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Mining useful information and helpful knowledge from large databases has evolved into an important
research area in recent years. Among the classes of knowledge derived, finding sequential patterns in
temporal transaction databases is very important since it can help model customer behavior. In the past,
researchers usually assumed databases were static to simplify data-mining problems. In real-world appli-
cations, new transactions may be added into databases frequently. Designing an efficient and effective
mining algorithm that can maintain sequential patterns as a database grows is thus important. In this
paper, we propose a novel incremental mining algorithm for maintaining sequential patterns based on
the concept of pre-large sequences to reduce the need for rescanning original databases. Pre-large
sequences are defined by a lower support threshold and an upper support threshold that act as gaps
to avoid the movements of sequences directly from large to small and vice versa. The proposed algorithm
does not require rescanning original databases until the accumulative amount of newly added customer
sequences exceeds a safety bound, which depends on database size. Thus, as databases grow larger, the
numbers of new transactions allowed before database rescanning is required also grow. The proposed

approach thus becomes increasingly efficient as databases grow.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The rapid development of computer technology, especially in-
creased capacities and decreased costs of storage media, has led
businesses to store huge amounts of external and internal informa-
tion in large databases at low cost. Mining useful information and
helpful knowledge from these large databases has thus evolved
into an important research area (Agrawal, Imielinksi, & Swami,
1993; Chen, Han, & Yu, 1996). Years of effort in data mining has
produced a variety of efficient techniques. Depending on the types
of databases to be processed, mining approaches may be classified
as working on transactional databases, temporal databases, rela-
tional databases, and multimedia databases, among others.
Depending on the classes of knowledge sought, mining approaches
may be classified as finding association rules, classification rules,
clustering rules, and sequential patterns, among others (Chen
et al.,, 1996). Among them, finding sequential patterns in temporal
transaction databases is important since it allows modeling of
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customer behavior (Agrawal & Srikant, 1995; Lin & Lee, 1998; Srik-
ant & Agrawal, 1995).

Mining sequential patterns was first proposed by Agrawal and
Srikant (1995), and is a non-trivial task. It attempts to find cus-
tomer purchase sequences and to predict whether there is a high
probability that when customers buy some products, they will
buy some other products in later transactions. For example, a
sequential pattern for a video shop may be formed when a cus-
tomer buys a television in one transaction, he then buys a video re-
corder in a later transaction. Note that the transaction sequences
need not be consecutive.

Although customer behavior models can be efficiently extracted
by the mining algorithm in Agrawal and Srikant (1995) to assist
managers in making correct and effective decisions, the sequential
patterns discovered may become invalid when new customer se-
quences occur. Sequential patterns that did not originally exist
may emerge due to these new customer sequences. Conventional
approaches may re-mine the entire database to get correct sequen-
tial patterns for maintenance. However, when the database is mas-
sive in size, this will require considerable computation time.
Developing efficient approaches to maintain sequential patterns
is thus very important to real-world applications. Recently, some
researchers have strived to develop incremental mining algorithms
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for maintaining association rules. Examples are the FUP algorithm
proposed by Cheung, Han, Ng, and Wong (1996, 1997), the adap-
tive algorithm proposed by Sarda and Srinivas (1998), and the
incremental mining algorithm with pre-large itemsets proposed
by Hong, Wang, and Tao (2000, 2001). The common idea in these
approaches is that previously mined information should be utilized
as much as possible to reduce maintenance costs. Intermediate re-
sults, such as large itemsets, are kept and checked against newly
added transactions, thus saving much computation time for main-
tenance, although original databases may still need to be
rescanned.

