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In this paper, we propose the palindromic doubling algorithm

(PDA) for the palindromic generalized eigenvalue problem (PGEP)

A∗x = λAx.We establish a complete convergence theory of the PDA

for PGEPs without unimodular eigenvalues, or with unimodular

eigenvalues of partial multiplicities two (one or two for eigenvalue

1). Some important applications from the vibration analysis and

the optimal control for singular descriptor linear systems will be

presented to illustrate the feasibility and efficiency of the PDA.
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1. Introduction

In this paper, we develop the palindromic doubling algorithm (PDA) for the numerical solution of

the palindromic generalized eigenvalue problem (PGEP)
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A∗x = λAx, (1.1)

where A is a real or complexN × N matrix,λ ∈ C and x ∈ CN\{0} are eigenvalue and the correspond-

ing eigenvector of (1.1), respectively.Here, the symbol “∗”= � (Transpose) orH (Hermitian). Thepencil

A∗ − λA and the pair (A∗, A) are usually called a palindromic linear pencil and a palindromic matrix

pair, respectively. It is easily seen that the eigenvalues of (1.1) satisfy the reciprocal property, i.e., they

appear in pairs as in {λ, 1/λ∗}.
The PGEPs with complex coefficient matrices were firstly suggested as “good” linearizations [5,6]

of palindromic polynomial/quadratic matrix pencils, arising from the study of vibration analysis [2,

4,12]. A PGEP with real coefficient matrices can also be shown to be equivalent to the generalized

continuous/discrete-time algebraic Riccati equations, associated with the continuous/discrete-time,

linear-quadratic optimal control problems (see [11] for details).

The standard approach for solving the PGEP is to compute its generalized Schur form (e.g., by qz in

MATLAB), ignoring its symmetric or palindromic structure in (A∗, A). However, the reciprocal property

of eigenvalues of (1.1) is not preserved by computation generally, producing large numerical errors [7].

Recently, a QR-like algorithm [8] and a hybrid method [7] (which combines Jacobi-type method with

the Laub’s trick) were proposed for the PGEP. The QR-like algorithm generally requires O(N4) flops

and the hybrid method requires O(N3 log(N)) flops. Alternatively, for methods of cubic complexity, a

URV-decomposition based structured method [9] and a structure-preserving algorithm [3] for PGEPs

were proposed, producing eigenvalueswhich are paired toworking precision. Unfortunately for PGEPs,

thesemore efficient (and equivalent) methods require the transformation of the PGEP to the quadratic

form (μ2A∗ + μ · 0 + A)x = 0, leading to operations in larger 2N × 2N matrices. The PDA is a unique

and more direct, thus more efficient, algorithm for the PGEP.

The purpose of this paper is to develop the PDA for solving the PGEP structurally. We establish

quadratic convergence and linear convergencewith rate 1/2 of the PDA, respectively, when (A∗, A) has
no unimodular eigenvalues and has unimodular eigenvalues with partial multiplicities two. In appli-

cation to discrete-time optimal control problems, we especially develop a new algorithm combined

with the PDA (as in Algorithm 4.1) for solving the optimal control of singular descriptor linear systems.

To our knowledge, the associated generalized discrete-time algebraic Riccati equation (GDARE) has

not been solved successfully in a structure-preserving manner.

This paper is organized as follows. In Section 2 we develop the palindromic doubling algorithm

(PDA) for solving PGEPs. In Section 3 we establish the convergence theory for the PDA. In Section 4 we

use the PDA to compute numerical solutions structurally in different applications in PGEPs, GCAREs

and GDAREs. Concluding remarks are given in Section 5.

Throughout this paper, Cm×n and Rm×n denote the sets of m × n complex and real matrices,

respectively. For convenience, we denote Cn = Cn×1, C = C1, Rn = Rn×1 and R = R1. The open

left-half plane and the open unit disk are denoted by C− and D1, respectively; 0m×n(0m) and Im are

them × n(m × m) zeromatrix and them × m identity matrix, respectively. We use σ(A, B) to denote

the spectrum of the matrix pair (A, B), and ‖ · ‖ denotes the 2-norm of a matrix.

2. Palindromic doubling algorithm

For a given palindromic matrix pair (A∗, A), we shall develop a doubling algorithm for solving the

associated PGEP which preserves the palindromic structure at each iterative step.

Suppose −1 /∈ σ(A∗, A) (the assumption can be removed later in Remark 3.1). We then have

A∗(A∗ + A)−1A = ((A∗ + A) − A)(A∗ + A)−1(A + A∗ − A∗)
= (I − A(A∗ + A)−1)((A∗ + A) − A∗)
= A(A∗ + A)−1A∗. (2.1)

From (2.1), it is easily seen that[
A(A∗ + A)−1, A∗(A∗ + A)−1

] [ A∗
−A

]
= 0. (2.2)
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We now define the doubling transform A → Â by

Â = A(A∗ + A)−1A. (2.3)

Theorem 2.1. The matrix pair (̂A∗, Â) has the doubling property; i.e., if
A∗U = AUS, (2.4)

where U ∈ CN×� and S ∈ C�×�, then

Â∗U = ÂUS2. (2.5)

Proof. Multiplying the both sides of (2.4) by A∗(A∗ + A)−1, and (2.1) and (2.4) imply (2.5). �

From Theorem 2.1, we see that the doubling transform (2.3) preserves the palindromic structure.

So, for a palindromic matrix pair
(
A∗
0 , A0

)
with A0 ∈ CN×N , we can develop the PDA to generate the

sequence
{(
A∗
k , Ak

)}
if no breakdown occurs in the iterative process.

PDA Algorithm Given A0 ∈ CN×N, τ (a small tolerance),

for k = 0, 1, 2, . . ., compute

Ak+1 = Ak

(
A∗
k + Ak

)−1
Ak, (2.6)

if dist(Null(Ak+1),Null(Ak)) < τ , then stop,

end for

Here, “Null(·)” denotes the null space of the given matrix and “dist(·, ·)” denotes the distance

between two subspaces.

To develop the PDA further, denote

Ak = Hk + Kk, (2.7a)

where

Hk = 1

2

(
A∗
k + Ak

) = H∗
k , Kk = 1

2

(
Ak − A∗

k

) = −K∗
k (2.7b)

are the ∗-symmetric and ∗-anti-symmetric parts of Ak , respectively. Then the iteration (2.6) can be

rewritten as

Ak+1 = Hk+1 + Kk+1 = 1

2
(Hk + Kk)H

−1
k (Hk + Kk)

= 1

2

(
Hk + KkH

−1
k Kk

)
+ Kk.

The iteration (2.6) in the PDA can be simplified to

Hk+1 = 1

2

(
Hk + K0H

−1
k K0

)
,

Kk+1 = Kk = · · · = K0.

