
products.

Specific areas that have attracted research interest include port-
folio method [9], the behaviour of financial services consumers
[5], management of personal finances [17], and retirement plans
[4], and the assessment of the impacts of customer satisfaction
and relationship quality on customer retention [6]. The main influ-
ences on investor decision-making regarding their personal asset
allocation are the risk level and revenue of investment products
which relate the timings of the purchase and sale of portfolio
components.

Knowledge is usually acquired from observed data especially
business data, which was a valuable resource for researchers and
decision-makers. A number of personal portfolio studies have
focused on quantification of the problem such as streamlining the
parameters and statistically analyzing the data. However, any study
of personal portfolios should consider the personal backgrounds
and perspectives of investors. The application of the personal

background, personal perspective and personal asset allocation
decisions involves the following challenges: quality problems,
ambiguous information and non-numerical data. These challenges
make it difficult to use standard methods of applying statistical
tools for knowledge discovery and rule induction.

ghts reserved.
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be grouped into classes called elementary sets. Feature/attribute
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Discovered hidden information from real financial data to make
ntelligent business decisions has been an important issue in recent
esearch. Formalism in knowledge representation is important in
elping users understanding the meaning of presented knowledge.
lassification and prediction are two forms of data analysis that can
e used to extract models describing important data classes or to
redict future data trends. Furthermore, the function of decision
ules can be used in classification and prediction.

Several notable methods exist for rule explanation and induc-
ion, such as Rough Set Theory (RST), the Inductive Dichotomizer
(ID3) and the Neural Network method (NN). The neural network
ethod provides the best fit to numeric data, while ID3 and rough

ets perform best with non-numerical data. The neural network
ethod needs more training time compared with RST and ID3

24,25,28]. The rule presentations for RST and ID3 were explain-
ble and interpretable compared with the Neural Network method.
uinlan developed ID3 [26]. The main idea of ID3 in data clas-

ification was based on recursive portioning of the data set into
ategories. RST processed the relationship between attributes and
bjects which ID3 did not support. Furthermore, Grzymala-Busse
25] found that RST had better predictive capability compared with
D3 when applied to refine imperfect data. Therefore, the study was
ased on Rough Set Theory (RST).

Many theories, techniques and algorithms have been devel-
ped for analyzing imprecise data. One of the most successful of
hese is fuzzy set theory. Meanwhile, RST is a new mathematical
ool introduced by Pawlak in the early 1980s capable of handling
ncertainty and vagueness [27]. Comparison of RST with Fuzzy set
heory revealed that RST did not need the membership function,
ut focused on equivalent relations or indiscernibility, and lower
nd upper approximation sets. Walczak and Massart [21] proposed
more detailed comparison between fuzzy set and rough set the-
ries. Recently, RST had increasingly been applied in many fields
o generate rules, provide reasoning and identify relationships in
ualitative, incomplete, or imprecise data. The rules obtained based
n rough set analysis can be applied to predict new cases. Such pre-
ictions are quite useful, especially in business analysis, because of
he large volumes of incomplete and imprecise data involved in
nancial fields.

Three criteria exist for evaluating rule quality: the first criterion
s rule accuracy, which means a rule fitting a specific class should
ot cover objects belonging to other classes. The second criterion is
ule support, which means a good rule fitting a class should be sup-
orted by most of the objects belonging to the same class. The third
riterion is rule compact according to which rule quality increases
ith decreasing number of attributes used.

Each decision rule can be characterised by its strength, namely
he number of objects covered by the rule and the decision rule
elonging to the specified decision class. A strong rule may have
horter and less specialised condition parts, and thus is typically
general rule. Strong rules are rough but not precise. However,

s already stated, RST generates many rules, some of which have
he same strength rate, number of support objects and condition
arts. These factors make it difficult for decision makers to select
uitable rules. Li and Chen [8] used the condition attribute activity
f a decision rule under the criterion of compact for rule evaluation.
his study also agrees that the best rules have the fewest attributes.

This study proposed a compactness rate based on the value
omain of the condition attribute as an additional selection index
or identifying the interesting rules (important rules) among the
ecision rules and also for supplying a pruning process based on

he compactness rate. The compactness rate can be seen as the
enseness of the value domain for each condition attribute. An

nteresting rule should have a high compactness rate, due to it con-
aining a popular value domain. The compactness rate performs a
runing process and thus functions as a user-specified threshold
puting 11 (2011) 3671–3679

to eliminate the data amount. Rules with compactness rates below
the user-specified threshold are considered uninteresting (unim-
portant). Alternatively, objects with compactness rates below the
user-specified threshold are considered outliers.

Relatively few studies have investigated the use of RST for
personal investment analysis. This study used a well-designed
questionnaire to survey some real Taiwanese investors about their
personal investment styles. The questionnaire considered the influ-
ences on decision-making, including sex, age, and number of
family members; monthly income [5,13]; and participant basic
data, which may provide a basis for understanding participant
needs. This study divided the proposed asset allocation model into
three categories (types of personal asset allocation portfolio): con-
servative portfolio, moderate portfolio, and aggressive portfolio.
Appendix C presents further details on the personal investment
portfolio.

The proposed method successfully distinguishes the interest-
ing rules from decision rules with the same strength, number of
support objects and number of condition parts. The result of pro-
posed method also identifies the outlier in the preprocessing data
to reduce the data amount. Furthermore, the proposed method
can also reduce the number of decision rules by assessing their
threshold based on the compactness rate of decision rules.

The remainder of this paper is organised as follows. Section 2
describes the methodology of RST. Section 3 will present the pro-
posed method—compactness rate usage in this study. In Section 4,
a real case of personal investment is presented to show the process
of the effects of the compactness rate on rules. Finally, in Section 5
presented the conclusions.

2. Concepts of RST

In this section, gives a brief summary of RST and its use in deci-
sion making. Section 2.1 gives an overview of the history of RST and
Section 2.2 presents algorithms of the theory for decision-making
are presented.