Studies on maintaining sequential patterns are relatively rare
compared to those on maintaining association rules. Lin and Lee
proposed the FASTUP algorithm to maintain sequential patterns
by extending the FUP algorithm (Lin & Lee, 1998). Their approach
works well except when newly coming candidate sequences are
not large in the original database. If this occurs frequently, the per-
formance of the FASTUP algorithm will correspondingly decrease.
In this paper, we thus attempt to develop a novel and efficient
incremental mining algorithm capable of updating sequential pat-
terns based on the concept of pre-large sequences. A pre-large se-
quence is not truly large, but nearly large. A lower support
threshold and an upper support threshold are used to realize this
concept. Pre-large sequences act like buffers and are used to reduce
the movement of sequences directly from large to small and vice
versa during the incremental mining process. A safety bound for
newly added customer sequences is derived within which rescan-
ning the original database can be efficiently reduced and mainte-
nance costs can also be greatly reduced. The safety bound also
increases monotonically along with increases in database size.
Thus, our proposed algorithm becomes increasingly efficient as
the database grows. This characteristic is especially useful for
real-world applications.

The remainder of this paper is organized as follows. Mining
sequential patterns is first reviewed in Section 2. The maintenance
of association rules is reviewed in Section 3. The concept of pre-
large sequences is described in Section 4. The notation used in this
paper is defined in Section 5. The theoretical foundation for our ap-
proach is given in Section 6. A novel maintenance algorithm for
sequential patterns is proposed in Section 7. An example to illus-
trate the proposed algorithm is provided in Section 8. Conclusions
are given in Section 9.

2. Mining sequential patterns

In a database D of customer transactions, each transaction con-
sists of at least three attributes, Cust_id, Trans_time and Trans_con-
tent. Cust_id records the unique identification of a customer,
Trans_time stores the time a transaction occurs, and Trans_content
stores what items were purchased in a transaction. A sequence is an
ordered list of itemsets. A customer sequence is a sequence of all
transactions for a customer in order of transaction times. Note that
each transaction in a customer sequence corresponds to an item-
set. A sequence A is contained in a sequence B if the former is a
sub-sequence of the latter. Take the data in Table 1 as an example.

There are sixteen transactions sorted first by Cust_id and then
by Trans_time. These transactions can be transformed into cus-
tomer sequences as shown in Table 2.

Tuples 1 and 2 in Table 1 both belong to customer 1 and are
thus combined into a customer sequence in Table 2. Similarly, tu-
ples 3, 4 and 5 belonging to customer 2 are combined into another
customer sequence. Note that the sequence ((C,D)) in customer se-
quence 2 indicates that a customer bought items C and D in one
transaction. This differs from the sequence ((C)(D)), which means
that a customer bought item C in a transaction and then bought

Table 1
Sixteen transactions sorted according to Cust_id and
Trans_time.

Cust_id Trans_time Trans_content

1998/01/01
1998/01/20
1998/01/11
1998/02/02
1998/02/11
1998/01/07
1998/02/09
1998/02/19
1998/02/23
1998/01/05
1998/01/12
1998/01/05
1998/01/13
1998/01/01
1998/01/17
1998/01/23
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Table 2
The customer sequences transformed from the
transactions in Table 1.

Cust_id Customer sequence
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item D in a later transaction. Customer sequence 1, ((A)(B)), is con-
tained in customer sequence 4, which is {(A)(E, G)(B)), since the for-
mer is a sub-sequence of the latter. Note that, if customer sequence
1 is ((A)(E,B)), then it is not contained in customer sequence 4.

Agrawal and Srikant proposed the AprioriAll approach to min-
ing sequential patterns from sets of transactions (Agrawal &
Srikant, 1995). Five phases are included in this approach. In the
first phase, transactions are sorted first using customer ID as the
major key and then using transaction time as the minor key. This
phase thus converts the original transactions into customer se-
quences. In the second phase, large itemsets are found in customer
sequences by comparing their counts with the predefined support
parameter o. This phase is similar to the process of mining associ-
ation rules. Note that when an itemset occurs more than once in a
customer sequence, it is counted once for this customer sequence.
In the third phase, large itemsets are mapped to contiguous inte-
gers and the original customer sequences are transferred to the
mapped integer sequences. In the fourth phase, the integer se-
quences are examined for finding large sequences. In the fifth
phase, maximally large sequences are then derived and output to
users.