3. Convergence of PDA

Let A0 ∈ CN×N . Suppose the eigenvalue “1" of
(
A∗
0 , A0

)
(if exists) has partial multiplicity one or two,

and the other unimodular eigenvalues of
(
A∗
0 , A0

)
(if exist) have exactly partial multiplicities two. By

the theorem of Kronecker canonical form there are nonsingular matrices Q and Z such that
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QA∗
0Z =

[
J0 ⊕ Ω0 0

�,�̃
⊕ Ir

0ñ,n I
�̃
⊕ Ω0

]
≡ C0, (3.1a)

QA0Z =
[
In 0n,ñ
0ñ,n J̃∗0 ⊕ Ir

]
≡ D0, (3.1b)

where Ω0 = diag
(
eiω1 , . . . , eiωr

)
, J0 ∈ C�×� consists of stable Jordan blocks (i.e., ρ(J0) < 1, where

ρ(·) is the radius of the spectrum) and J̃∗0 = J0 ⊕ Im with n = � + r, �̃ = � + m, ñ = n + m = � +
r + m and N = 2n + m. Here “⊕" denotes the direct sum of matrices.

Since C0D0 = D0C0, from (3.1b) we have that A∗
0ZD0 = A0ZC0. From Theorem 2.1 and steps in the

PDA, it follows that

A∗
k ZD

2k

0 = AkZC
2k

0 . (3.2)

Substituting (3.1b) into (3.2), we get

A∗
k Z

[
In 0n,ñ

0ñ,n
(̃
J∗0
)2k ⊕ Ir

]
= AkZ

⎡⎣J2k0 ⊕ Ω2k

0 0
�,�̃

⊕ 	k

0ñ,n I� ⊕ Ω2k

0

⎤⎦ , (3.3)

where Γk = 2kΩ
2k−1
0 . On the other hand, we can interchange the role of

(
A∗
0 , A0

)
by considering the

pair
(
A0, A

∗
0

)
which has the same Kronecker structure as

(
A∗
0 , A0

)
. Therefore, there are nonsingular P

and Y such that

PA0Y =
[
J∗0 ⊕ Ω∗

0 0
�,�̃

⊕ Ir
0ñ,n I

�̃
⊕ Ω∗

0

]
≡ E0, (3.4a)

PA∗
0Y =

[
In 0n,ñ
0ñ,n J̃0 ⊕ Ir

]
≡ F0, (3.4b)

Since E0F0 = F0E0, we deduce that A0YF0 = A∗
0YE0. Using the similar arguments as in (3.2) and (3.3),

we obtain

AkY

[
In 0n

0n J̃2
k

0 ⊕ Ir

]
= A∗

kY

⎡⎣(
J∗0
)2k ⊕ (

Ω∗
0

)2k
0
�,�̃

⊕ Γ ∗
k

0ñ,n I
�̃
⊕ (

Ω∗
0

)2k
⎤⎦ . (3.5)

We partition Ak , Hk and K0 in (2.7a) into four sub-blocks as in

Ak =
[
Ak1 Ak3

Ak2 Ak4

]
, Hk =

[
Hk1 H∗

k2
Hk2 Hk4

]
, K0 =

[
K01 −K∗

02
K02 K04

]
, (3.6a)

whereAk1,Hk1,K01 ∈ Cn×n,A∗
k2, Ak3, H

∗
k2, K

∗
02 ∈ Cn×ñ andAk4, Hk4, K04 ∈ Cñ×ñ. From(2.7a) and (3.6a),

we also have

Ak1 = Hk1 + K01, Ak2 = Hk2 + K02, (3.6b)

Ak3 = H∗
k2 − K∗

02, Ak4 = Hk4 + K04. (3.6c)

Furthermore, we partition Z in (3.3) and Y in (3.5) as in

Z =
[
Z1 Z3
Z2 Z4

]
, Y =

[
Y1 Y3
Y2 Y4

]
, (3.7)

where Z1, Y1 ∈ Cn×n; Z∗
2 , Z3, Y

∗
2 , Y3 ∈ Cn×ñ and Z4, Y4 ∈ Cñ×ñ. For convenience, we denote

Zi,a ≡ Zi(:, 1 : �), Yi,a ≡ Yi(:, 1 : �), i = 3, 4, (3.8)

Zi,b ≡ Zi(:, � + 1 : n), Yi,b ≡ Yi(:, � + 1 : n), i = 1, 2. (3.9)
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Theorem 3.1. Let A0 ∈ CN×N . Suppose that the eigenvalue “1" of
(
A∗
0 , A0

)
(if exists)has partialmultiplicity

one or two, the other unimodular eigenvalues of
(
A∗
0 , A0

)
(if exist) have exactly partial multiplicities two,

and (3.1b) and (3.4b) hold with ñ� 2� (i.e., r + m� �). Suppose that Z1 and Y1 in (3.7) are invertible,

and W ≡ [�Z3,a − Z4,a|�Y3,a − Y4,a] ∈ Cñ×2� is of full row rank, where Φ ≡ Z2Z
−1
1 , Ψ ≡ Y2Y

−1
1 . If

−1 /∈ ⋃r
j=1

{
e2

kiωj , k � 0
}
, then the sequence

{(
A∗
k , Ak

)}
generated by the PDA is well defined and satisfies

A∗
k

[
Z1
Z2

]
→0, linearly as k → ∞, (3.10a)

Ak

[
Y1
Y2

]
→0, linearly as k → ∞, (3.10b)

with convergence rate1/2,where span
{
Z1
Z2

}
and span

{
Y3
Y4

}
form theweakly stable and theunstable invariant

subspaces of
(
A∗
0 , A0

)
corresponding to (J0 ⊕ Ω0, In) and

(
In, J

∗
0 ⊕ Ω∗

0

)
, respectively.

Proof. Since −1 /∈ ⋃r
j=1

{
e2

kiωj , k � 0
}
, from (2.6) we see that −1 /∈ σ

(
A∗
k , Ak

)
, thus, A∗

k + Ak is in-

vertible for all k.

