
行政院國家科學委員會補助專題研究計畫成果報告
※※※※※※※※※※※※※※※※※※※※※※※※※
※ ※
※　　　新快速傅利葉轉換法的研發與頻譜分析 ※
※ ※
※※※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：þ個別型計畫　　□整合型計畫

計畫編號：NSC 89－2213－E－009－117－

執行期間：　88 年　8 月　1 日至　89 年　7 月　31 日

計畫主持人：羅佩禎

共同主持人：

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

□出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

執行單位：國立交通大學 電機與控制工程系

中　華　民　國　89　年　8　月　24　日



行政院國家科學委員會專題研究計畫成果報告

新快速傅利葉轉換法的研發與頻譜分析

Development of New FFT Algor ithms and Their  Application to Spectral Analysis
計畫編號：NSC89-2213-E-009-117

執行期限：88 年 8 月 1 日 至 89 年 7 月 31 日
主持人：羅佩禎 國立交通大學 電機與控制工程系

ABSTRACT

In EEG (electroencephalogram) analysis, the

time-varying spectra based on the short-time Fourier

transform (STFT) provide a long-term monitoring of

the signals. This study investigates an efficient

method, real-time, shift-pruning FFT algorithm, to

deal with the problem. The “shift-pruning FFT”

algorithm integrates the recursive procedure with the

modified output-pruning scheme to efficiently

perform the long-term spectral analysis on EEG. The

second part of this research is focused on the

exploration and realization of the 2D split-vector-

radix FFT (svr-FFT) structure. An important theorem

is developed to guide the construction of the 2D svr-

FFT structure.

計畫緣由與目的

In our study of the meditation EEG, the rhythmic

patterns were used to identify the deepness of

meditation [3]. The widely used EEG rhythmic

patterns include: delta (f<4Hz), theta (4Hz≤f<8Hz),

alpha (8Hz≤f≤13Hz), and beta (13Hz<f) [6]. A

number of sophisticated signal processing methods

have been introduced in order to extract frequency

feature from EEG [2, 9, 14]. Nonetheless, some

conventional, yet straightforward, approaches have

proved their practicability and usefulness in clinical

application and medical research. Among them, the

running spectral analysis based on STFT has been

widely used in the long-term EEG monitoring. The

procedure involves evaluation of the DFTs (discrete

Fourier transforms) on successively overlapping

segments windowed by the moving frame. We

previously introduced a real-time, moving FFT (fast

Fourier transform) algorithm [11] which

implemented the recursive procedure in the real-time

manner.

Since the development of the FFT by Cooley and

Tukey [5], efficient algorithms for computing the

moving-frame DFTs have been reported [1, 4, 8, 16].

These algorithms were designed to obtain the

complete spectrum. In the EEG study, normally only

a narrow-band spectrum is of interest. Then the

output-pruning scheme may be used to reduce the

unnecessary arithmetic operations [13, 15, 17, 18]. In

this research work, we present an efficient, integrated

algorithm, real-time, shift-pruning FFT, that deals

with the above two situations.

The second part of this study is devoted to the

realization of 2D svr-FFT computational structure. A

brief illustration will be given.

研究方法及成果

Par t I. Real-time implementation of shift-pruning

FFT

Let Xi[k] denote the N-point DFT of the ith

framed segment xi[n]=x[iM+n], 0≤n≤(N−1), where

N=2r. Assume that the moving size is M=2α

(1≤M≤N), and the first P (=2β) spectral samples of

Xi[k] are to be computed. As the pruning task must

be performed posterior to the recursive procedure,

the shift-pruning FFT method requires that

(r−α)≤β≤r, or N/M≤P≤N. Fig. 1 plots the block

Fig. 1  Block diagram of the shift-pruning FFT.



diagram. As shown in Fig. 1, the algorithm performs

the recursive procedure at the (r−α)th stage. To

utilize the efficient split-radix FFT (sr-FFT) [7, 10]

algorithm, the algorithm transforms the radix-2-FFT

order into the sr-FFT structure at the (r−α+1)th stage

[11] and then implements the sr-FFT up to the βth

stage. At the βth stage, output samples are linearly

combined with the corresponding twiddle factors to

obtain the first P samples of Xi[k]. The moving FFT

algorithm was presented in detail in [11]. A brief

overview of the mathematical basis is given below.