2.1. The history of RST

In 1982, Pawlak designed RST as a tool to describe the depen-
dencies between attributes, evaluate the indiscernibility relation,
and deal with inconsistent data [10–12]. Rough Set Theory also can
handle data uncertainty and derive knowledge from ambiguous
information. The theory has been applied to the management of a
number of the issues, including medical diagnosis [8], engineering
reliability [19], intelligent decision support systems [14], business
failure prediction [1,2], the empirical study of insurance data [15],
predicting stock prices [29], and data mining [7,16]. Another the-
ory discusses the preference order of the attribute criteria needed
to extend the original RST, such as sorting, choice and ranking
problems [3], and using in spatial data methods and vague regions
[18]. The Rough Set method is useful for exploring data patterns
through a multi-dimensional data space and it determines the rel-
ative importance of each attribute with respect to its output.

RST assumes that the indiscernibility relation and data pat-
tern comparison is based on the concept of an information system
with indiscernible data, where the data is uncertain or inconsis-
tent. An information system consists of objects in the universe.
Those objects characterised by the same amount of information
are similar to or indiscernible from one another. These objects can
selection is crucial in any data processing that consists of relevant
(or maybe irrelevant) data patterns, but it may be redundant in data
pattern recognition. Each elementary set is independent of the oth-
ers [21]. From each elementary set can extract knowledge used in
the real world.
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.2. The algorithm of RST

Rough Set Theory is a mathematical approach to managing
ague and uncertain data or problems related to information sys-
ems, indiscernibility relations and approximation sets, reduct and
ore attribute sets, decision rules. The remainder of this section
iscusses the above areas in detail.

.2.1. Information systems
Given a questionnaire model QM (an information system),

M = (U, A, V, �) ; U ={x1, x2, . . ., xn}, where U denotes the universal
bject sets of QM ; A represents the model’s attribute sets, assumed
as consisting of attributes c1, c2 and c3; V = ∪

c ∈ A
Vc , is a set of values

f the attributes.
Let � : U × A → V be a description function; and let �x be the

escription of x in QM, where �(x, c) ∈ Vc for each c ∈ A and x ∈ U
12].

A knowledge representation system containing the set of con-
ition attributes (denoted as CA) and the set of decision attributes
denoted as DA) were used to construct a decision table.

.2.2. Indiscernibility relation and approximation set
Any subset B of A determines a binary relation IND(B) on U, which

e called an indiscernibility relation, and it is defined as c ∈ B, if
x1 (c) = �x2 (c) for every c ∈ A. The equivalence class of IND(B) is
alled an elementary set (of atoms) of QM. Assume a family Y ={X1,
2, . . ., Xm} is a family of non-empty sets (classification) where
i ⊆ U, Xi /= ∅, Xi ∩ Xj =∅ for i /= j, i, j = 1, 2, . . ., m and ∪m

i=1Xi = U.
bjects grouped in the same class are called elementary sets, and

he process is called classification. Thus, any Xi of U can be induced
o that the value sets of attributes represented in B are in the same
lass. The classification that processes CA and DA, generates condi-
ion and decision classes.

Let any subset X ⊆ U, and R be an equivalence relation and xi
xpress objects x1, x2, . . ., xn, where i = 1, 2, . . ., n, then RX = {x ∈ U :
x]R ⊆ X}, is the lower approximation of X; RX = {x ∈ U : [x]R ∩

/= ∅} is the upper approximation of X; BndR(X) = RX − RX , the
oundary region of X where the objects are inconsistent or ambigu-
us. If a family Y ={X1, X2, . . ., Xm} of non-empty sets (classification),
hen RY = {RX1, RX2, . . . , RXm} and RY = {RX1, RX2, . . . , RXm}, are
alled the R-lower approximation and R-upper approximation of
he family Y, respectively.

.2.3. Reduct and core attribute sets
In an information system, some attributes may be redundant

nd useless. The superfluous attributes can be removed without
ffecting the results. The goal of reducts is to improve the precision
f decisions so that the reducts process for attributes reduces ele-
entary set numbers. Given an attribute space A = (CA, DA), where

A /= ∅, DA /= ∅; then DA ∩ CA =∅, and DA ∪ CA = A, which are the
lements of the decision table. Let RED(B) ⊆ A and RED(B) be the
educt set composed of a set of attributes B, that is, a minimal set of
ttributes that affects the process of decision-making. There may be
everal reduct attribute sets. The intersection of all reduct attribute
ets is the core attribute set, which is the most important attribute
n the decision-making process, COR(C) = ∩ RED(B), in which COR(C)
s the core composed of a set of attributes C. The decision rules can
e induced and applied the reduct set to the model.

.2.4. Decision rules
Objects that have the same IND(DA) are grouped together and

alled decision elementary sets (decision classes). The reduct con-

ition attribute sets maintain the important relationships with the
ecision classes. Due to the functional dependencies between con-
ition and decision attributes, a decision table may also be seen as
set of decision rules. The syntax can use the “if. . .then. . .” rule to

pecify as follows:
uting 11 (2011) 3671–3679 3673

If f(x, c1) and f(x, c2) and. . . and f(x, ck), then x belongs to d1 or
d2 or dn, where {c1, c2, . . ., ck}⊆ CA are condition attributes and {d1,
d2, . . ., dn}⊆ DA are decision classes.

According to Pawlak (2002), a decision rule in QM is
expressed as ˚ → � , where ˚ and � are referred to as
the conditions and decisions of the rule, respectively (read
as: if ˚ then � ); �QM(˚, � ) = suppQM(˚, � )/card(U) is the
strength of the decision rule ˚ → � in QM, where the number
suppQM(˚, � ) = card(

∥∥˚ ∧ �
∥∥

QM
) will be called the support of

the rule ˚ → � in QM; and card(U) is the cardinality of set U.
This implies that a stronger rule will cover more objects and the
strength rate of each decision rule can be calculated in order to
decide on the appropriate rules.

A rule may cover several objects. A stronger rule definitely cov-
ers more objects. RST always generates fragment rules as the reduct
process can improve the precision of a decision. Therefore, the con-
dition attributes part of the fragment rules (compact rules) consists
of the reduct attribute set or core attribute set. Those compact rules
are usually general and less specialised. However, as mentioned
previously, the theory generates many rules and some of them have
the same strength rate and the same number of support objects,
thus making it hard for decision makers to choose suitable rules.
The method of compactness rate was proposed as the additional
selection index to solve the problem and also as a pruning process
to eliminate the data scope and decision rules. The next section is
about using the compactness rate in decision rules.