Mining sequential patterns repeatedly and level-wisely exe-
cutes series of operations on customer sequences similar to the
mechanism for mining association rules (Agrawal, Imielinksi, &
Swami, 1993; Agrawal & Srikant, 1994; Agrawal, Srikant, & Vu,
1997; Fukuda, Morimoto, Morishita, & Tokuyama, 1996; Han &
Fu, 1995; Mannila, Toivonen, & Verkamo, 1994, 1997; Savasere,
Omiecinski, & Navathe, 1995). However, association rules concern
relationships among items in transactions, while sequential
patterns concern relationships among itemsets in customer
sequences. Consider, for example, the customer sequences shown
in Table 2. Assume the minimum support is set at 50% (i.e., three
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Table 3
All large sequences generated for the customer sequences in Table 2.

Large sequences

1-sequence Count 2-sequence Count
(A)) 6 (A)(B)) 4
((B)) 5

() 4

(G 4

customer sequences for this example). All the large sequences
mined from the customer sequences in Table 2 are presented in
Table 3.

3. Maintenance of association rules

In this section, we review some methods for maintaining asso-
ciation rules, which provide some hints to the maintenance of
sequential patterns introduced in the next section. When new
transactions are added to databases, existing association rules
may become invalid, or new implicitly valid rules may appear in
the resulting updated databases (Cheung et al., 1996, 1997; Hong
et al,, 2000, 2001; Sarda & Srinivas, 1998; Zhang, 1999). In these
situations, conventional batch-mining algorithms must re-mine
the entire updated databases to find all up-to-date association
rules. Two drawbacks are associated with maintaining database
knowledge in this manner:

(a) Nearly the same computation time is needed to cope with
each new transaction as was spent in mining from the origi-
nal database. If the original database is large, much compu-
tation time is wasted in maintenance whenever new
transactions are generated.

(b) Information previously mined from the original database,
such as large itemsets, provides no help in the maintenance
process.

Some approaches have been proposed to use previously mined
information to improve rule-maintenance performance. Cheung
et al. first proposed the concept of intermediate information and
designed an incremental mining algorithm, called FUP (Cheung
et al.,, 1996, 1997), to solve the problems stated above. The FUP
algorithm retains previously discovered large itemsets as interme-
diate information during each run. It then scans the newly added
transactions to generate candidate 1-itemsets (only for these
transactions), and compares these itemsets with ones previously
retained in the intermediate information. FUP partitions candidate
1-itemsets into two parts according to whether they are large in
the original database. If a candidate 1-itemset is among the large
1-itemsets from the original database, its new total count for the
entire updated database can easily be calculated from its current
count and previous count since FUP retains all previous large item-
sets with their counts. By contrast, if a candidate 1-itemset is not
among the large 1-itemsets in the original database, it is treated
in one of two ways. If a candidate 1-itemset is not large for the
new transactions, it cannot be large for the entire updated data-
base, which means no action is necessary. Additionally, if a candi-
date 1-itemset is large for the new transactions, the original
database must be re-scanned to determine whether the itemset
is actually large for the entire updated database. Using the process-
ing tactics mentioned above, FUP is thus able to find all large
1-itemsets for the entire updated database. After that, candidate
2-itemsets from the newly inserted transactions are formed and
the same procedure is used to find all large 2-itemsets. This proce-
dure is repeated until all large itemsets have been found.

The FUP algorithm thus focuses on newly added transactions
and utilizes intermediate information to save computation time
in maintaining association rules. It must, however, rescan the ori-
ginal database to handle cases in which candidate itemsets are
large in newly added transactions and not retained in the interme-
diate information. This situation may occur frequently, especially
when the number of new transactions is small.

We proposed an incremental mining algorithm based on the
concept of pre-large itemsets to reduce the amount of rescanning
of original databases required whenever new transactions are
added (Hong et al., 2000, 2001). A pre-large itemset is not truly
large, but promises to be large in the future. A lower support
threshold and an upper support threshold are used to realize this
concept. The upper support threshold is the same as the minimum
support used in conventional mining algorithms. The support ratio
of an itemset must be larger than the upper support threshold in
order to be considered large. On the other hand, the lower support
threshold defines the lowest support ratio for an itemset to be trea-
ted as pre-large. An itemset with a support ratio below the lower
threshold is thought of as a small itemset. Pre-large itemsets act
like buffers and are used to reduce the movement of itemsets di-
rectly from large to small and vice versa in the incremental mining
process. Therefore, when few new transactions are added, the
original small itemsets will at most become pre-large and cannot
become large, thus reducing the amount of rescanning necessary.
A safety bound for new transactions is derived from the upper
and lower thresholds and from the size of the database. This algo-
rithm is described as follows:

Step 1: Retain all previously discovered large and pre-large item-
sets with their counts.