From (3.6a), (3.3) and (3.7), we have

A∗
k1Z1 + A∗

k2Z2 = Ak1Z1

(
J2

k

0 ⊕ Ω2k

0

)
+ Ak3Z2

(
J2

k

0 ⊕ Ω2k

0

)
, (3.11)

A∗
k3Z1 + A∗

k4Z2 = Ak2Z1

(
J2

k

0 ⊕ Ω2k

0

)
+ Ak4Z2

(
J2

k

0 ⊕ Ω2k

0

)
, (3.12)

A∗
k1Z3

((̃
J∗0
)2k ⊕ Ir

)
+ A∗

k2Z4

((̃
J∗0
)2k ⊕ Ir

)
= Ak1

[
Z1(0�,�̃

⊕ Γk) + Z3

(
I
�̃
⊕ Ω2k

0

)]
+ Ak3

[
Z2(0�,�̃

⊕ Γk) + Z4

(
I
�̃
⊕ Ω2k

0

)]
, (3.13)

A∗
k3Z3

((̃
J∗0
)2k ⊕ Ir

)
+ A∗

k4Z4

((̃
J∗0
)2k ⊕ Ir

)
= Ak2

[
Z1(0�,�̃

⊕ Γk) + Z3

(
I
�̃
⊕ Ω2k

0

)]
+ Ak4

[
Z2(0�,�̃

⊕ Γk) + Z4

(
I
�̃
⊕ Ω2k

0

)]
. (3.14)

Post-multiplying (3.13) by 0
�̃,�

⊕ Γ
−1
k Ω2k

0 , we get

A∗
k1Z3

(
0
�̃,�

⊕ Γ
−1
k Ω2k

0

)
+ A∗

k2Z4

(
0
�̃,�

⊕ Γ
−1
k Ω2k

0

)
= (Ak1Z1 + Ak3Z2)

(
0� ⊕ Ω2k

0

)
+ (Ak1Z3 + Ak3Z4)

(
0
�̃,�

⊕ Ω2k

0 Γ
−1
k Ω2k

0

)
. (3.15)

Substituting (3.15) into (3.11) and using Ω2k

0 Γ
−1
k Ω2k

0 = 2−kΩ
2k+1
0 , we have

A∗
k1Z1 + A∗

k2Z2 = (Ak1Z1 + Ak3Z2)

(
J2

k

0 ⊕ 0r

)
+ (Ak1Z1 + Ak3Z2)

(
0� ⊕ Ω2k

0

)
= (Ak1Z1 + Ak3Z2)

(
J2

k

0 ⊕ 0r

)
+ (

A∗
k1Z3 + A∗

k2Z4
) (

0
�̃,�

⊕ Γ
−1
k Ω2k

0

)
− (Ak1Z3 + Ak3Z4)

(
0
�̃,�

⊕ 2−kΩ
2k+1
0

)
. (3.16)

Using (3.6a) and re-arranging (3.16), we get

Hk1Z

{
Z1

[
In −

(
J2

k

0 ⊕ 0r

)]
− Z3

[
0
�̃,�

⊕ 2−kΩ0

(
Ir − Ω2k

0

)]}
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+H∗
k2

{
Z2

[
In −

(
J2

k

0 ⊕ 0r

)]
− Z4

[
0
�̃,�

⊕ 2−kΩ0

(
Ir − Ω2k

0

)]}
= K01

{
Z1

[
In +

(
J2

k

0 ⊕ 0r

)]
− Z3

[
0
�̃,�

⊕ 2−kΩ0

(
Ir + Ω2k

0

)]}
− K∗

02

{
Z2

[
In +

(
J2

k

0 ⊕ 0r

)]
− Z4

[
0
�̃,�

⊕ 2−kΩ0

(
Ir + Ω2k

0

)]}
. (3.17)

Denote

εk ≡ max

{
ρ(J0)

2k , 2−k

}
→ 0, as k → ∞. (3.18)

Since
∥∥∥Ω2k

0

∥∥∥ is bounded and Z1 is invertible, by letting Φ ≡ Z2Z
−1
1 , (3.17) can be simplified to

Hk1 = −H∗
k2(Φ + O(εk)) + K01 − K∗

02Φ + O(εk). (3.19)

Post-multiplying (3.13) by I
�̃
⊕ Γ

−1
k , we have

A∗
k1Z3

((̃
J∗0
)2k ⊕ Γ

−1
k

)
+ A∗

k2Z4

((̃
J∗0
)2k ⊕ Γ

−1
k

)
= Ak1

[
Z1(0�,�̃

⊕ Ir) + Z3

(
I
�̃
⊕ Ω2k

0 Γ
−1
k

)]
+ Ak3

[
Z2(0�,�̃

⊕ Ir) + Z4

(
I
�̃
⊕ Ω2k

0 Γ
−1
k

)]
. (3.20)

From (3.6a) and (3.18), (3.20) becomes

Hk1[Z3(I� ⊕ 0m+r) + Z1(0�,�̃
⊕ Ir) + O(εk)] + H∗

k2[Z4(I� ⊕ 0m+r) + Z2(0�,�̃
⊕ Ir) + O(εk)]

= −K01[Z3(I� ⊕ 2Im ⊕ 0r) + Z1(0�,�̃
⊕ Ir) + O(εk)]

+ K∗
02[Z4(I� ⊕ 2Im ⊕ 0r) + Z2(0�,�̃

⊕ Ir) + O(εk)]. (3.21)

Substituting (3.19) into (3.21) we get

H∗
k2

{
(Φ + O(εk))[Z3(I� ⊕ 0m+r) + Z1(0�,�̃

⊕ Ir) + O(εk)] − Z4(I� ⊕ 0m+r)

− Z2(0�,�̃
⊕ Ir) + O(εk)

}
= O(1).

Since ΦZ1,b = Z2,b, it holds that

H∗
k2([ΦZ3,a − Z4,a] + O(εk)) = O(1) ∈ Cñ×�. (3.22)

On the other hand, from (3.6a), (3.5) and (3.7), we have

Ak1Y1 + Ak3Y2 = A∗
k1Y1

((
J∗0
)2k ⊕ (

Ω∗
0

)2k) + A∗
k2Y2

((
J∗0
)2k ⊕ (Ω∗

0 )2
k
)
, (3.23)

Ak2Y1 + Ak4Y2 = A∗
k3Y1

((
J∗0
)2k ⊕ (

Ω∗
0

)2k) + A∗
k4Y2

((
J∗0
)2k ⊕ (

Ω∗
0

)2k)
, (3.24)

Ak1Y3

(̃
J2

k

0 ⊕ Ir

)
+ Ak3Y4

(̃
J2

k

0 ⊕ Ir

)
= (

A∗
k1Y3 + A∗

k2Y4
) (

I
�̃
⊕ (Ω∗

0 )2
k
)

+ (
A∗
k1Y1 + A∗

k2Y2
) (

0
�,�̃

⊕ Γ ∗
k

)
, (3.25)

Ak2Y3

(̃
J2

k

0 ⊕ Ir

)
+ Ak4Y4

(̃
J2

k

0 ⊕ Ir

)
= (

A∗
k3Y3 + A∗

k4Y4
) (

I
�̃
⊕ (Ω∗

0 )2
k
)

+ (
A∗
k3Y1 + A∗

k4Y2
) (

0
�,�̃

⊕ Γ ∗
k

)
. (3.26)
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As in (3.15) and (3.17), post-multiplying (3.25) by 0
�̃,�

⊕ (
Γ ∗
k

)−1 (
Ω∗

0

)2k
and substituting it into (3.23),

we have

Ak1Y1 + Ak3Y2 = (
A∗
k1Y1 + A∗

k2Y2
) ((

J∗0
)2k ⊕ 0r

)
+ (

A∗
k1Y3 + A∗

k3Y4
) (

0
�̃,�

⊕ 2−kΩ∗
0

)
− (

A∗
k1Y3 + A∗

k2Y4
) (

0
�̃,�

⊕ 2−k(Ω∗
0 )2

k+1

)
. (3.27)