3. Compactness rate method

In this section, the proposed new measuring method of com-
pactness rate is described for use in decision rules.

Definition 1. A general form for object xi expressed as xi =
(ci

1,1, . . . , ci
1,q1; ci

2,1, . . . , ci
1,q2; . . . ; ci

m,1, . . . , ci
m,qm; di

1,1, . . . , di
1,p),

where qm is the number of sub-attributes of the attribute ci
m; p is

the number of sub-attributes of the decision attribute d. Where
ci

j,p
is 1 if ci

j
(the value of ci

p of xi) equals p; otherwise ci
j,p

is 0. For
example, the x1 is expressed in binary notation as x1 = (1, 0 ; 0,
1, 0 ; 1, 0, 0 ; 1, 0). Here assumed there was only one decision
attribute.

An information table can be seen as a decision table, assuming
QM = (U, CA ∪ DA, V, �) ; CA represents the condition attribute set,
consisting of attributes {c1, c2, c3}; and DA represents the decision
attribute set, and has a decision attribute {d}. Vc1 = {1, 2} is a set of
values of the attribute c1, the same as Vc2 = {1, 2, 3}, Vc3 = {1, 2, 3}
and Vd ={1, 2} as the value set of the attribute c2, c3 and d, respec-
tively.

Definition 2. Frequency form for c1,1 is Freq(c1,1) =
∑n

i=1ci
1,1,

where has n’s objects.

The frequency form computes the frequency for each sub-
attribute of each attribute. The frequency expresses the popular
degree of the value domain for each condition attribute.

Definition 3. Compute the weight for sub-attributes by the fre-
quency.

The weight formula for jth sub-attribute of mth attribute
expressed as Weight(cm,j) = Freq(cm,j)/n, if there are n’s objects. The
weight (frequency rate) can be seen as the important (or the inter-
esting) rate of the value domain for each attribute.
Definition 4. A general form expressed the ith object compactness
rate as Comp(xi) = Ob(Weight(ci

g)), where g = 1, 2, . . ., m, has m’s
attributes.

The function Ob( ) as the aggregation, maximum or other math
function computes the object weight. The object weight is the
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bject’s compactness rate, which aggregates the object’s impor-
ance degree by the value domain of each attribute of the object.
herefore, the compactness rate of an object can be compared with
hat of other objects so that interesting objects can be identified.
he compactness rates of objects can distinguish between the inter-
sting objects and the less interesting objects.

efinition 5. A general form expressed the lth rule for the decision
lass d as Rd,l.

Each decision rule can be characterised by the strength rate to
stablish whether the rule is stronger or not. The strength of a rule
eans the number of objects satisfying the condition part of the

ule and belonging to the specific decision class.

efinition 6. A general form expressed the rule’s compact-

ess rate as Comp(Rd,l) =
∑

i ∈ Ud,l

Comp(xi), where Ud,l is the strength

bjects of the lth rule for the decision class d and U was the universe
bjects set of QM.

For example, Comp(R1,1) = Comp(xi) + Comp(xj), if xi, xj were the
upport objects of R1,1. The compactness rates of rules are sum-
arised by the compactness rates of objects that are covered in the

ules.
The compactness rate of rules can be established as a threshold

o select decision rules. Rules with a compactness rate below the
hreshold are eliminated to improve the decision making.

Each rule should support several objects. Therefore, the com-
actness rate of rules can be summarised using the compactness
ate of covered objects. The compactness rates of such objects are
alculated from the frequency rate of the value domain of the con-
ition attributes belonging to the object. The frequency rate is the
eight calculated based on the frequency of the value domain of

ondition attributes divided by the total number of objects. The fre-
uency rate can explore the degree of popularity or the important
alue domain for each attribute. The frequency, or the frequency
ate of the value domain for each attribute, can identify the aggrega-
ive degree of the value domain for each attribute. Each object
omprises a different value domain of attributes that produces a
ifferent compactness rate and implies a different characteristic
or each object. If the compactness rate of a rule summarises that of
n object, then higher compactness rates for objects are associated
ith higher compactness rates for rules. Rules with a high com-
actness rate are considered interesting (important). The following
ection details an experiment.

. An empirical case of personal investment portfolio for
he compactness rate

In this empirical case, a series of questions was asked to obtain
nformation about personal/consumers’ investments and portfolio
ypes in 2006, e.g., monthly salary and portfolio type. The par-
icipants’ personal data, namely, their gender, age, marital status,
rofessional status, the number of years in the workforce, and edu-
ational level were used to classify purchase intentions, based on
he definition by Executive Yuan of Taiwan.

.1. Data analysis

The questionnaires were distributed to investors in the North

nd Northeast districts of Taiwan. Data were collected randomly
ased on a nominal scale. There were 200 valid questionnaires from
total of 221 received. The percentage of valid questionnaires was
0%. Among the valid respondents, there were 108 females and
2 males. The valid questionnaire data table presented below and
articipants were randomly collected in the empirical experiment.
puting 11 (2011) 3671–3679

Valid data
Male Female

92 (45%) 108 (55%)
Total: 200

Valid rate: 90% (200/221)

The questionnaire considered the factors that affect decision-
making, such as sex, age, and the number of family members;
monthly income [5,13]; the nature of the investment products; and
participants’ basic data, which may serve as the basis for under-
standing their needs.

4.2. Empirical process

For the given information system QM, expert knowledge is used
to process attributes for extraction. There are eight attributes:
seven condition attributes, namely Age (c1), Gender (c2), Marital
Status (c3), Education (c4), Number of Working Years (c5), Profes-
sional Status (c6), Monthly Salary (c7); and one decision attribute,
namely, portfolio type (d) representing the investment character-
istics. After a reduct process was applied to the condition attributes
which labelled the reduct attribute set as Age (c1), Gender (c2),
Marital Status (c3), Education (c4), Number of Working Years (c5),
Professional Status (c6), Monthly Salary (c7). The core attribute set
was the same as the reduct attribute set. The value set for the deci-
sion attribute was {1, 2, 3}, and there were three decision classes,
that is, conservative portfolio, moderate portfolio, and aggressive
portfolio. There are more details about the decision classification
and condition attributes at Appendix C. The original attribute spec-
ification is detailed in Table A1 of Appendix A. The decision table is
shown in Table 1.