Step 2: Scan newly inserted transactions to generate candidate 1-
itemsets with counts.

Step 3: Set k=1, where k is used to record the number of items
currently being processed.

Step 4: Partition all candidate k-itemsets as follows.

Case 1: A candidate k-itemset is among the previous large 1-

itemsets.

Case 2: A candidate k-itemset is among the previous pre-large
itemsets.

Case 3: A candidate k-itemset is among the original small
itemsets.

Step 5: Calculate a new count for each itemset in cases 1 and 2 by
adding its current count and previous count together;
prune the itemsets with new support ratios smaller than
the lower support threshold.

Step 6: Rescan the original database if the accumulative amount
of new transactions exceeds the safety threshold.

Step 7: Generate candidate k + 1-itemsets from updated large and
pre-large k-itemsets, and then go to step 3 until they are
null.

The above algorithm, like the FUP algorithm, retains previously
mined information, focuses on newly added transactions, and fur-
ther reduces the computation time required to maintain large
itemsets in the entire database. The algorithm can further reduce
the number of rescans of the original database as long as the accu-
mulative amount of new transactions does not exceed the safety
bound.

4. Extending the concept of pre-large itemsets to sequential
patterns

Maintaining sequential patterns is much harder than maintain-
ing association rules since the former must consider both itemsets
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and sequences. In this paper, we attempt to extend the concept of
pre-large itemsets to maintenance of sequential patterns. The pre-
large concept is used here to postpone original small sequences di-
rectly becoming large and vice versa when new transactions are
added. A safety bound derived from the lower and upper thresh-
olds determines when rescanning the original database is needed.

When new transactions are added to a database, they can be di-
vided into two classes:

Class 1: new transactions by old customers already in the origi-
nal database;
Class 2: new transactions by new customers not already in the

original database.

Newly added transactions are first transformed into customer
sequences, and those belonging to class 1 mentioned above are
merged with corresponding customer sequences in the original
database. For example, assume that the original database includes
the six customer sequences shown in Table 2 and the large se-
quences found from them are presented in Table 3 with the mini-
mum support set at 50%. When the two new transactions shown in
Table 4 are added to the original database, they are first trans-
formed into the new customer sequences shown in Table 5, and
then merged with the original customer sequences. Results are
shown in Table 6.

The candidate sequences from the newly merged customer se-
quences are then listed and counted. Comparing the merged cus-
tomer sequences with the corresponding old customer
sequences, it is easily seen that the itemsets in new customer se-
quences will always be appended to the old customer sequences.
Therefore, the counts of the sequences existing in the old customer
sequences are not changed and only the counts of the sequences
derived from the new customer sequences increase. The counts
of the candidate sequences from the merged customer sequences
are then defined by their count increments for insertion of new
transactions. For example, the candidate 1-sequences for the
merged customer sequences in Table 6 are shown in Table 7. Their
counts as calculated in the manner described above are also shown
there.

Considering the old customer sequences in terms of the two
support thresholds, the newly merged customer sequences may
fall into the following three cases illustrated in Fig. 1.

Case 1 may remove existing large sequences, and cases 2 and 3
may add new large sequences. If we retain all large and pre-large

Table 4
Two new transactions sorted according to Cust_id and Trans_time.

Cust_id Trans_time Trans_content
5 1998/02/01 E, G
9 1998/02/05 E F, G

Table 5
Two newly added customer sequences.

Cust_id Customer sequence
5 ((E,G))
9 ((E,F,G))

Table 6

The two merged customer sequences.

