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ABSTRACT

In EEG (electroencephalogram) analysis, the
time-varying spectra based on the short-time Fourier
transform (STFT) provide along-term monitoring of
the signals. This study investigates an efficient
method, real-time, shift-pruning FFT algorithm, to
deal with the problem. The “ shift-pruning FFT”
algorithm integrates the recursive procedure with the
modified output-pruning scheme to efficiently
perform the long-term spectral analysis on EEG. The
second part of this research is focused on the
exploration and realization of the 2D split-vector-
radix FFT (svr-FFT) structure. An important theorem
is developed to guide the construction of the 2D svr-
FFT structure.

In our study of the meditation EEG, the rhythmic
patterns were used to identify the deepness of
meditation [3]. The widely used EEG rhythmic
patterns include; delta (<4Hz), theta (4Hz£/<8Hz),
alpha (8HzE£/£13Hz), and beta (13Hz</) [6]. A
number of sophisticated signal processing methods
have been introduced in order to extract frequency
feature from EEG [2, 9, 14]. Nonetheless, some
conventional, yet straightforward, approaches have
proved their practicability and usefulnessin clinical
application and medical research. Among them, the
running spectral analysis based on STFT has been
widely used in the long-term EEG monitoring. The
procedure involves eval uation of the DFTs (discrete

Fourier transforms) on successively overlapping
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segments windowed by the moving frame. We
previously introduced a real-time, moving FFT (fast
Fourier transform) algorithm [11] which
implemented the recursive procedure in the real-time

manner.

Since the development of the FFT by Cooley and
Tukey [5], efficient algorithms for computing the
moving-frame DFTs have been reported [1, 4, 8, 16].
These algorithms were designed to obtain the
complete spectrum. In the EEG study, normally only
a narrow-band spectrum is of interest. Then the
output-pruning scheme may be used to reduce the
unnecessary arithmetic operations[13, 15, 17, 18]. In
this research work, we present an efficient, integrated
algorithm, real-time, shift-pruning FFT, that deals

with the above two situations.

The second part of this study is devoted to the
realization of 2D svr-FFT computational structure. A
brief illustration will be given.

Part |. Real-time implementation of shift-pruning
FFT

Let XA denote the A-point DFT of the ith
framed segment x[ =X iM+n], OENE(N- 1), where
NE2', Assume that the moving sizeis M=22
(1EMEN), and the first P (=2%) spectra samples of
X[ K areto be computed. As the pruning task must
be performed posterior to the recursive procedure,
the shift-pruning FFT method requires that
(r- a)EbEr, or NMEPEN. Fig. 1 plots the block

Fig. 1 Block diagram of the shift-pruning FFT.
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diagram. As shown in Fig. 1, the algorithm performs
the recursive procedure at the (r- a)th stage. To
utilize the efficient split-radix FFT (sr-FFT) [7, 10]
algorithm, the algorithm transforms the radix-2-FFT
order into the sr-FFT structure at the (r- a+1)th stage
[11] and then implements the sr-FFT up to the bth
stage. At the bth stage, output samples are linearly
combined with the corresponding twiddle factors to
obtain the first P samples of X[A. The moving FFT
algorithm was presented in detail in [11]. A brief

overview of the mathematical basisis given below.

A. Recursive procedure for moving size M=22,
1fatr

In[11], we showed that the recursive procedure
was implemented in each (M/M)-point local butterfly
module at the (r  a)th stage. The ith A-point DFT
(B0)is

x,.[k]=glx[iM+n]ng,o k N 1 (1)

n=0
Let nequa mM+/, EQ. (1) becomes:
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wherethe G, [A] isan (NV/M)-point DFT performed at
the (r a)th stage. The M blocks are arranged
according to the index /, from top downwards, in the

bit-reversed order. Similarly, the succeeding DFT is:

N-1
XulKl =@ AiM + M + i

n=0

M-1
o

=a Wy G, [A. ©)
/=0
Compared with Eqg. (2), the recursive procedureis

expressed as

(Vb
G K= aAM(@i+1+m) +,]W%

= WN/;{G,J[k] - AMi+ )+ {Mi+ N+1]},

o£ke (M -1). (4)

The above equation relates the DFT of each current
frameto that of the preceding frame viaasimple
recursive formula. Number of arithmetic operations
isreduced to A»M complex additions and N complex
multiplications for updating the DFT [11].

B. Pruning scheme for output size P=2°, r- a£bEr

The agorithm only constructs the computational

branches required to obtain X[ for OEAE(P- 1).

In the following illustration, the subscript / in x[ ]
and X[ A is omitted. Here, we propose a scheme to
simplify the shift-pruning FFT algorithm without
increasing the computational complexity. Consider
XTKI = & ArV , OEKE(P: 1), )

=0

Let r=i(NP)+j where O£E(P- 1) and OE/E(NIP- 1).

The above equation becomes

5B EN O
XK=a WNan_"'/uWP , (6)
0 =0 &8 P "0

which isthe linear combination of (MP)’s P-point
DFTs, at the bth stage, with corresponding twiddle
factors. Eg. (6) can be expressed as:

|=

-1
o

XK =a Wy xX; [k, OEKE(P- 1). ()

J=0
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Note that, in consideration of reducing the
arithmetic operations, the sr-FFT isimplemented
after the recursive procedure performed at the
(r- a)th stage. Thus each stage consists of DFT and
non-DFT blocks [10]. According to Eq. (7), arrays
X LK store all the DFT output values. We developed
astrategy for transforming the non-DFT blocks into
DFT ones prior to the implementation of Eq. (7)
[12].