4.3. The results of the empirical evaluation

Table 2 is the frequency and weight for each sub-attribute of the
condition attributes.

The frequency of the value domain for the condition attributes
can be computed by adding the binary value of each sub-attribute
that belongs to the condition attributes. The weight for each sub-
attribute was computed by the frequency of the value domain for
the sub-attribute that occupied the total sample amount. The com-
pactness rate of an object is summarised by the weight of each
condition attribute. Table 3 shows the decision table with the com-
pactness rate of each object for this study. Thus, the compactness
rate for each decision rule can be summarised by the compactness
rate of objects covered in the rules and then can be used to reveal
the rule ranking by the compactness rates of the rules.

This study generates 75 rules by ROSE2 [14], which provides
different techniques on rule induction based on the RST. The deci-
sion rules numbered from 56 to 75 are approximate rules, which
mean that the rule did not belong to a specific decision class and
may overlap with more than one decision class. However, too many
decision rules impede decision making. For examples, we have ran-
domly chosen several decision rules, some with the same strength
rate, strength object number, accuracy rate of 100% and the same
condition to compare the rules’ compactness rates. Table 4 showed
the partial rule examples of decision class 1 and decision class 3.
The original rules generated from ROSE2 are detailed in Table B1 of
Appendix B. Table 4 converts the original rules into a meaningful
explanation and compares them using the compactness rate.

We proposed using the compactness method to find the inter-
esting rule among a selection of rules. Based on the survey results

which identified that people with conservative personal invest-
ment portfolios tend to be single college graduates under 29 years
old, with less than four years work experience and a monthly
salary under NT$30,000 (US$900). The profile of a typical aggressive
investment portfolio holder is as follows: married, female, college
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Table 1
Decision table.

Object# Attributes

Condition Decision

c1 c2 c3 c4 c5 c6 c7 d

1 1 2 1 4 1 1 1 3
2 2 2 2 3 3 1 2 1
3 2 1 1 3 2 1 2 3
4 1 1 2 3 2 1 2 3
5 1 2 1 4 1 2 1 1
6 2 2 1 5 1 2 2 2
7 1 1 1 4 1 1 2 1
8 4 1 2 4 4 1 3 3
9 4 2 2 5 4 1 2 3

10 1 1 1 3 1 1 1 2
. . .

Table 2
Frequency and weight for each sub-attribute of condition attributes.

Value domain Frequency Weight

c1 c2 c3 c4 c5 c6 c7 c1 c2 c3 c4 c5 c6 c7

1 85 108 115 6 99 157 86 0.425 0.54 0.575 0.03 0.495 0.785 0.43
2 62 92 83 12 39 34 89 0.31 0.46 0.415 0.06 0.195 0.17 0.445
3 35 2 100 30 9 15 0.175 0.01 0.5 0.15 0.045 0.075
4 15 68 32 0 3 0.075 0.34 0.16 0 0.015
5 3 14 0 0 7 0.015 0.07 0 0 0.035
6 0 0 0 0
7 0 0

Sum 200 200 200 200 200 200 200 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3
Decision table with compactness rate.

Object# Attributes Object compactness rate

Condition Decision

c1 c2 c3 c4 c5 c6 c7 d

1 1 2 1 4 1 1 1 3 3.510
2 2 2 2 3 3 1 2 1 2.605
3 2 1 1 3 2 1 2 3 3.350
4 1 1 2 3 2 1 2 3 3.305
5 1 2 1 4 1 2 1 1 2.895
6 2 2 1 5 1 2 2 2 2.525
7 1 1 1 4 1 1 2 1 3.605

. . .

g
a
p
g
e
N

4

e

T
T

8 4 1 2 4 4
9 4 2 2 5 4

10 1 1 1 3 1

raduate, less than 39 years old, with 15–19 years work experience
nd a monthly salary under NT$80,000 (US$2424). The moderate
ersonal investment portfolio is typically chosen by single college
raduates less than 29 years old, with less than nine years work
xperience and a monthly salary between NT$30,000 (US$900) and
T$80,000 (US$2,424).
.4. Discussions

This section discusses two main contributions related to rule
valuation and threshold usage with compactness rate. Section

able 4
he rule explanation (partial rule examples).

Rule# Decision class Meaning Strength (support

2 1 If (c3 = 1)&(c5 = 2)∧(c7 = 1) ⇒ (d = 1) 57, 109
4 1 If (c1 = 1)∧(c4 = 2)∧(c6 = 1) ⇒ (d = 1) 40, 154
7 1 If (c4 = 1)∧(c5 = 2)∧(c7 = 2) ⇒ (d = 1) 45, 135

15 1 If (c1 = 1)∧(c4 = 4)∧(c5 = 2) ⇒ (d = 1) 109, 189
38 3 If (c5 = 4)∧(c7 = 4) ⇒ (d = 3) 138, 165
39 3 If (c4 = 2)∧(c6 = 2) ⇒ (d = 3) 63, 146
1 3 3 2.390
1 2 3 2.410
1 1 2 3.750

4.4.1 then discusses the evaluation of the rules regarding the com-
pactness rate. Finally, Section 4.4.2 presents the threshold usage
with the compactness rate.

4.4.1. The rule evaluation with compactness rate

Objects whose attributes have the same values are classed

together. RST uses mathematical methods to perform the classi-
fication. The elementary sets are used to extract relations with the
same degree, which are then used to induce decision rules. The limi-
tation of RST relates to the algorithm, which generates many rules;

)objects# Strength rate (%) Accuracy rate (%) Rule compactness rate

2.67 100 6.305
2.67 100 6.540
2.67 100 4.665
2.67 100 6.515
2.99 100 4.570
2.99 100 3.725
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The original attribute specification for personal analysis
described in Table A1.

Table A1
Attribute specification for the personal analysis.

