TR R Z R 22 5 o S T a5 R &

2 KA AL 2 Tas ERVEH]
Multirate Signal Processing for Transmultiplexing Systems
AT EAmaRE © NSC 89-2213-E-009-118
BATIR - 884E8 H1HE8IFETHIIH

ERFA - MR

[ V7 A K ER R A B ] TR R

email: yplQcc.nctu.edu.tw

1 HPEi s

AT 2 5 25 A i 2 R AR (DMT) 5 b2 T
i 9 JBE 2 O M ] 2 A JH Y R AR, ALY
DMT A JE A BRIl . A28 1R
et Fe AR DA f A HY DMT SR AT HY %
o A R g — Il e (AR Y R AR s 3
AT DR AL T A T e FE (L DMT

RG22 Ay, L 2 A T R AR
(DMT), sz DMT

Abstract. Recently discrete multitone mod-
ulation (DMT) systems (or transmultiplexers)
have been widely applied to various applica-
tions. There has been considerable interest in
the design of optimal DMT systems. The M-
band DMT system can be viewed as a dual
of an M-band subband coder by interchang-
ing the analysis and synthesis bank. In this
report, we will show that the design of opti-
mal perfect DMT systems can be converted to
the design problem of a hypothetical subband
coder. Optimal perfect DMT systems can be
designed in a systematic approach.

Keywords: transmultiplexer, discrete multi-
tone modulation (DMT), optimal DMT
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The discrete multitone modulation (DMT)
systems have been shown to be a very useful
for transmission over frequency selective chan-
nels [1][2]. Recently there has been consider-
able interest in the design of optimal DMT
systems [3]. Fig. 2 shows an M-band DMT
system over a frequency selective channel C(z)
with additive channel noise e(n). The trans-
mitting and receiving filters are respectively
Ty(z) and Ry(z), and the DMT system D is
denoted by D = {Ty(2), Rr(z)}. The inputs
zk(n) of the transmitter are modulation sym-
bols, e.g., PAM or QAM symbols. Each sym-
bol of the k-th band contains b, bits. The
average bit rate is b = 1/M Y2 .. We
say the DMT system is perfect if the outputs
Zr(n) = xx(n), for k =0,1,--- , M — 1 in the
absence of channel noise e(n). In this case,
there is no inter- and intra-band ISI. When
there is channel noise, Zx(n) = xx(n) + ex(n),
where the noise eg(n) of the k-th band comes
entirely from the channel noise e(n). For a
given average bit rate, the optimal DMT sys-
tem minimizes the transmitted power P, i.e.,
the variance of the transmitted signal y(n) as
indicated in Fig. 2.

The M-band DMT system can be viewed as
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1: An M-band DMT system over a frequency selective channel C'(z) with additive channel

noise e(n).

a dual of an M-band subband coder (Fig. 2)
by interchanging the analysis and synthesis
bank. The filter bank with analysis filters
Hi(z) and synthesis filters F(z), denoted by
F = {Hi(2), Fyx(2)}, is said to be biorthogonal
or have perfect reconstruction (PR) property
if
(Fk(ej‘“)Hm(e]“))iM =0(k —m),

where | M denotes M-fold decimation. When
there is quantization noise, the output z(n) =
x(n)+q(n), where ¢(n) comes entirely from the
quantization noise gx(n). A PR filter bank is
called orthonormal if F'(e/*) = H*(¢*). For a
given class of filter banks, the optimal solution
is one that minimizes the output noise variance
03.

In the context of optimal subband coder
design, great advance has been made recent-
ly [4][5]. It has been shown that, for the
class of orthonormal filter banks, the Prin-
ciple Component Filter Bank (PCFB) mini-
mizes the output noise variance ag. For the
design of biorthogonal filter banks, the struc-
ture of cascading orthonormal (ParaUnitary)
filter banks with pre- and post-filters (PPU
structure) is proposed in [6] to minimize the
output noise. Recently, Moulin et. al. show
that [5] there is no loss of generality in assum-
ing the PPU structure in the design of optimal
biorthogonal filter banks. More recently, it is
shown that PCFB is also optimal for designing
DMT with orthonormal transmitter.

In this report, we will formulate the design
problem of optimal DMT systems and point
out the duality in the design of optimal DMT
systems and optimal biorthogonal filter banks.
We will show that the design of optimal perfect
DMT systems can be converted to the design
problem of a hypothetical subband coder and
hence can be solved using existing techniques
for designing optimal biorthogonal filter banks
in most cases.
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2: An M-band subband coder.
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DMT Systems

The problem of designing optimal DMT sys-
tem for a given channel C(z) and channel
noise e(n) can be formulated as follows. We
assume x(n) are PAM symbols for simplic-
ity. Each of the symbols x(n) of the k-th
band carries by bits. The average bit rate is

x(n)



b=1/M Y4 by. Assuming the input mod-
ulation symbols x(n) are white and uncorre-
lated, which can always be done with proper
interleaving. The transmitted power P is giv-
en by

-1 2

9(Pe, by) |15
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P =
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Consider a class of filter banks C. The class
can be the collection of FIR filter banks or the
set of ideal filter banks. A filter bank F in the
class C is a PCFB for the given input S, (e’*)
if the set {02 };'%" formed by its subband vari-
ances majorizes the set {02 }}7! formed by
the subband variances of any other filter bank

S (1) | Ry (3% Qd_w}"’ in the class C. The PCFB, when it exist-
ee(e7)| Ry (e*)] . .. ..
T s, minimizes the output quantization noise in

2).