From (3.6a) and (3.18), (3.27) becomes

Hk1

{
Y1

[
In −

((
J∗0
)2k ⊕ 0r

)]
− Y3

[
0
�̃,�

⊕ 2−kΩ∗
0

(
Ir − (

Ω∗
0

)2k)]}
+H∗

k2

{
Y2

[
In −

((
J∗0
)2k ⊕ 0r

)]
− Y4

[
0
�̃,�

⊕ 2−kΩ∗
0

(
Ir − (

Ω∗
0

)2k)]}
= −K01

{
Y1

[
In +

((
J∗0
)2k ⊕ 0r

)]
− Y3

[
0
�̃,�

⊕ 2−kΩ∗
0 (Ir + (Ω∗

0 )2
k

)

]}
+ K∗

02

{
Y2

[
In +

((
J∗0
)2k ⊕ 0r

)]
− Y4

[
0
�̃,�

⊕ 2−kΩ∗
0

(
Ir + (Ω∗

0 )2
k
)]}

, (3.28)

and then

Hk1 = −H∗
k2(Ψ + O(εk)) − K01 + K∗

02Ψ + O(εk),

where Ψ = Y2Y
−1
1 .

Post-multiplying (3.25) by I
�̃
⊕ (

Γ ∗
k

)−1
and substituting (3.28) into it, we have

H∗
k2

{
Y4(I� ⊕ 0m+r) + Y2(0�,�̃

⊕ Ir) + O(εk) − (Ψ + O(εk))[Y3(I� ⊕ 0m+r)

+ Y1(0�,�̃
⊕ Ir) + O(εk)]

}
= O(1).

Since Ψ Y1,b = Y2,b, it holds that

H∗
k2([Ψ Y3,a − Y4,a] + O(εk)) = O(1) ∈ Cñ×�. (3.29)

Combining (3.22) and (3.29) we get

H∗
k2([ΦZ3,a − Z4,a|Ψ Y3,a − Y4,a] + O(εk)) = O(1) ∈ Cñ×2�. (3.30)

By the assumption that W ≡ [ΦZ3,a − Z4,a|Ψ Y3,a − Y4,a] ∈ Cñ×2� is of full row rank, it follows that∥∥H∗
k2

∥∥ is uniformly bounded on k. Consequently, (3.19) implies that ‖Hk1‖, and in turn ‖Ak1‖ and
∥∥A∗

k2

∥∥,
are uniformly bounded on k. From (3.16), it follows that

A∗
k1Z1 + A∗

k2Z2 = O(εk) → 0, as k → ∞. (3.31)

Applying the similar argument as in (3.15) and (3.17) to (3.24) and (3.26), we deduce that

Hk4 = −Hk2

(
Y2Y

−1
1 + O(εk)

)
+ K04 − K02Y2Y

−1
1 + O(εk).

Thus, (3.30) implies that ‖Hk4‖, and in turn ‖Ak4‖, are uniformly bounded on k.

To show A∗
k3Z1 + A∗

k4Z2 = O(εk), we post-multiply (3.14) by 0
�̃,�

⊕ Γ
−1
k Ω2k

0 and obtain

A∗
k3Z3

(
0
�̃,�

⊕ Γ
−1
k Ω2k

0

)
+ A∗

k4Z4

(
0
�̃,�

⊕ Γ
−1
k Ω2k

0

)
= (Ak2Z1 + Ak4Z2)

(
0� ⊕ Ω2k

0

)
+ (Ak2Z3 + Ak4Z4)

(
0
�̃,�

⊕ 2−kΩ
2k+1
0

)
. (3.32)
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Substituting (3.32) into (3.12), as in (3.16) we have

A∗
k3Z1 + A∗

k4Z2 = (Ak2Z1 + Ak4Z2)

(
J2

k

0 ⊕ 0r

)
+ (

A∗
k3Z3 + A∗

k4Z4
) (

0
�̃,�

⊕ 2−kΩ0

)
− (Ak2Z3 + Ak4Z4)

(
0
�̃,�

⊕ 2−kΩ
2k+1
0

)
= O(εk) → 0, as → ∞. (3.33)

Combining (3.31) and (3.33), we have shown that[
A∗
k1 A∗

k2
A∗
k3 A∗

k4

] [
Z1
Z2

]
= O(εk) → 0, as k → ∞.

Similarly, as in (3.15) and (3.16), from (3.24) and (3.26) we have

Ak2Y1 + Ak4Y2 = (
A∗
k3Y1 + A∗

k4Y2
) ((

J∗0
)2k ⊕ 0r

)
+ (Ak2Y3 + Ak4Y4)

(
0
�̃,�

⊕ 2−kΩ∗
0

)
− (

A∗
k3Y3 + A∗

k4Y4
) (

0
�̃,�

⊕ 2−k (
Ω∗

0

)2k+1
)

= O(εk). (3.34)

Using the boundedness of ‖Aki‖, i = 1, . . . , 4, and combining (3.27) and (3.34), we have shown that[
Ak1 Ak3

Ak2 Ak4

] [
Y1
Y2

]
= O(εk) → 0, as k → ∞,

because 1

2k
dominates ρ(J0)

2k in (3.18) for sufficiently large values of k. �

Remark 3.1. Consider the assumption −1 /∈ U ≡ ⋃r
j=1

{
e2

kiωj , k � 0
}
in Theorem 3.1. Since U is a

countable set (possibly dense on the unit circle only when r → ∞), there exist an −eiθ0 /∈ U. With

A∗
new ≡ e−iθ0/2A∗

0,wehaveA∗
new + Anew = eiθ0/2A0 + e−iθ0/2A0 = e−iθ0/2

(
A∗
0 + eiθ0A0

)
being invert-

ible. It is unclear how the “optimal" θ0 can be found.

Theorem 3.2. Suppose
(
A∗
0 , A0

)
has no unimodular eigenvalues. The sequence

{(
A∗
k , Ak

)}
generated by the

PDA satisfies

A∗
k

[
Z1
Z2

]
→ 0, Ak

[
Y1
Y2

]
→ 0,

quadratically, as k → ∞, with convergence rate ρ(J0).

Proof. Since
(
A∗
0 , A0

)
has no unimodular eigenvalues, Theorem 3.1 implies

(
A∗
k , Ak

)
has no unimodular

eigenvalues and
(
A∗
k + Ak

)
is invertible. So, the PDA is well-defined.

From (3.6a), (3.3) and (3.7), we have

A∗
k1Z1 + A∗

k2Z2 = Ak1Z1J
2k

0 + Ak3Z2J
2k

0 , (3.35)

A∗
k3Z1 + A∗

k4Z2 = Ak2Z1J
2k

0 + Ak4Z2J
2k

0 , (3.36)

From (3.6a), it holds that

Hk1Z1 + H∗
k2Z2 = (

K01Z1 − K∗
01Z2

) (
I + J2

k

0

)(
I − J2

k

0

)−1

.