Attribute name Attribute values Attribute value sets

Condition attributes
Age (c1) <30; 30∼39; 40∼49; 50∼59; 60∼ {1,2,3,4,5}
Gender (c2) Female; male {1,2}
Marriage (c3) Single; marry; divorce {1,2,3}
Education (c4) Under Junior High School; High

School; College; University;
Graduate School

{1,2,3,4,5}

Working years (c5) Under 4 years; 5–9 years; 10–14
years; 15–19 years; 20–24 years;
25–29 years; 30 years∼

{1,2,3,4,5,6,7}

Professional (c6) 1–6 (categorized according the
insurance industry’s listed
profession)

{1,2,3,4,5,6}

Monthly salary (c7) Under NT$30,000;
NT$30,001–NT$80,000;
NT$80,001–NT$120,000;
NT$120,001–NT$200,000;
NT$200,001∼

{1,2,3,4,5}
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ome of which have the same strength rate, as well as the same
umber of support objects and condition attributes. This situation
akes it difficult for decision-makers to select a reliable rule using

hese indices.
This study proposed an easy and scientific method, namely com-

actness rate, which can be employed as the denseness of the
alue domain for each condition attribute. The compactness rate is
n additional selection index used to identify interesting decision
ules. Interesting or popular objects should aggregate the higher
ompactness rate or select the highest or other math function
rom the value domain from each condition attribute. Therefore, an
nteresting rule should have higher compactness, because of being
upported by several objects that satisfy the condition part of the
ule. Rule or objects lower than the user-specified compactness rate
re considered uninteresting or outliers.

There are three criteria for evaluating rule quality: the first cri-
eria is the accuracy of a rule, the second criteria is the support of
rule, and the third is the compact of a rule. From the partial rule
xamples listed in Table 4, four rules with the same strength rate
2.67%) and strength object number (2), have accuracy rate is 100%,
nd the number of condition attributes is identical for each rule in
ecision class 1 (d = 1). The same criterion makes it more difficult for
ecision makers to identify the most interesting (important) rule.
he compactness rates of the rules provide an alternative useful
election index. For instance, the rule ranking shows that rule num-
er 4 is the most interesting rule, with a compactness rate of 6.54,
nd rule number 7 is the least interesting rule, with a compactness
ate of 4.665, among the four rules in decision class 1. The decision
aker can choose the rule with the highest compactness rate. The

ame process applies in decision class 3 (d = 3), where rule number
8 is the most interesting rule with a compactness rate of 4.57, and
ule number 39 is the least interesting rule with a compactness rate
f 3.725 among the two rules.

.4.2. The threshold evaluation with compactness rate
This study applied the proposed method used the compactness

ate to provide three thresholds during data preprocessing. Rules
ith compactness rates below the user-specified threshold are

onsidered uninteresting (unimportant). Moreover, objects with
ompactness rates below the user-specified threshold are consid-
red outliers. The thresholds have the advantage of eliminating
he data amount and increasing data analysis. The first thresh-
ld relates to the frequency of the sub-attribute for each condition
ttribute. The decision-maker can remove objects that are not sat-
sfied by the threshold. For instance, in Table 2, if the threshold
s 10, objects with sub-attribute frequencies below the threshold
re eliminated. Specifically, objects with the value 5 for attribute
1, value 2 for attribute c3 and values 3 and 7 for attribute c7
re eliminated. Table 2 lists the relative value domains in bold
ype.

The second threshold relates to object compactness rate, which
s indicated by the weight of the condition attribute of the object.
he weight can be considered the important (or the interesting)
ate of the value domain for each attribute. The compactness rate
f the object indicates the weight of each attribute of that object. For
xample, in this study, the compactness rate of the highest object is
.96 and that of the smallest object is 1.35. Table 3 lists the partial
esults of object compactness rates. Decision-makers can establish
he threshold of object using the compactness rate to eliminate
bjects with small compactness rate.

The third threshold involves the decision rules. Each decision

ule has its own compactness rate, which is calculated by totaling
he compactness rates of the objects covered in the rule. In this
tudy, the highest compactness rate for a rule is 16.005 and the
mallest is 1.35. A decision-maker can set the threshold to elimi-
ate decision rules with small compactness rates. This arrangement
puting 11 (2011) 3671–3679

has the advantage of solving the problem too many decision
rules.

The above thresholds should be set by experts based on real
needs. The thresholds can be determined and special analysis per-
formed to identify outlier data. Interesting rules can be identified by
calculating the compactness rate of the rule. The compactness rate
can help decision-makers select suitable rules from among those
with few support objects and that share the same strength rate. An
interesting rule should support popular objects with a higher com-
pactness rate. These popular objects have general characteristics.
Those objects express a popular knowledge domain that matches
modern life.

Furthermore, the proposed compactness method is based on the
value domain of the condition attributes. Calculating the weight for
each condition attribute using the value domain identifies interest-
ing objects. The interesting objects mean that most people have the
same characteristics.

5. Conclusion

The new measurement calculates the compactness rate using
the value domain of the attributes that provide an alternative
method to find more interesting (important) rules supported
by important (interesting) objects. The proposed method over-
comes the problem of too many rules in classical RST, which
previously created implementation difficulties. Furthermore, the
proposed method also provides a pruning process with three
thresholds to reduce the data amount and eliminate unimpor-
tant rules. The proposed method also requires calculating the
data gathering degree. The proposed method thus is a sci-
entific method suitable for application to different data types
or combination with other soft computing methods. Decision-
makers can use the proposed method to perform more precise
analyses.

Appendix A.
Decision attribute
Portfolio type (d) Conservative; moderate;

aggressive
{1,2,3}

Note: the insurance industry’s listed profession – the report of Accounting and
Statistics, Directorate-General of Budget, Executive Yuan.
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The original rules generated from ROSE2 was described in
able B1 .

able B1
riginal rules generated from ROSE2.