This result does not require that gx(n)

— Ibe white and uncorrelated. Also the PCFB is

2 22bk
where g(P,, b;) = [Q_l <2(1 _ 2%))] 3

Subband Coders An M-band filter bank
F = {Hi(2), Fi(2)} is as shown in Fig. 2. The
quantization noises gx(n) are usually assumed
to be wide sense stationary random process-
es that are white, zero mean and uncorrelat-
ed. The variance of the k-th quantization noise
gr(n) is related to the variance of the k-th sub-
band signal v(n) by a distortion function,
azk = D(bk)azk,

where b, is the number of bits allocated to
the k-th subband. The variance of the output
quantization noise is

S
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Principle Component Filter Banks (PCFB). In re-

cent years, great advance has been made in
the study of optimal orthonormal filter banks
or the so-called Principle Component Filter
Banks (PCFB) [4], . The development is based
on the majorization theorem. Given 2 or-
dered sequences {a, }M ! and {b,}M ! with
Un > any1 and b, > b1, we say {a, )25}
majorizes {b, )2, if

N N
D= by 0SN<M-1,
n=0 n=0

with equality when N = M — 1.
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optimal for any given bit allocation. In partic-
ular, it is optimal under optimal bit allocation.

Prefilters for Orthonormal Filter Banks.
mize the quantization noise or to maximize the
coding gain, [6] considers a class of biorthog-
onal filter banks by cascading orthonormal or
paraunitary (PU) filter banks with pre- and
post filters (Fig. 3). This will be called PPU

To mini-
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3: An M-band filter bank with pre-filter
P(z) and post filter 1/P(z).

structure. The analysis and synthesis filters of
the biorthogonal filter banks are of the form

_ B
~ P(ew)’
| | (3)
where { Py (e?¥), P (e’¥)} form an orthonormal
filter bank. Under high bit rate assumption
D(by) = ¢2 % and optimal bit allocation, it
is shown that [6] the optimal prefilter P(e’*)
should be the half whitening filter for the input
power spectrum Sy, (e/%), i.e.,

Hk(ejw) = P(ej“’)Pk(ej“’), Fk(Z)

P(e™) = 1/8"(e7).



Furthermore,

{Pi(e’?), Pi(e’*)} should be
the PCFB for the input power spectrum
\/Szz(€7¥). That is, the design problem de-
couples as 2 problems: the problem of design-
ing a half whitening filter for S,,(e’*) and the
problem of designing the PCFB for /S, (e7¢).

Optimal Biorthogonal Filter Banks. More recently,
Moulin et. al. [5] shows that it is not a loss of
generality assuming the PPU structure in de-
signing optimal biorthogonal subband coders.
The problem of designing optimal biorthogo-
nal filter banks can be decoupled as the prob-
lem of designing a half whitening filter and a
PCFB. Without assuming optimal bit alloca-
tion, this is true in most cases [5].

Optimal DMT. For the design of the optimal
DMT systems for the most general class, let
us consider the DMT system

(2)/C(2)},

where Hy(z) and Fj(z) are the analysis and
synthesis filters of a biorthogonal filter bank
F = {H(z2), F

k(z)}. The transmitted power
in (1) can be rewritten as

M-1

2T
P sl [ 2
0
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(4)
For the above objective function, we can con-
vert it to the following hypothetical filter
bank design problem: consider the A -band
filter bank in Fig. 2 with input power spec-
trum See(e/*)/|C(e’“)|?. Suppose the distor-
tion function D(by) is replaced by g(P.,by);
the variance of quantization noise gx(n) is

oo = g(Pe, by)os,

Then the output quantization noise o7 is giv-
en exactly by (4)! Note that in the design of
optimal biorthogonal filter banks, the problem
decouples as prefilter design and PCFB design
in most cases without making assumptions on

D(bg). This means that, except in patholog-
ical cases, we can solve the design problem
of optimal perfect DMT systems in the same
manner using the design method for optimal
biorthogonal filter banks .
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In this report we show how to design optimal
DMT systems. Without complexity constrain-
t, the optimal systems are ideal filters. The
performance will serve as a bound for the al-
1 the DMT systems. The bound will be very
useful for future design of DMT systems.

25EHH

[1] P. S. Chow, J. C. Tu, and J. M. Ciof-
fi, “Performance Evaluation of a Mul-
tichannel Transceiver System for ADSL
and VHDSL Services,” IEEE J. Select.
Areas Commun., Aug. 1991.

A. N. Akansu, et. al., “Orthogonal Trans-
multiplexers in Communication: A Re-
view,” IEEE Trans. SP, April 1998.
[3] Yuan-Pei Lin and See-May Phoong, “Op-
timal DMT Transceivers Over Fading
Channels,” Proc. ICASSP, 1999.

S. Akkarakaran and P. P. Vaidyanathan,
“Filter Bank Optimization with Convex
Objectives, and the Optimality of Prin-
ciple Component Forms,” preprint, Cal-
tech.

P. Moulin, M. Anitescu, and K. Ram-
chandran, “Theory of Rate-Distortion-
Optimal, Constrained Filter Banks—
Application to IIR and FIR Biorthogonal
Designs,” preprint, April 1999.

I. Djokovic and P. P. Vaidyanthan, “On
Optimal Analysis/Synthesis Filters for
Coding Gain maximization,” I[EEE Tran-
s. SP, May 1996.

2]

[4]