Therefore,∥∥Hk1Z1 + H∗
k2Z2

∥∥ �O(1).

This implies
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∥∥(Hk1 + K01)Z1 + (
H∗
k2 − K∗

02

)
Z2

∥∥ = ‖Ak1Z1 + Ak3Z2‖ �O(1). (3.37)

From (3.35) and (3.37), we have

A∗
k1Z1 + A∗

k2Z2 = O

(
ρ(J0)

2k
)

→ 0, as k → ∞.

Similarly, from (3.36), we obtain

Hk2Z1 + H∗
k4Z2 = (

K02Z1 + K∗
04Z2

) (
I + J2

k

0

)(
I − J2

k

0

)−1

,

which is uniformly bounded on k. This implies

A∗
k3Z1 + A∗

k4Z2 = O

(
ρ(J0)

2k
)

→ 0, as k → ∞.

This shows that A∗
k

[
Z1
Z2

]
→ 0, quadratically, with convergence rate ρ(J0). Similarly, from (3.6a), (3.5)

and (3.7), we can also show that Ak

[
Y1
Y2

]
→ 0 quadratically, with rate ρ(J0). �

4. Numerical solution and applications

In this section, wewant to apply the PDA to find all the eigenpairs of a general PGEP, and solve the c-

/d-stabilizing solutions of generalized continuous/discrete-time algebraic Riccati equations

(GCARE/GDARE). We especially develop Algorithm 4.1 in subsection 4.3 for the computation of the

d-semi-stabilizing solution of GDAREs arising in the optimal control of singular descriptor linear

systems. Toourknowledge,Algorithm4.1 is thefirst structure-preservingalgorithmfor solvingGDAREs

associated with singular descriptor systems.

For operation counts or complexity, it depends on the details in the individual applications and

whether efficiency can be squeezed from these fine structures. From the PDA, it is suffice to say that

thealgorithm isofO(N3) complexityper iteration. In addition, forproblemswithoutunimodular eigen-

values, the convergence is quadratic and typically less than ten iterations are required for convergence

to machine accuracy.

4.1. PGEP

In this subsection, we apply the PDA to solve the PGEP A∗
0x = λA0x, where A0 ∈ C2n×2n. First, we

apply the PDA to A0 until convergence to Ak . Then we compute the bases Zs,Ys ∈ C2n×n for the right

and left null spaces of A∗
k , respectively, satisfying

A∗
k Zs = 0, Y∗

s A
∗
k = 0.

This implies that there are S and T ∈ Cn×n with ρ(S) � 1 and ρ(T) � 1 such that

A∗
0Zs = A0ZsS, A0Ys = A∗

0YsT . (4.1)

From (4.1), S and T can be computed by

S = (
Y∗
s A0Zs

)−1 (
Y∗
s A

∗
0Zs

) ≡ S
−1
1 S2,

T = (
Z∗
s A

∗
0Ys

)−1 (
Z∗
s A0Ys

) ≡ S
−∗
1 S∗

2 .

Rewrite the second equation of (4.1) as

A0

(
YsS

−∗
1

)
= A∗

0

(
YsS

−∗
1

)
S∗
2S

−∗
1 = A∗

0

(
YsS

−∗
1

)
S∗.

Compute Sgj = λjgj and S∗hj = λ∗
j hj , aswell as zj = Zsgj and yj =

(
YsS

−∗
1

)
hj , for j = 1, . . . , n. It holds

that
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Table 4.1

Results for Example 1.

ITs 20 21 22 23 24

Errk 1.26e-6 6.29e-7 3.15e-7 1.58e-7 8.01e-8

A∗
0zj = λjA0zj, λ∗

j A
∗
0yj = A0yj, j = 1, . . . , n.

In the followingexample,we report thenumerical results of thePDA to illustrate the linear convergence

in the critical case. Recall that Theorem 3.1 shows the PDA converges linearly with rate 1/2 when all

unimodular eigenvalues of
(
A∗
0 , A0

)
have partial multiplicities two.

Example 4.1. Given α = cos(θ) and β = sin(θ) with θ = 0.62. Let

J0 =
[
02 Γ

I2 I2

]
, Js =

[
03 diag(λ1, λ2, λ3)
I3 03

]
,

where Γ =
[
α −β
β α

]
, and |λi| < 1 for i = 1, 2, 3. We construct

A0 = Q∗(J0 ⊕ Js)Q,

whereQ is an unitarymatrix. It is easily seen that
(
A∗
0 , A0

)
has eigenvalues {α + ıβ ,α − ıβ , λ1, λ2, λ3,

1/λ∗
1 , 1/λ

∗
2 , 1/λ

∗
3

}
with partial multiplicities {2, 2, 1, 1, 1, 1, 1, 1} which satisfy the assumptions in

Theorem 3.1. The kth absolute error as in (3.10a) computed by the PDA is defined by

Errk ≡ ∥∥A∗
k Zs,k

∥∥ ,
where Zs,k is an orthogonal basis corresponding to the five smallest singular values of Ak .

In Table 4.1, we list the absolute errors from the 20th to 24th iterations computed by the PDAwhich

is observed to be linearly convergent with rate 1/2. Here, the tolerance τ in the PDA is chosen to be the

optimal
√

1e − 16 = 1e − 8, because the unimodular eigenvalues of
(
A∗
0 , A0

)
have partial multiplies

two. Furthermore, the residual
∥∥A∗

0Zs − A0Zs�s

∥∥ is given by 8.07e − 8, where Zs ≡ Zs,24 and �s is the

corresponding approximate stable eigenvalue matrix.

4.2. GCARE

In this subsection,weare interested infinding thec-stabilizingsolutionof thegeneralizedcontinuous-

time algebraic Riccati equation (GCARE)

A�
c XcEc + E�

c XcAc −
(
Nc + E�

c XcBc

)
R−1
c

(
Nc + E�

c XcBc

)� + Mc = 0, (4.2)

which solves the continuous-time linear-quadratic control problem

min
u

1

2

∫ ∞
0

[
x

u

]� [
Mc Nc

N�
c Rc

] [
x

u

]
dt (4.3a)

subject to the descriptor linear system

Ecẋ = Acx + Bcu, x(0) = x0, (4.3b)

where Ec, Ac, Mc = M�
c , Xc = X�

c ∈ Rn×n, Bc, Nc ∈ Rn×m and Rc = R�
c ∈ Rm×m with Ec and Rc being

nonsingular. Furthermore, the c-stabilizing closed-loopmatrix pencil of (4.3b) is given by Ac + BcKc −
λEc with the σ(Ac + BcKc, Ec) ⊆ C− , where

Kc ≡ −R−1
c

(
B�
c XcEc + N�

c

)
.