Rule 1. (c2 = 2) & (c3 = 2) & (c5 = 3) & (c6 = 1) ⇒ (d = 1); [5, 5, 6.67%,
100.00%][5,0,0][{2, 41, 110, 116, 145}, {}, {}]

Rule 2. (c3 = 1) & (c5 = 2) & (c7 = 1) ⇒ (d = 1); [2, 2, 2.67%, 100.00%][2,0,0][{57,
109}, {}, {}]

Rule 3. (c5 = 3) & (c7 = 5) ⇒ (d = 1); [3, 3, 4.00%, 100.00%][3,0,0][{41, 116, 193},
{}, {}]

Rule 4. (c1 = 1) & (c4 = 2) & (c6 = 1) ⇒ (d = 1); [2, 2, 2.67%, 100.00%][2,0,0][{40,
154}, {}, {}]

Rule 5. (c1 = 3) & (c2 = 1) & (c4 = 3) & (c6 = 1) & (c7 = 2) ⇒ (d = 1); [2, 2, 2.67%,
100.00%][2,0,0][{114, 181}, {}, {}]

Rule 6. (c1 = 2) & (c3 = 1) & (c4 = 3) & (c7 = 1) ⇒ (d = 1); [2, 2, 2.67%,
100.00%][2,0,0][{27, 189}, {}, {}]

Rule 7. (c4 = 1) & (c5 = 2) & (c7 = 2) ⇒ (d = 1); [2, 2, 2.67%, 100.00%][2,0,0][{45,
135}, {}, {}]

Rule 8. (c1 = 2) & (c3 = 1) & (c4 = 4) & (c5 = 3) ⇒ (d = 1); [1, 1, 1.33%,
100.00%][1,0,0][{33}, {}, {}]

Rule 9. (c1 = 2) & (c5 = 1) & (c6 = 1) & (c7 = 1) ⇒ (d = 1); [3, 3, 4.00%,
100.00%][3,0,0][{27, 118, 200}, {}, {}]

Rule 10. (c5 = 2) & (c6 = 3) ⇒ (d = 1); [2, 2, 2.67%, 100.00%][2,0,0][{180, 195}, {},
{}]

Rule 11. (c1 = 5) & (c2 = 2) ⇒ (d = 1); [1, 1, 1.33%, 100.00%][1,0,0][{144}, {}, {}]
Rule 12. (c2 = 1) & (c3 = 1) & (c6 = 2) & (c7 = 2) ⇒ (d = 1); [1, 1, 1.33%,

100.00%][1,0,0][{18}, {}, {}]
Rule 13. (c1 = 2) & (c3 = 2) & (c6 = 2) & (c7 = 1) ⇒ (d = 1); [1, 1, 1.33%,

100.00%][1,0,0][{95}, {}, {}]
Rule 14. (c3 = 1) & (c4 = 1) ⇒ (d = 1); [1, 1, 1.33%, 100.00%][1,0,0][{22}, {}, {}]
Rule 15. (c1 = 1) & (c4 = 4) & (c5 = 2) ⇒ (d = 1); [2, 2, 2.67%, 100.00%][2,0,0][{109,

198}, {}, {}]
Rule 16. (c1 = 4) & (c2 = 1) & (c7 = 1) ⇒ (d = 2); [1, 1, 1.72%, 100.00%][0,1,0][{},
{150}, {}]

Rule 17. (c1 = 4) & (c4 = 2) & (c7 = 2) ⇒ (d = 2); [1, 1, 1.72%, 100.00%][0,1,0][{},
{42}, {}]

Rule 18. (c2 = 2) & (c4 = 5) & (c7 = 5) ⇒ (d = 2); [1, 1, 1.72%, 100.00%][0,1,0][{},
{50}, {}]

Rule 19. (c5 = 2) & (c7 = 4) ⇒ (d = 2); [1, 1, 1.72%, 100.00%][0,1,0][{}, {60}, {}]
Rule 20. (c1 = 3) & (c4 = 4) & (c6 = 2) ⇒ (d = 2); [2, 2, 3.45%, 100.00%][0,2,0][{},
{53, 62}, {}]

Rule 21. (c2 = 2) & (c3 = 2) & (c4 = 4) & (c7 = 1) ⇒ (d = 2); [2, 2, 3.45%,
100.00%][0,2,0][{}, {21, 137}, {}]

Rule 22. (c2 = 2) & (c3 = 1) & (c6 = 2) & (c7 = 2) ⇒ (d = 2); [3, 3, 5.17%,
100.00%][0,3,0][{}, {6, 96, 112}, {}]

Rule 23. (c1 = 2) & (c2 = 1) & (c3 = 1) & (c5 = 1) & (c6 = 1) ⇒ (d = 2); [2, 2, 3.45%,
100.00%][0,2,0][{}, {43, 172}, {}]

Rule 24. (c4 = 1) & (c5 = 3) ⇒ (d = 2); [1, 1, 1.72%, 100.00%][0,1,0][{}, {142}, {}]
Rule 25. (c1 = 3) & (c4 = 3) & (c7 = 1) ⇒ (d = 2); [3, 3, 5.17%, 100.00%][0,3,0][{},
{136, 152, 190}, {}]

Rule 26. (c1 = 3) & (c3 = 1) & (c5 = 4) ⇒ (d = 2); [1, 1, 1.72%, 100.00%][0,1,0][{},
{108}, {}]

Rule 27. (c2 = 1) & (c5 = 2) & (c6 = 2) ⇒ (d = 2); [1, 1, 1.72%, 100.00%][0,1,0][{},
{48}, {}]

Rule 28. (c3 = 2) & (c4 = 3) & (c5 = 4) & (c7 = 2) ⇒ (d = 2); [1, 1, 1.72%,
100.00%][0,1,0][{}, {158}, {}]

Rule 29. (c4 = 3) & (c5 = 2) & (c6 = 1) & (c7 = 3) ⇒ (d = 2); [1, 1, 1.72%,
100.00%][0,1,0][{}, {197}, {}]

Rule 30. (c1 = 2) & (c4 = 4) & (c5 = 4) ⇒ (d = 2); [1, 1, 1.72%, 100.00%][0,1,0][{},
{111}, {}]

Rule 31. (c4 = 2) & (c6 = 3) ⇒ (d = 2); [1, 1, 1.72%, 100.00%][0,1,0][{}, {123}, {}]
Rule 32. (c1 = 3) & (c3 = 1) & (c4 = 3) ⇒ (d = 2); [1, 1, 1.72%, 100.00%][0,1,0][{},
{74}, {}]

Rule 33. (c2 = 1) & (c3 = 2) & (c4 = 5) ⇒ (d = 3); [8, 8, 11.94%, 100.00%][0,0,8][{},
{}, {149, 164, 167, 177, 183, 185, 186, 187}]