C. Real-time implementation of the shift-pruning
FFT

To implement the shift-pruning FFT in areal-
time manner, the algorithm needs to determine
amount of work (up to which stage and which block)
ready to be accomplished upon receipt of agiven
data point, X r1]. In [10], we first presented a strategy
for constructing the sr-FFT butterfly structurein a
real-time manner. The strategy can be applied to any
modular FFT structure. Accordingly, in the shift-
pruning FFT structure, the real-time strategy is
applied to those stages after recursive procedure, that
is, from the (r- a+1)th stage to the last stage.

D. Evaluation of efficiency

Evaluation of the computational complexity must
consider the complex arithmetic operations required
by: 1) the recursive procedure (up to the (r- a)th
stage), 2) atransition to the sr-FFT structure (at the
(r- a+1)th stage), 3) the sr-FFT computation (from
the (r- a+2)th to the bth stage), and 4) the pruning
scheme (after the bth stage). Details of the analysis
werereported in [11, 12]. An important conclusion is
the upper bound of value of Pthat resultsin best
improvement in computational efficiency when

implementing the pruning scheme. Consider the FFT

size N=512. We found that, when b£6 (or, PENI8),
the pruning scheme achieves significant reduction in

computational time.
Part I1. Development of 2D svr-FFT

In this part of the research work, anove 2-
dimensional split-vector-radix fast-Fourier-transform
(2D svr-FFT) algorithm was developed. The
modularizing feature of the 2D svr-FFT structure
enables usto explore its characteristics by identifying
the local structural property. The block attribute
directs the algorithm to construct the local module.
We firstly demonstrated that the distribution of DFT
blocks can beillustrated by the Serpinski
triangle— a class of fractals generated by IFS
(iterated function system). By exploring the structural
property of 2D svr-FFT, we come to a conclusion

given below
Theorem.

(ab) isa DFT block if and only if (a,b) T Byp;
(ab) isanonDFT block if and only if (a,b) T B,,

where (a,b) denotes the spatial position of alocal

block. And two sets B, and By, are defined below:
Bo: {(ab)¥.LSB,(alb)=0 or rbitl T evenintegers},
By: {(ab¥embitl1 odd integers}.

The operation LSB1(aUb) is used to obtain the |east
significant bit of logistic operation (aUb). The
variable nbitl denotes the number of consecutive bit
1’'s counted from the least significant bit position.
Following the proposed theorem, the resulting DFT-

block distribution exhibits fractal structure.



In this section, we present an example of running
spectral analysis performed on the EEG under Zen
meditation. The EEG signal was collected in a
preliminary study developed to investigate the
meditation EEG. The subject, a healthy 52-year-old
man, has been practicing the orthodox Zen-Buddhism
meditation with the Zen master Miao-Tien for more
than ten years. The essence of practicing Buddhism
via meditation in Zen-Buddhism originated in the
affair that Buddha Shakyamuni transmitted his

wisdom to the Great Kashiyapa some 2,500 years ago.

It was found, in our preliminary study, that the EEG
patterns of the Zen-Buddhist disciples, not only in
meditation but in consciousness, differed from those
of the control subjects (non-meditators). Systematic
analysis of meditation EEG using various signal

processing methods is under way.

The running spectral analysis based on shift-
pruning FFT provides an efficient tool to pre-process
the enormous amount of EEG data. In the study, we
apply the 8-channel unipolar recording montage with
the linked MS1-MS2 (mastoid electrodes) used as the
common reference. The 8-channel EEG electrodes
are placed at F3, F4, C3, C4, P3, P4, O1, and O2.
The sampling rate is 200Hz. According to the naked-
eye examination, the b activity (>13Hz) dominates
over the entire EEG tracing. Low-frequency q bursts
emerge occasionally. Banquet reported that q
frequencies appeared in the second stage, and b
waves were present over the whole scalp in the third
stage of deep meditation by advanced subjects[3]. It
was also reported [19] that the meditation experts
exhibited generalized fast activity when entering the
ecstatic or samadhi state in meditation.

Fig. 2 displays the running spectra computed by
the shift-pruning FFT algorithm using A=512 (2.569),
M=256 (moving size: 1.28s), and P=64 (observing
the frequency band 0~25 Hz). The result

Fig. 2 Running spectra of 128-second meditation
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EEG signals (channels F3 and F4).

demonstrates the phenomenon of sustained low-
frequency activities (g and D bands, 2™ stage
meditation) in the entire EEG record. Prominent,
low-frequency modulated b-band activities (3 stage
meditation) appear in three time periods:
(approximate figures) 0-15, 35-60, and 80-120
seconds. The running spectral analysis reveal the fact
that the meditator entered the deep meditation
switching between the second- and third-stage
meditation, mostly in the samadhi state. According to
the post-experimental interview, themeditator stated
that he had been staying in the state for years, no
matter whether he practiced meditation or not.

The running spectral analysis based on shift-
pruning FFT algorithm, as alaboratory on-line
monitoring tool, provides a simple and effective
approach for tracking the meditation stages based on
time-varying EEG spectral contents. By integrating
the recursive procedure with the output pruning
scheme, the shift-pruning FFT algorithm
significantly improves the computational efficiency,

especialy when the pruning size satisfies PENI8.



To our knowledge none of the published work
brought out the algorithm for implementing the svr-
FFT directly in 2D. It isthe first attempt to explore
the structural property of the 2D svr-FFT. The
theorem and source code have been developed to

realize the 2D svr-FFT computational scheme.
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