Let

Mc − λLc ≡
⎡⎢⎣ 0 Ac Bc
A�
c Mc Nc

B�
c N�

c Rc

⎤⎥⎦ − λ

⎡⎣ 0 Ec 0

−E�
c 0 0

0 0 0

⎤⎦ . (4.4)
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One commonapproach to solve (4.2) is to compute then-dimensional, c-stable invariant subspaceUc of

the symmetric/skew-symmetric pencilMc − λLc corresponding to the eigenvaluematrix pair (Sc, Ec)

with σ(Sc, Ec) ⊆ C−, where Uc is the column space of Uc ∈ R(2n+m)×n which satisfies McUcEc =
LcUcSc .

We assume that the matrix pencil Mc − λLc has no eigenvalues on the imaginary axis. The gener-

alized eigenvalues of (Mc ,Lc) can be arranged by

λ1, . . . , λ2n; λ̄1, . . . , λ̄2n; ∞, . . . ,∞︸ ︷︷ ︸
m

,

where λi ∈ C−, for 1� i � 2n. The m trivial infinity eigenvalues are from the nonsingularity of Rc .

With

Uc =
⎡⎣XcEc

In
Kc

⎤⎦ }n
}n
}m

,

Xc is the c-stabilizing solution of GCARE (4.2) and Kc is the optimal controller for (4.3b) [11].

In order toutilize thePDA to compute anorthogonal basisV =
[
V�
1 , V�

2 , V�
3

]�
forUc withV1, V2 ∈

Rn×n, we consider the Cayley transformation

A�
0 − λA0 = (Mc + Lc) − λ(Mc − Lc),

where

A0 = Mc − Lc =
⎡⎢⎣ 0 Ac − Ec Bc
A�
c + E�

c Mc Nc

B�
c N�

c Rc

⎤⎥⎦ . (4.5)

Then the c-stabilizing solution Xc for GCARE (4.2) can be obtained by Xc = V1V
−1
2 E−1

c .

To measure the accuracy of the computed solution X̃c for the GCARE, we use the “normalized"

residual (NRc)

NRc ≡

∥∥∥∥A�
c X̃cEc + E�

c X̃cAc −
(
Nc + E�

c X̃cBc

)
R−1
c

(
Nc + E�

c X̃cBc

)� + Mc

∥∥∥∥∥∥A�
c X̃cEc

∥∥ + ‖E�
c X̃cAc‖ + ‖(Nc + E�

c X̃cBc)R
−1
c

(
Nc + E�

c X̃cBc
)� ‖ + ‖Mc‖

.

In the following example, we compare the residuals NRc of X̃c computed by care inMATLAB, Newton’s

method (NTM) [1] and the PDA.

Example 4.2 (Example 4.3 of [1]). Let n = m = 8. Given

Ac = diag

([
0 0

0 0

]
,

[
0 1

−1 0

]
,

[
0 2

−2 0

]
,

[−1 1

0 −1

])
, Rc = I8, Ec = I8,

Gc ≡ BcR
−1
c B�

c = trid(1, 2, 1) + e8e
�
1 + e1e

�
8 ,

Mc = 08, Nc = 08,

where trid(1, 2, 1) is a 8 × 8 tridiagonal matrix with the sub-, main- and super-diagonal elements

being 1, 2 and 1, respectively.

It is readily seen that Xc = 0 and σ(Ac − GcXc) = {−1, 0,±i,±2i} with purely imaginary eigen-

values having linear elementary divisors. We apply the NTMmethod to GCARE (4.2) with X0 = I8, and

apply the PDA to

A0 =
[

Gc Ac − Ec
A�
c + E�

c Mc

]
,

which is a degenrate form of (4.5) with Nc = 0. The tolerance τ in the NTM and the PDA is chosen to

be 10−10. The numerical results are given in Table 4.2.
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Table 4.2

Results for Example 3.

care NTM PDA

NRc ∗ 5.25 × 10−10 6.61 × 10−10

Iter. no. - 10 27

From Table 4.2, care in MATLAB dose not work because of the existence of the purely imaginary

eigenvalues. We see that the NTM and the PDA almost have the same accuracy. Both methods have

linear convergence rate 1/2, but the PDA requires much more iterative steps. However, the PDA only

needs to compute a LU-factorization in each step, and NTM is accelerated by somemodified technique

[1] which needs to solve a more expensive Sylvester equation in each step.

4.3. GDARE

In this subsection, we are interested in finding the d-semi-stabilizing solution of the generalized

discrete-time algebraic Riccati equation (GDARE)

A�
d XdAd − E�

d XdEd −
(
Nd + A�

d XdBd

) (
Rd + B�

d XdBd

)−1 (
Nd + A�

d XdBd

)� + Md = 0, (4.6)

which solves the discrete-time linear-quadratic control problem

min
uk

1

2

∞∑
k=0

[
xk
uk

]� [
Md Nd

N�
d Rd

] [
xk
uk

]
(4.7a)

subject to the singular descriptor linear system

Edxk+1 = Adxk + Bduk, x0 = x0, (4.7b)

whereEd, Ad, Md = M�
d , Xd = X�

d ∈ Rn×n,Bd, Nd ∈ Rn×m andRd = R�
d ∈ Rm×mwithEd being singu-

lar. Furthermore, thed-semi-stabilizingclosed-loopmatrixpencil of (4.7b) isgivenbyAd + BdKd − λEd
with the σ(Ad + BdKd, Ed) ⊆ D1 ∪ {∞}, where

Kd ≡ −
(
Rd + B�

d XdBd

)−1 (
B�
d XdAd + N�

d

)
.

Let

Md − λLd ≡
⎡⎢⎢⎣

0 Ad Bd

E�
d Md Nd

0 N�
d Rd

⎤⎥⎥⎦ − λ

⎡⎢⎢⎣
0 Ed 0

A�
d 0 0

B�
d 0 0

⎤⎥⎥⎦ .

One common approach to solve (4.6) is to compute the n-dimensional, d-semi-stable invariant sub-

space Ud of the matrix pencil Md − λLd corresponding to the eigenvalue matrix pair (Sd, Ed) with

σ(Sd, Ed) ⊆ D1 ∪ {∞}, where Ud is the column space of Ud ∈ R(2n+m)×n which satisfies MdUdEd =
LdUdSd.

With

Ud =
⎡⎣XdEd

In
Kd

⎤⎦ }n
}n
}m

,

Xd is the d-semi-stabilizing solution of GDARE (4.6) and Kd is the optimal controller for (4.7b) [11].

Assume that the matrix pencil Md − λLd has no eigenvalues on the unit circle, rd =nullity (Ed)
and ind∞(Ad, Ed) � 1. From [11] we see that

σ(Md,Ld) = σ(Ad + BdKd, Ed) ∪ σ
(
E�
d , (Ad + BdKd)

�)
∪ σ(0m, Im). (4.8)

So, the generalized eigenvalues of (Md,Ld) corresponding to (4.8) can be arranged by
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Table 4.3

Correspondence among λd , μ and λ.