Rule 34. (c1 = 4) & (c5 = 3) ⇒ (d = 3); [1, 1, 1.49%, 100.00%][0,0,1][{}, {}, {168}]
Rule 35. (c3 = 2) & (c4 = 3) & (c7 = 3) ⇒ (d = 3); [6, 6, 8.96%, 100.00%][0,0,6][{}, {},
{34, 54, 148, 153, 170, 194}]

Rule 36. (c1 = 2) & (c2 = 1) & (c4 = 3) & (c7 = 2) ⇒ (d = 3); [7, 7, 10.45%,
100.00%][0,0,7][{}, {}, {3, 44, 107, 113, 134, 188, 192}]

Rule 37. (c1 = 3) & (c2 = 2) & (c3 = 2) & (c5 = 2) & (c6 = 1) ⇒ (d = 3); [1, 1, 1.49%,
100.00%][0,0,1][{}, {}, {171}]

Rule 38. (c5 = 4) & (c7 = 4) ⇒ (d = 3); [2, 2, 2.99%, 100.00%][0,0,2][{}, {}, {138,
165}]

Table B1 (Continued)

Rule 39. (c4 = 2) & (c6 = 2) ⇒ (d = 3); [2, 2, 2.99%, 100.00%][0,0,2][{}, {}, {63,
146}]

Rule 40. (c3 = 2) & (c4 = 1) & (c5 = 1) ⇒ (d = 3); [1, 1, 1.49%, 100.00%][0,0,1][{}, {},
{156}]

Rule 41. (c3 = 1) & (c4 = 3) & (c5 = 3) & (c7 = 2) ⇒ (d = 3); [3, 3, 4.48%,
100.00%][0,0,3][{}, {}, {107, 134, 160}]

Rule 42. (c1 = 1) & (c4 = 5) ⇒ (d = 3); [1, 1, 1.49%, 100.00%][0,0,1][{}, {}, {155}]
Rule 43. (c1 = 3) & (c5 = 4) & (c7 = 5) ⇒ (d = 3); [1, 1, 1.49%, 100.00%][0,0,1][{}, {},

{75}]
Rule 44. (c4 = 3) & (c5 = 3) & (c6 = 2) ⇒ (d = 3); [4, 4, 5.97%, 100.00%][0,0,4][{}, {},

{54, 113, 194, 196}]
Rule 45. (c3 = 2) & (c4 = 4) & (c5 = 2) & (c7 = 2) ⇒ (d = 3); [2, 2, 2.99%,

100.00%][0,0,2][{}, {}, {59, 65}]
Rule 46. (c3 = 1) & (c4 = 3) & (c5 = 4) ⇒ (d = 3); [2, 2, 2.99%, 100.00%][0,0,2][{}, {},
{71, 151}]

Rule 47. (c2 = 2) & (c4 = 1) & (c7 = 1) ⇒ (d = 3); [1, 1, 1.49%, 100.00%][0,0,1][{}, {},
{19}]

Rule 48. (c1 = 4) & (c6 = 2) ⇒ (d = 3); [3, 3, 4.48%, 100.00%][0,0,3][{}, {}, {143,
146, 147}]

Rule 49. (c4 = 2) & (c5 = 4) & (c7 = 5) ⇒ (d = 3); [1, 1, 1.49%, 100.00%][0,0,1][{}, {},
{169}]

Rule 50. (c1 = 3) & (c3 = 3) ⇒ (d = 3); [1, 1, 1.49%, 100.00%][0,0,1][{}, {}, {140}]
Rule 51. (c1 = 2) & (c2 = 1) & (c3 = 2) & (c5 = 3) & (c7 = 2) ⇒ (d = 3); [4, 4, 5.97%,

100.00%][0,0,4][{}, {}, {44, 47, 113, 192}]
Rule 52. (c1 = 1) & (c3 = 2) & (c4 = 3) ⇒ (d = 3); [2, 2, 2.99%, 100.00%][0,0,2][{}, {},

{4, 39}]
Rule 53. (c1 = 3) & (c2 = 1) & (c3 = 1) ⇒ (d = 3); [1, 1, 1.49%, 100.00%][0,0,1][{}, {},
{76}]

Rule 54. (c3 = 2) & (c4 = 5) & (c7 = 2) ⇒ (d = 3); [5, 5, 7.46%, 100.00%][0,0,5][{}, {},
{9, 149, 177, 185, 187}]

Rule 55. (c1 = 2) & (c4 = 4) & (c6 = 2) & (c7 = 1) ⇒ (d = 3); [1, 1, 1.49%,
100.00%][0,0,1][{}, {}, {99}]

# Approximate rules
Rule 56. (c2 = 2) & (c3 = 1) & (c4 = 4) & (c5 = 1) & (c6 = 1) & (c7 = 1) ⇒ (d = 1) OR

(d = 3); [5, 5, 26.32%, 100.00%][4,0,1][{14, 120, 161, 162}, {}, {1}]
Rule 57. (c3 = 2) & (c4 = 4) & (c5 = 1) & (c7 = 2) ⇒ (d = 1) OR (d = 3); [3, 3, 15.79%,

100.00%][1,0,2][{175}, {}, {66, 179}]
Rule 58. (c1 = 2) & (c2 = 2) & (c3 = 1) & (c4 = 3) & (c5 = 2) ⇒ (d = 1) OR (d = 3); [5, 5,

26.32%, 100.00%][4,0,1][{56, 70, 72, 174}, {}, {49}]
Rule 59. (c1 = 3) & (c2 = 2) & (c3 = 1) & (c5 = 3) ⇒ (d = 1) OR (d = 3); [2, 2, 10.53%,

100.00%][1,0,1][{73}, {}, {163}]
Rule 60. (c2 = 1) & (c4 = 4) & (c5 = 4) & (c6 = 1) & (c7 = 2) ⇒ (d = 1) OR (d = 3); [2, 2,

10.53%, 100.00%][1,0,1][{61}, {}, {67}]
Rule 61. (c1 = 1) & (c2 = 1) & (c4 = 4) & (c5 = 1) & (c7 = 2) ⇒ (d = 1) OR (d = 3); [2, 2,