Cust_id Customer sequence
5 ((BXCXE,G))
9 (EEG))

Table 7
The candidate 1-sequences with their counts.

Candidate 1-sequences

1-sequence Count
(B) 0
(©) 0
(E)) 2
((F)) 1
(G) 2
((E.F)) 1
(E.G)) 2
((F.G)) 1
(EE,G)) 1

Original
customer

sequences
- 2 ~
Large Pre-large Small
sequences  Sequences — sequences
Case 1 Case 2 Case 3

Fig. 1. Three cases arising from adding new transactions to existing databases.

sequences with their counts in the original database, then cases
1 and 2 can be easily handled. Also, in the maintenance phase,
the ratio of newly added customer sequences to original customer
sequences is usually very small. This is more apparent when the
database is growing larger. A sequence in case 3 cannot possibly
be large for the entire updated database as long as the number of
newly added customer sequences is small compared to the number
of customer sequences in the original database. This point is pro-
ven below.

5. Notation

The notation used in this paper is defined below.

D: the original customer sequences;

T: the set of newly merged customer sequences from the newly
inserted customer sequences;

U: the entire updated customer sequences;

d: the number of customer sequences in D;

t: the number of customer sequences in T;

q: the number of newly added customer sequences belonging to
old customers in the original database;

S.: the upper support threshold for large sequences;

Si: the lower support threshold for pre-large sequences, S;< S;

L,E’ : the set of large k-sequences from D;

LT: the set of large k-sequences from T;

L,E’: the set of large k-sequences from U;

P’,? : the set of pre-large k-sequences from D;

Pg: the set of pre-large k-sequences from T;

P,‘{’: the set of pre-large k-sequences from U;

Cy: the set of all candidate k-sequences from T;

I: a sequence;

SP(I): the number of occurrences of I in D;

S™(1): the number of occurrence increments of I in T;

SY(1): the number of occurrences of I in U.
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6. Theoretical foundation

As mentioned above, if the number of newly added customer
sequences is small when compared with the number of original
customer sequences, a sequence that is small (neither large nor
pre-large) in the original database cannot possibly be large for
the entire updated database. This is demonstrated by the following
theorem.

Theorem 1. Let S; and S, be, respectively, the lower and the upper
support thresholds, d be the number of customer sequences in the
original database, t be the number of newly added customer
sequences, and q be the number of newly added customer sequences
belonging to old customers. If t < M — s \
small (neither large nor pre-large) i m the orlgmal database is not large

for the entire updated database.

Proof. The following derivation can be obtained from ¢
<SR- g
(Su — Sl)d qsu
oS 1-s, W
t(1 = Su) < (Su—S)d - g5,
t—tS, <dS, —dS —gS,
t+dS <Su(d+t—q)
t+dS
d+t—q~

-

A

-
If a sequence I is small (neither large nor pre-large) in D, then its
count SP(I) must be less than S; « d. Therefore,

SP(ny < ds;.

Since the number of newly added customer sequences is t, the
count of I in T is at most t. Thus:

t>S'().
The entire support ratio of I in U is d t 7 which can be further ex-
panded to:
sy ST +SP) . t+dS
= < Sy
d+t—q d+t—q d+t—-q

I is thus not large for U. This completes the proof. O

Example 1. Assume d =100, S;=50% and S, = 60%. The number of
newly added customer sequences within which the original data-
base need not be re-scanned for rule maintenance is:

(a) If g=10,
(SH—S,)d_ qs, 7(0.6—0.5)100_0.6*107]0
1-5, 1-S, 1-06 1-06
(b) If g=5,
(Su—S)d ¢S, _(06-0.5)100 0.6%5 175
1-5, 1-S, 1-06 1-06" 7
(c)Ifg=0,
(Sy —Sl)d_ gS, _(06-05)100 0.6+0 25
1-5, 1-S, 1-06 1-06 7

If t is equal to or less than the number calculated, then I cannot be
large for the entire updated database.