A. Recursive procedure for moving size M=2α,

1≤α≤r

In [11], we showed that the recursive procedure

was implemented in each (N/M)-point local butterfly

module at the (r－α)th stage. The ith N-point DFT

(i≥0) is
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where the Gi,l[k] is an (N/M)-point DFT performed at

the (r－α)th stage. The M blocks are arranged

according to the index l, from top downwards, in the

bit-reversed order. Similarly, the succeeding DFT is:
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Compared with Eq. (2), the recursive procedure is

expressed as
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The above equation relates the DFT of each current

frame to that of the preceding frame via a simple

recursive formula. Number of arithmetic operations

is reduced to N+M complex additions and N complex

multiplications for updating the DFT [11].

B. Pruning scheme for output size P=2β, r−α≤β≤r

The algorithm only constructs the computational

branches required to obtain X[k] for 0≤k≤(P−1).

In the following illustration, the subscript i in xi[n]

and Xi[k] is omitted. Here, we propose a scheme to

simplify the shift-pruning FFT algorithm without

increasing the computational complexity. Consider
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Let n=i(N/P)+j where 0≤i≤(P−1) and 0≤j≤(N/P−1).

The above equation becomes
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which is the linear combination of (N/P)’s P-point

DFTs, at the βth stage, with corresponding twiddle

factors. Eq. (6) can be expressed as:

∑
−

=

⋅=
1

0
, ][][

P
N

j
j

kj
N kXWkX β , 0≤k≤(P−1). (7)

x[⋅]
Recursive
procedure (r−α) th stage

X[k], 0≤k≤(P−1)

β th stage

Split-radix FFT

(r−α +1) th

stage
Transition to

sr-FFT structure

Implement
pruning scheme



Note that, in consideration of reducing the

arithmetic operations, the sr-FFT is implemented

after the recursive procedure performed at the

(r−α)th stage. Thus each stage consists of DFT and

non-DFT blocks [10]. According to Eq. (7), arrays

Xj,β[k] store all the DFT output values. We developed

a strategy for transforming the non-DFT blocks into

DFT ones prior to the implementation of Eq. (7)

[12].

C. Real-time implementation of the shift-pruning

FFT

To implement the shift-pruning FFT in a real-

time manner, the algorithm needs to determine

amount of work (up to which stage and which block)

ready to be accomplished upon receipt of a given

data point, x[n]. In [10], we first presented a strategy

for constructing the sr-FFT butterfly structure in a

real-time manner. The strategy can be applied to any

modular FFT structure. Accordingly, in the shift-

pruning FFT structure, the real-time strategy is

applied to those stages after recursive procedure, that

is, from the (r−α+1)th stage to the last stage.

D. Evaluation of efficiency

Evaluation of the computational complexity must

consider the complex arithmetic operations required

by: 1) the recursive procedure (up to the (r−α)th

stage), 2) a transition to the sr-FFT structure (at the

(r−α+1)th stage), 3) the sr-FFT computation (from

the (r−α+2)th to the βth stage), and 4) the pruning

scheme (after the βth stage). Details of the analysis

were reported in [11, 12]. An important conclusion is

the upper bound of value of P that results in best

improvement in computational efficiency when

implementing the pruning scheme. Consider the FFT

size N=512. We found that, when β≤6 (or, P≤N/8),

the pruning scheme achieves significant reduction in

computational time.

Par t II. Development of 2D svr -FFT

In this part of the research work, a novel 2-

dimensional split-vector-radix fast-Fourier-transform

(2D svr-FFT) algorithm was developed. The

modularizing feature of the 2D svr-FFT structure

enables us to explore its characteristics by identifying

the local structural property. The block attribute

directs the algorithm to construct the local module.

We firstly demonstrated that the distribution of DFT

blocks can be illustrated by the Sierpinski

triangle— —  a class of fractals generated by IFS

(iterated function system). By exploring the structural

property of 2D svr-FFT, we come to a conclusion

given below

Theorem:

(a,b) is a DFT block if and only if (a,b) ∈ BD;

(a,b) is a nonDFT block if and only if (a,b) ∈ BN,

where (a,b) denotes the spatial position of a local

block. And two sets BD and BN are defined below:

BD: {(a,b) LSB1(a∨b)=0 or nbit1 ∈ even integers},

BN: {(a,b) nbit1 ∈ odd integers}.