10.53%, 100.00%][1,0,1][{7}, {}, {199}]
Rule 62. (c1 = 1) & (c2 = 1) & (c4 = 4) & (c7 = 1) ⇒ (d = 1) OR (d = 2); [10, 10, 23.26%,

100.00%][9,1,0][{78, 119, 121, 124, 126, 127, 157, 173, 184}, {69}, {}]
Rule 63. (c1 = 1) & (c2 = 2) & (c3 = 1) & (c4 = 3) ⇒ (d = 1) OR (d = 2); [16, 16, 37.21%,

100.00%][10,6,0][{11, 31, 37, 46, 88, 92, 93, 115, 129, 159}, {17, 36, 83, 86,
117, 176}, {}]

Rule 64. (c4 = 3) & (c5 = 1) & (c7 = 2) ⇒ (d = 1) OR (d = 2); [6, 6, 13.95%,
100.00%][3,3,0][{16, 29, 159}, {35, 38, 176}, {}]

Rule 65. (c1 = 2) & (c2 = 2) & (c4 = 4) & (c5 = 1) & (c6 = 1) ⇒ (d = 1) OR (d = 2); [4, 4,
9.30%, 100.00%][1,3,0][{102}, {52, 103, 182}, {}]

Rule 66. (c4 = 3) & (c5 = 1) & (c6 = 3) ⇒ (d = 1) OR (d = 2); [3, 3, 6.98%,
100.00%][1,2,0][{87}, {23, 85}, {}]

Rule 67. (c1 = 3) & (c2 = 2) & (c3 = 2) & (c5 = 4) & (c7 = 2) ⇒ (d = 1) OR (d = 2); [2, 2,
4.65%, 100.00%][1,1,0][{104}, {106}, {}]

Rule 68. (c1 = 1) & (c2 = 2) & (c6 = 2) & (c7 = 1) ⇒ (d = 1) OR (d = 2); [8, 8, 18.60%,
100.00%][5,3,0][{5, 88, 92, 93, 129}, {17, 28, 86}, {}]

Rule 69. (c1 = 2) & (c3 = 2) & (c4 = 3) & (c6 = 1) & (c7 = 1) ⇒ (d = 1) OR (d = 2); [2, 2,
4.65%, 100.00%][1,1,0][{101}, {178}, {}]

Rule 70. (c4 = 4) & (c6 = 1) & (c7 = 3) ⇒ (d = 2) OR (d = 3); [4, 4, 33.33%,
100.00%][0,2,2][{}, {105, 166}, {8, 100}]

Rule 71. (c1 = 2) & (c2 = 2) & (c3 = 2) & (c4 = 3) & (c5 = 2) & (c7 = 2) ⇒ (d = 2) OR
(d = 3); [4, 4, 33.33%, 100.00%][0,3,1][{}, {55, 77, 141}, {51}]

Rule 72. (c1 = 1) & (c2 = 2) & (c4 = 4) & (c6 = 1) & (c7 = 2) ⇒ (d = 2) OR (d = 3); [4, 4,
33.33%, 100.00%][0,2,2][{}, {97, 133}, {64, 128}]

Rule 73. (c2 = 1) & (c4 = 3) & (c5 = 1) & (c6 = 1) & (c7 = 1) ⇒ (d = 1) OR (d = 2) OR
(d = 3); [20, 20, 68.97%, 100.00%][6,6,8][{26, 80, 81, 84, 91, 125}, {10, 20, 30,
79, 82, 122, 130, 139}, {15, 25, 32, 89, 98, 191}]

Rule 74. (c2 = 1) & (c4 = 3) & (c5 = 1) & (c6 = 2) ⇒ (d = 1) OR (d = 2) OR (d = 3); [6, 6,
20.69%, 100.00%][1,1,4][{13, 24, 90, 94}, {131}, {12}]

Rule 75. (c2 = 2) & (c3 = 1) & (c4 = 4) & (c5 = 2) & (c7 = 2) ⇒ (d = 1) OR (d = 2) OR
(d = 3); [3, 3, 10.34%, 100.00%][1,1,1][{132}, {68}, {58}]
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ppendix C.

The most important factor for investment revenue is asset allo-
ation in an investment portfolio. Investors should modify their
nvestment portfolios frequently and managed effectively in order
o increase personal wealth. An investment portfolio is composed
f many investment products which can be divided into two cat-
gories: risk products and non-risk products. Risk investments
nclude stocks, mutual funds, foreign exchange, land, houses, and
nvestment insurance. Non-risk investments include bank deposits,
raditional insurance (such as life insurance, AD&D), and govern-

ent bonds.
The asset allocation model usually can be divided into five cate-

ories or types of personal asset allocation portfolio: conservative
ortfolio, moderately conservative portfolio, moderate portfolio,
oderately aggressive portfolio, and aggressive portfolio. In this

tudy simplify the analysis combined the portfolios into three
ypes: non-aggressive (conservative) portfolio, moderate portfolio,
nd aggressive portfolio.

The empirical study is following the paper “Using FSBT tech-
ique with Rough Set Theory for personal investment portfolio
nalysis” [20]. In this study, the decision attributes already have
een simplified to three decision classes (categories: conservative
ortfolio, moderate portfolio, aggressive portfolio) in order to con-
ise the paper structure.

In the paper [20], there are eight condition attributes. The
ttributes of children was a superfluous attribute after a reduct pro-
ess. The reason for the attribute removed was due to the social
enefit and education grant for the children which may reduce
he family expenditure. For simplifying the processes, the children
ttribute did not appear in this study.

Here, 31 validation sample data sets as test data collected in
009 are added to the hit test to check the feasibility of the deci-
ion rules in this study. The results in Table C1 showed that the
it rate reaches 55%. The results are clear that more than half new
bjects can fit into classes among the decision classes. More con-
ition classes will decrease the hit rate and increase the decision
ules. Another results of the reliability test based on Cronbach’s
lpha for training data (data number are 200 which collected in
006) and total data (data number are 231 which combined the

raining data and test data), these two constructs were 0.726 and
.705, respectively.

The hit test between the training data and test data was
escribed in Table C1.
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