From Theorem 1, the bound of the number of new customer se-
quences is determined by S, Sy, d and q. It is easily seen from the
first term, (s" ¢ in Formula 1, that if d grows larger, then t will

grow larger too. As the database grows, our proposed approach
thus becomes increasingly efficient. Also, from the second term,
¢ in Formula 1, when the number of newly added customer se-
quences belonging to old customers in the original database is
large (i.e., q is large), the allowable number of newly added cus-
tomer sequences t will be reduced.

7. The proposed algorithm

In the proposed algorithm, the original large and pre-large se-
quences with their counts from preceding runs are retained for later
use in maintenance. As new transactions are added, the proposed
algorithm first transforms them into new customer sequences and
merges them with the corresponding old sequences existing in the
original database. The newly merged customer sequences are then
scanned to generate candidate 1-sequences with occurrence incre-
ments. These candidate sequences are compared to the large and
pre-large 1-sequences which were previously retained. These candi-
date sequences are divided into three parts according to whether
they are large, pre-large or small in the original database. If a candi-
date 1-sequence is also among the previously retained large or pre-
large 1-sequences, its new total count for the entire updated data-
base can easily be calculated from its current count increment and
previous count, since all previous large and pre-large sequences
with their counts have been retained. Whether an original large or
pre-large sequence is still large or pre-large after new transactions
are added is then determined from its new support ratio, which is
derived from its total count over the total number of customer se-
quences. On the contrary, if a candidate 1-sequence does not exist
among the previously retained large or pre-large 1-sequences, then
the sequence is absolutely not large for the entire updated database
when the number of newly merged customer sequences is within
the safety bound derived from Theorem 1. In this situation, no action
is needed. When new transaction data are incrementally added and
the total number of newly added customer sequences exceeds the
safety bound, the original database must be re-scanned to find
new large and pre-large sequences. The proposed algorithm can thus
find all large 1-sequences for the entire updated database. After that,
candidate 2-sequences from the newly merged customer sequences
are formed, and the same procedure is used to find all large 2-se-
quences. This procedure is repeated until all large sequences have
been found. The details of the proposed maintenance algorithm
are described below. Two global variables, c and b, are used to accu-
mulate, respectively, the number of newly added customer se-
quences and the number of newly added customer sequences
belonging to old customers since the last re-scan of the original
database.

7.1. The proposed maintenance algorithm for sequential patterns
Input: A lower support threshold S, an upper support thresh-
old S,, a set of large and pre-large sequences in the ori-
ginal database D consisting of (d+c) customer
sequences, the accumulative amount b of new customer
sequences belonging to old customers, and a set of t
newly added customer sequences transformed from
new transactions.
A set of final large sequential patterns for the updated
database.
Calculate the value of the first term in Formula 1 as:

(Su—S)d
L

Output:

Step 1:

Step 2: Merge the newly added customer sequences with the

old sequences in the original database and count the
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value g, which is the number of the newly added cus-
tomer sequences belonging to old customers.

Set b=b +q and calculate the second term ¢ in For-
mula 1 as:

BS,
S 1-S,°

Step 3:

h

where b is the accumulative amount of g since the last
re-scan.
Set k=1, where k is used to record the number of item-
sets in the sequences currently being processed.
Find all candidate k-sequences C; and their count incre-
ments from the newly merged customer sequences T.
Divide the candidate k-sequences into three parts
according to whether they are large, pre-large or small
in the original database.
Do the following substeps for each k-sequence I in the
original large k-sequences Lf :
Substep 7-1: Set the new count SY(I) = ST(I) + SP(1).
Substep 7-2: If SY(I)/(d + c+t — b) > S,, then assign I as a
large sequence, set SP(I) = SY(I) and keep I with SP(I);
otherwise, if SY(I)/(d+c+t—b) > S, then assign I as a
pre-large sequence, set SP(I)=5SY() and keep I with
SP(D);

otherwise, ignore I.
Do the following substeps for each k-sequence I in the
original pre-large sequences Pf :
Substep 8-1: Set the new count SY(I) = ST(I) + SP(I).
Substep 8-2: If SY(I)/(d +c+t — b) > S,, then assign I as
a large sequence, set S°(I) = SY(I) and keep I with SP(I);
otherwise, if SY(I)/(d+c+t—b) > S, then assign I as a
pre-large sequence, set SP°(I)=5SY(I) and keep I with
SP(1y;
otherwise, ignore I.
Put I in the rescan-set R for each k-sequence I in the can-
didate k-sequences C that is neither in the original large
sequences L{ nor in the pre-large sequences Py, for use
when rescanning in Step 10 is necessary.