The operation LSB1(a∨b) is used to obtain the least

significant bit of logistic operation (a∨b). The

variable nbit1 denotes the number of consecutive bit

1’s counted from the least significant bit position.

Following the proposed theorem, the resulting DFT-

block distribution exhibits fractal structure.

結果與討論



In this section, we present an example of running

spectral analysis performed on the EEG under Zen

meditation. The EEG signal was collected in a

preliminary study developed to investigate the

meditation EEG. The subject, a healthy 52-year-old

man, has been practicing the orthodox Zen-Buddhism

meditation with the Zen master Miao-Tien for more

than ten years. The essence of practicing Buddhism

via meditation in Zen-Buddhism originated in the

affair that Buddha Shakyamuni transmitted his

wisdom to the Great Kashiyapa some 2,500 years ago.

It was found, in our preliminary study, that the EEG

patterns of the Zen-Buddhist disciples, not only in

meditation but in consciousness, differed from those

of the control subjects (non-meditators). Systematic

analysis of meditation EEG using various signal

processing methods is under way.

The running spectral analysis based on shift-

pruning FFT provides an efficient tool to pre-process

the enormous amount of EEG data. In the study, we

apply the 8-channel unipolar recording montage with

the linked MS1-MS2 (mastoid electrodes) used as the

common reference. The 8-channel EEG electrodes

are placed at F3, F4, C3, C4, P3, P4, O1, and O2.

The sampling rate is 200Hz. According to the naked-

eye examination, the β activity (>13Hz) dominates

over the entire EEG tracing. Low-frequency θ bursts

emerge occasionally. Banquet reported that θ

frequencies appeared in the second stage, and β

waves were present over the whole scalp in the third

stage of deep meditation by advanced subjects [3]. It

was also reported [19] that the meditation experts

exhibited generalized fast activity when entering the

ecstatic or samadhi state in meditation.

Fig. 2 displays the running spectra computed by

the shift-pruning FFT algorithm using N=512 (2.56s),

M=256 (moving size: 1.28s), and P=64 (observing

the frequency band 0~25 Hz). The result

Fig. 2  Running spectra of 128-second meditation

EEG signals (channels F3 and F4).

demonstrates the phenomenon of sustained low-

frequency activities (θ and ∆ bands, 2nd stage

meditation) in the entire EEG record. Prominent,

low-frequency modulated β-band activities (3rd stage

meditation) appear in three time periods:

(approximate figures) 0-15, 35-60, and 80-120

seconds. The running spectral analysis reveal the fact

that the meditator entered the deep meditation

switching between the second- and third-stage

meditation, mostly in the samadhi state. According to

the post-experimental interview, themeditator stated

that he had been staying in the state for years, no

matter whether he practiced meditation or not.

The running spectral analysis based on shift-

pruning FFT algorithm, as a laboratory on-line

monitoring tool, provides a simple and effective

approach for tracking the meditation stages based on

time-varying EEG spectral contents. By integrating

the recursive procedure with the output pruning

scheme, the shift-pruning FFT algorithm

significantly improves the computational efficiency,

especially when the pruning size satisfies P≤N/8.
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To our knowledge none of the published work

brought out the algorithm for implementing the svr-

FFT directly in 2D. It is the first attempt to explore

the structural property of the 2D svr-FFT. The

theorem and source code have been developed to

realize the 2D svr-FFT computational scheme.
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摘要

在腦電波分析中，時變頻譜可用於監測長時間之腦電波變化；其中短時段傅利葉轉換（short-time

Fourier transform, STFT）最常用來估測腦電波訊號之時變頻譜。本研究之主旨在於提出一高效

能之「即時、位移—剪裁快速傅利葉轉換」（real-time, shift-pruning FFT）以解決長時間腦電波

分析之問題。其中「位移—剪裁快速傅利葉轉換」之運算法則係整合遞迴程序和（修正後之）

輸出剪裁策略，以提高長時間腦電波頻譜分析之效能。本研究之第二部分工作重點在於探究二

維「分根基式快速傅利葉轉換」（split-vector-radix FFT, svr-FFT）的運算架構，並進一步實現之。

在此將提出一重要定理，此定理用於導引二維 svr-FFT 運算架構之實現流程。
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