λd 0 < |λd| < 1 |λd| > 1 0 ∞ m trivial ∞
μ Re(μ) < 0 Re(μ) > 0 −1 1 m trivial ∞
λ λ = λd λ = λd 0 ∞ m trivial −1

{λ1, . . . , λn−rd ,∞, . . . ,∞︸ ︷︷ ︸
rd

} ∪
⎧⎪⎨⎪⎩0, . . . , 0︸ ︷︷ ︸

rd

, λ−1
1 , . . . , λ−1

n−rd

⎫⎪⎬⎪⎭ ∪ {∞, . . . ,∞︸ ︷︷ ︸
m

}, (4.9)

where λi ∈ D1 (can possibly be zero) , i = 1, . . . , n − rd. For convenience, we apply the convention

that 0 and ∞ are mutually reciprocal. The rd infinity and rd zero eigenvalues in (4.9) are from the

assumption rd = nullity(Ed). The last trivial m infinity eigenvalues are from the last m columns of

Ld. In fact, (Ad + BdKd, Ed) is an eigenvalue matrix pair associated with the d-semi-stable invariant

subspace Ud.

We now introduce an elegant transformation between the coefficient matrices of the GDARE (4.6)

and GCARE (4.2) proposed by [11]. We define

fW : (Ed, Ad, Bd, Md, Nd, Rd) → (Ec, Ac, Bc, Mc, Nc, Rc),

where the matrices Ec, Ac, Bc, Mc, Nc, Rc satisfy[
Ec 0

Ac Bc

]
= χ

[
Ed 0

Ad Bd

]
W�

d = 1√
2

[
Ad + Ed Bd
Ad − Ed Bd

]
W�

d , (4.10a)[
Mc Nc

N�
c Rc

]
= Wd

[
Md Nd

N�
d Rd

]
W�

d , (4.10b)

in which χ = 1√
2

[
In In−In In

]
, and [Ad + Ed Bd] = [H 0]Wd is the QR-factorization with Wd being

orthogonal and H being lower triangular.

By the important property of fW in [11], it is assumed that rank(Ad + Ed Bd) = n and (Md,Ld) has
no eigenvalue “−1". Thus, the coefficient matrix tuple (Ec, Ac, Bc, Mc, Nc, Rc) corresponds to a GCARE

(4.2) with Ec and Rc being nonsingular. Furthermore, the GDARE (4.6) and the GCARE (4.2) share the

same stabilizing solutions, i.e., Xd = Xc .

We construct (Mc ,Lc) by (Ec, Ac, Bc, Mc, Nc, Rc) as in (4.4) which satisfies

Mc + Lc = W−1MdW, (4.11)

where W ≡ diag(
√

2In, W
�
d ). Let

(A�
0 ,A0) = (Mc + Lc ,Mc − Lc) (4.12)

be the Cayley transformation of (Mc ,Lc). From (4.10b) and (4.11), we see that the eigenvalues λd ∈
σ(Md,Ld), μ ∈ σ(Mc ,Lc) and λ ∈ σ(A�

0 ,A0) satisfy the relationship in Table 4.3, in which μ =
(λ − 1)(λ + 1)−1. From Table 4.3, we see that the key property of the transformation λd → λ is to

transformm trivial infinity eigenvalues tom trivial −1 while preserving other eigenvalues (including

nontrivial ∞) unchanged.

In the following, we use the PDA and the special structure of (Md,Ld) for the computation of the

d-semi-stabilizing solution Xd of GDARE (4.6).

Firstly,we apply the PDA to thematrixA0 until convergence toAk . Thenwe compute the orthogonal

bases Nr and N� ∈ R(2n+m)×n for the right and left null spaces of A�
k ; i.e.,

A�
k Nr = 0, AkN� = 0, (4.13)

which form orthogonal bases for the d-stable invariant subspaces of
(
A�

0 ,A0

)
and

(
A0,A�

0

)
, respec-

tively.
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We then compute the QR-factorization A0Nr = Q1R1, where Q1 is orthogonal and R1 is upper

triangular. Next compute

S = Q�
s A�

0 Nr , T = Q�
s A0Nr , (4.14)

where Qs = Q1(:, 1 : n). We see that (S, T) forms the d-stable eigenvalue matrix pair of
(
A�

0 ,A0

)
associated with Nr , and T is clearly nonsingular.

We would like to separate the invariant subspaces of
(
A�

0 ,A0

)
corresponding to the zero and

nonzero d-stable eigenvalues. Let G = T−1S. By Van Dooren’s algorithm [10], there is an orthogonal

matrix Φ ∈ Rn×n such that

ΦGΦ� =
[
G11 G12

0 G22

]
,

where G11 ∈ Rs×s with σ(G11) =
{
λ ∈ σ

(
A�

0 ,A0

)
| 0 < |λ| < 1

}
and G22 ∈ R(n−s)×(n−s) with

σ(G22) = {0}. Since σ(G11)
⋂

σ(G22) = φ, there is a Ψ =
[
Is Ψ12
0 In−s

]
such that

Ψ −1Φ�GΦΨ =
[
G11 0

0 G22

]
,

where Ψ12 solves the Sylvester equation G11Ψ12 − Ψ12G22 = G12 uniquely. Then

V0 = NrΦΨ (:, s + 1 : n), V̂s = NrΦΨ (:, 1 : s) (4.15)

span the invariant subspaces of (A�
0 ,A0) corresponding to the zero and nonzero d-stable eigenvalues,

respectively.

Let ζ̂� spans the left null space of Ed. Then ζ� =
[
ζ̂�
� , 0

]� ∈ R(2n+m)×rd contains the rd eigenvectors

of (Md,Ld) corresponding to the trivial zeros. From the transformation (4.11), we see that W−1ζ�

contains the rd eigenvectors of
(
A�

0 ,A0

)
corresponding to trivial zeros. Now, we want to extract

W−1ζ� from span{V0}.
Compute the QR-factorization

[
W−1ζ� V0

] = Q0R0, where Q0 is orthogonal and R0 is upper tri-

angular. Let

V̂0 = Q0(:, rd + 1 : n − s), (4.16)

which forms the eigenvectors of
(
A�

0 ,A0

)
corresponding to zero eigenvalues of (Sd, Ed).

We will next find the invariant space U∞ of
(
A�

0 ,A0

)
corresponding to the infinity eigenvalues.

Compute the QR-factorization A0N� = Q∞R∞, where Q∞ is orthogonal and R∞ is upper triangular.

Let

N∞ = N�Q∞(:, s + 1 : n) ≡
⎡⎣N∞,1

N∞,2

N∞,3

⎤⎦ }n
}n
}m

, Vs = [
V̂s V̂0

] ≡
⎡⎣Vs1

Vs2

Vs3

⎤⎦ }n
}n
}m

.