Step 4:
Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step10: If c+t < f— h or R is null, then do nothing; otherwise,
rescan the original database to determine whether the
sequences in the rescan-set R are large or pre-large.

Step 11: Form candidate (k+ 1)-sequences Ci.; from finally
large and pre-large k-sequences (LY (JPY) that appear
in the newly merged transactions.

Step 12: Set k=k+1.

Step 13: Repeat STEPs 5 to 12 until no new large or pre-large
sequences are found.

Step 14: Modify the maximal large sequence patterns according
to the modified large sequences.

Step 15: Ifc+t>f— h,thensetd=d+c+t c=0and b = 0; other-

wise, set c=c+t.

After Step 15, the finally maximal large sequences for the up-
dated database can be determined.

8. An example

In this section, an example is given to illustrate the proposed
maintenance algorithm for sequential patterns. Assume the initial
customer sequences are the same as those shown in Table 2. Also
assume S; is set at 30% and S, is set at 50%. The sets of large se-
quences and pre-large sequences for the given data are shown in
Tables 8 and 9, respectively.

Assume the two new customer sequences shown in Table 10 are
added.

Table 8
The large sequences for the customer sequences in Table 2.

Large sequences

1-sequence Count 2-sequence Count
(A)) 6 ((A)(B)) 4
((B)) 5
() 4
(9) 4

Table 9

The pre-large sequences for the customer sequences in Table 2.

Pre-large sequences

1-sequence Count 2-sequence Count
((E)) 3
(E,G)) 3

Table 10

Two newly added customer sequences.

Cust_id Customer sequence
5 ((E.G))
9 ((A)(B,C))

The global variables ¢ and b are initially set at 0. The proposed
incremental mining algorithm proceeds as follows:

Step 1: The value of the first term in Formula 1 is calculated as:

f_(5-S)d_(05-03)8
~1-s,  1-05

Step 2: The two new sequences in Table 10 are merged with their
corresponding old sequences in Table 2. Results are shown
in Table 11.

Step 3: Since only the customer sequence with Cust_id=5 in
Table 10 belongs to old customers in Table 2, q is thus 1.
b=b+q=0+1=1. The value of the second term in For-
mula 1 is calculated as:

=3.2.

he bS, :1*0.5:
1-S, 1-05

Step 4: kis set to 1, where k is used to record the number of item-
sets in a sequence currently being processed.

Step 5: All candidate 1-sequences C; with their counts from the
two merged customer sequences are found (and shown
in Table 12). The counts are actually the count increments
due to insertion of new transactions.

Step 6: All the candidate 1-itemsets in Table 12 are divided into
three parts according to whether they are large, pre-large
or small in the original database. Results are shown in
Table 13.

Step 7: The following substeps are done for each of the originally
large 1- sequences ((A)), ((B)), ((C)) and ((G)) (Table 8):

1.

Table 11
The merged customer sequences.

Cust_id Customer sequence
5 ((BXCXE,G))
9 ((A)(B,C))




Table 13
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Table 12
All candidate 1-sequences from the two merged
customer sequences.

Candidate 1-sequences Count
(A) 1
((B) 1
() 1
((E)) 1
(G)) 1
((B,C) 1
(EG)) 1

Three partitions of all the candidate 1-itemsets in Table 12.

Originally large
1-sequences

Originally pre-large
1-sequences

Originally small
1-sequences

1-sequence Count 1-sequence Count 1-sequence Count
(A)) 1 ((E)) 1 ((B,C)) 1
((B)) 1 ((EG)) 1
() 1
(9) 1
Table 14
The total counts of ((A)), (B)), ((C)) and {(G)).
1-sequence Count
(A)) 7
((B)) 6
() 5
(G 5

Step 8:

Step 9:

Step 10:

Substep 7-1: The total counts of the candidate 1-
sequences ((A)), {(B)), ((C)) and ((G)) are calculated
using ST(I) + SP(I). Table 14 shows the results.

Substep 7-2: The new support ratios of {(A)), ((B)), ((C))
and ((G)) are calculated. For example, the new support
ratio of {A} is 7/(8 +0+2-1)=0.78 > 0.5. {A} is thus
still a large sequence. In this example, since the new
counts of all the four sequences ((A)), ((B)), ((C)) and
((G)) are larger than 0.5, they are large 1-sequences
for the entire updated database.

The following substeps are done for each of the origi-
nally pre-large 1-sequences ((E)) and ((E,G)) (Table 8):
Substep 8-1: The total count of the candidate 1-
sequences ((E)) and ((E,G)) are calculated using
ST(1) + SP(I). Table 15 shows the results.
Substep 8-2: The new support ratio of {(E)) and ((E,G))
is 4/(8+0+2 —1)=0.43. Since 0.3<0.43<0.5, they
are still retained in the pre-large 1-sequences.
Since the sequence ((B,C)) is in the candidate 1-
sequences and is neither originally large nor originally
pre-large, it is then put into the rescan-set R for use if
rescanning in Step 10 is necessary.
Since c+t=0+2 < f—h (=2.2), rescanning the data-
base is unnecessary and nothing is done.

Table 15

The total counts of ((E))and ((E,G)).
1-sequence Count
((E)) 4
((E.G)) 4
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Table 16
All candidate 2-itemsets appearing in the newly merged customer sequences.
Candidate 2-itemsets
((BI(C) ((B)){(E)) (B(G)) ((B)){(E.G)) ((O(E))
(ONG)) (O(E.G)) ((A)(B)) ((AN(C))
Table 17
All large and pre-large 2-sequences for the entire updated database.
Large 2-sequences Pre-large 2-sequences
Sequences Count Sequences Count
((A)(B)) 5
Step 11: From Steps 7, 8 and 9, the final large and pre-large 1-

sequences for the entire updated database are ((A)),
((B)), ((©)), {(E)), ((G)) and {((E,G)). All candidate 2-item-
sets that appear in the newly merged customer
sequences are shown in Table 16.

Step 12: k=k+1=2.

Step 13: Steps 5 to 12 are repeated to find large or pre-large 2-
sequences. Results are shown in Table 17. Large or
pre-large 3-sequences are found in the same way. No
large 3-sequences were found in this example.

Step 14: The maximally large sequence derived from the large 2-
sequence is:

A — B(Confidence = 5/7).
Step 15: Sincelf c+t<f—h,c=c+t=0+2=2.

After Step 15, the maximally large sequence for the updated
database has been found. Also, c is 2 and b is 1. The new values
of b and ¢ will be used for processing next new transactions.

9. Conclusion

In this paper, we have proposed a novel incremental mining
algorithm capable of maintaining sequential patterns based on
the concept of pre-large sequences. Pre-large sequences act like
buffers to postpone originally small sequences directly becoming
large and vice versa, when new transactions are inserted into exist-
ing databases. We have also proven that when small numbers of
new transactions are inserted, an originally small sequence will
at most become pre-large, and never large. The number of rescans
of original databases can thus be reduced. In summary, the pro-
posed algorithm has the following advantages:

1. It avoids re-computing large sequences that have already been
discovered.

2. It focuses on newly added customer sequences, which are
transformed from newly added transactions, thus greatly
reducing the number of candidate sequences.

3. It uses a simple check to further filter candidate sequences in
newly added customer sequences.

4, It effectively handles the case, in which sequences are small in
an original database.

The proposed algorithm also requires no rescanning of original
databases until certain numbers of new transactions, determined
from the two support thresholds and the database size, have been
processed. The bound increases monotonically along with
increases in database size, which means the proposed algorithm
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becomes increasingly efficient as a database grows. This character-
istic is especially useful for real-world applications.
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