From the Cayley transform, there is a full rank matrix Z ∈ R(n−s)×rd so that

V =
⎡⎣Vs1 N∞,1Z

Vs2 N∞,2Z

Vs3 N∞,3Z

⎤⎦ ≡
⎡⎣V1

V2

V3

⎤⎦ (4.17)

is a basis of an invariant subspace of
(
A�

0 ,A0

)
, satisfying Span{V} = Span

{[
XcEc
In
Kc

]}
.

To determine Z , (4.17) and the fact Xc = X�
c imply[

V�
s2

Z�N�∞,2

]
E�
c

[
Vs1 N∞,1Z

] =
[

V�
s1

Z�N�∞,1

]
Ec

[
Vs2 N∞,2Z

]
.
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That is,

V�
s2E

�
c Vs1 = V�

s1EcVs2, (4.18a)

Z�N�∞,2E
�
c Vs1 = Z�N�∞,1EcVs2, (4.18b)

V�
s2E

�
c N∞,1Z = V�

s1EcN∞,2Z, (4.18c)

Z�N�∞,2E
�
c N∞,1Z = Z�N�∞,1EcN∞,2Z. (4.18d)

Since Ec is nonsingular, from the isotropic property of
[
Vs1
Vs2

]
and

[
N∞1
N∞2

]
, (4.18a) and (4.18d) hold au-

tomatically. Since (4.18b) is the transpose of (4.18c), the matrix Z is solved by finding the basis of

Null
(
V�
s2E

�
c N∞,1 − V�

s1EcN∞,2

)
.

Finally, we have the d-semi-stabilizing solution Xd for GDARE (4.6) can be obtained by

Xd = Xc = V1V
−1
2 E−1

c . (4.19)

We summarize the computational steps (4.12)–(4.19) for Xd in Algorithm 4.1.

Algorithm 4.1 (for GDARE (4.6)).

Input: Ed, Ad, Bd, Md, Nd, Rd; τ (a small tolerance);

Output: The d-semi-stabilizing solution Xd of (4.6).

1. Construct A0 via (4.12).

2. Apply PDA to
(
A�

0 ,A0

)
until dist (Null(Ak), Null(Ak−1)) < τ .

3. Compute bases Nr , N� for the right and left null spaces of A�
k as in (4.13).

4. Compute bases V0, V̂s for d-stable invariant subspaces of
(
A�

0 ,A0

)
as in (4.15).

5. Compute eigenvectors V̂0 of
(
A�

0 ,A0

)
corresponding to zeros as in (4.16).

6. Determine Z by (4.18c).

7. Compute Xd = V1V
−1
2 E−1

c as in (4.19).

In the following,weapplyAlgorithm4.1 for adiscrete-timedescriptor systemwithEd being singular.

Tomeasure the accuracy of the computed solution X̃d for theGDARE,weuse the “normalized" residual:

NRd ≡

∥∥∥∥A�
d X̃dAd − E�

d X̃dEd −
(
Nd + A�

d X̃dBd

) (
Rd + B�

d X̃dBd

)−1 (
Nd + A�

d X̃dBd

)� + Md

∥∥∥∥∥∥∥A�
d X̃dAd

∥∥∥ +
∥∥∥E�

d X̃dEd

∥∥∥ +
∥∥∥∥(Nd + A�

d X̃dBd

) (
Rd + B�

d X̃dBd

)−1 (
Nd + A�

d X̃dB
�
d

)�∥∥∥∥ + ‖Md‖
.

Example 4.3. Withn = 10, m = 6,we letAd = rand(n), Bd = rand(n, m), Nd = rand(n, m). Construct

Ed = Ed1E
�
d2, Rd = Rd1 + R�

d1, Md = Md1 + M�
d1,

where Ed1 = rand(n, n − 3), Ed2 = rand(n, n − 3),Rd1 = rand(m) andMd1 = rand(n).We check that

nullity(Ed) = 3 and the algebraic multiplicity of the zero eigenvalue of (Md,Ld) is also 3. Algorithm

4.1 gives

NRd = 1.472e − 015.

In this example, the PDA in Step 2 converges quadratically. In addition, Steps 4 and 5 are not required,

and Z in Step 6 is chosen to be the obvious I3.

Example 4.4. With n = 20, m = 15, we let

Ãd = [
0n,4 rand(n, n − 4)

]
, Bd = rand(n, m), Ñ�

d = [
0m,4 rand(m, n − 4)

]
,

Ẽd = Ed1E
�
d2, M̃d = diag

(
04, Md1 + M�

d1

)
, Rd = Rd1 + R�

d1,
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whereEd1 = rand(n, n − 2),Ed2 = rand(n, n − 2),Rd1 = rand(m)andMd1 = rand(n − 4). Construct

(Ad, Nd, Ed, Md) =
(
ÃdQ , Q�Ñd, Q

�Ẽd, Q
�M̃dQ

)
,

where Q is an arbitrarily orthogonal matrix. We check that nullity(Ed) = 2 and the algebraic multi-

plicity of the zero eigenvalue of (Md,Ld) is 6. Then Algorithm 4.1 gives

NRd = 7.501e − 015.

In this example, the PDA in Step 2 converges quadratically. The eigenvectors V̂0 ∈ R55×4 computed

by (4.16) in Step 5 actually correspond to the 4 zero eigenvalues of (Ad + BdKd, Ed), and Z in Step 6 is

a nontrivial 6 × 2-matrix of full rank as computed by (4.18c).

5. Concluding remarks

In this paper, we have developed the palindromic doubling algorithm (PDA) for solving the palin-

dromic generalized eigenvalue problem (PGEP) A∗x = λAx structurally. We prove quadratic conver-

gence and linear convergence with rate 1/2 of the PDA, when (A∗, A) has no unimodular eigenvalues

and has unimodular eigenvalues with partial multiplicities two (one or two for eigenvalue 1), respec-

tively. Algorithm 4.1 is specially developed for the computation of the d-semi-stabilizing solution of

the generalized discrete-time algebraic Riccati equation (GDARE) for the singular descriptor linear

system. It is the first structure-preserving algorithm for singular descriptor systems.

Our numerical experience indicates that the PDA is not necessarily better than other specialist

algorithms (if exist) for solving the original problem, without linearizing the associated palindromic

matrix polynomials. Such specialist algorithms may be able to better utilize the finer structures of

the original problems. Our numerical examples showed selected applications for which the PDA was

better or when no specialist structure-preserving algorithms exist. For future work, research will be

conducted on how the finer structures can be fully utilized for individual applications. For a general

PGEP without finer structures, the PDA is the only structure-preserving algorithm which performs

reasonably efficiently. Consequently, the “good" vibrations from “good" linearizations [5,6] can always

be computed using the PDA, in the absence of better methods. Of course, numerical solutions from the

PDA or other methods may be refined using the finer structures in the original problems, if feasible.
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