
(一) 報告封面：  

 

行政院國家科學委員會補助專題研究計畫
■ 成 果 報 告   
□期中進度報告 

 

一般反應值變換不等變異迴歸模型之貝氏推論 

 

計畫類別：█ 個別型計畫  □ 整合型計畫 

計畫編號：NSC 96－2118－M－009－003－ 

執行期間： 96 年 08 月 01 日至 97 年 07 月 31 日 

 

計畫主持人：陳志榮 

共同主持人： 

計畫參與人員：  

 

 

成果報告類型(依經費核定清單規定繳交)：█精簡報告  □完整報告 

 

本成果報告包括以下應繳交之附件： 

□赴國外出差或研習心得報告一份 

□赴大陸地區出差或研習心得報告一份 

█出席國際學術會議心得報告及發表之論文各一份 

□國際合作研究計畫國外研究報告書一份 

 

 

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、

列管計畫及下列情形者外，得立即公開查詢 

          □涉及專利或其他智慧財產權，□一年□二年後可公開查詢 

          

執行單位： 

 

中   華   民   國   97  年  10  月  31   日 



(二)中、英文摘要及關鍵詞(keywords)。 

 

(1)中文摘要及關鍵詞(keywords)： 

國立交通大學統計學研究所 

 

計畫名稱：一般反應值變換不等變異迴歸模型之貝氏推論 

研究者：陳志榮 

經費來源：行政院國家科學委員會 

關鍵詞：貝氏推論；乘冪變換；指數變換；Aranda-Ordaz 變換；不等變異 

 

變換反應值是處理不等變異和非常態誤差的一種常用方法。變換反應值最初是用來當

作達成相等變異且常態誤差及產生一個較為簡單的線性迴歸模型(Box 和 Cox，1964)︰即

經過變換反應值後誤差或標準化誤差為相等變異且常態分布。然而當變換的值域不是所有

的實數時，經過變換反應值後誤差或標準化誤差不可能為常態分布。常被使用的變換其值

域可能不是所有的實數的例子有乘冪變換(Box 和 Cox，1964)、指數變換(Manly，1976)
及 Aranda-Ordaz 變換(Aranda 和 Ordaz，1981)。而且當變換的值域不是所有的實數時，

經過變換反應值後誤差或標準化誤差通常有不同的值域，因而有不同的分布。因此，Chen 
和 Wang (2003) 提出下列一般反應值變換不等變異 truncated 常態迴歸模型 

h(yi;λ) = f(xi;β) + g(f(xi;β),xi;γ)εi,   i = 1, …, n, 
的 frequentist 推論，此處 yi 為第 i 個觀察值；λ 為未知的變換參數向量；h(⋅;λ) 為單調遞

增的變換函數；xi為已知的第 i 個解釋變數向量；β 為未知的迴歸參數向量；f(⋅;β)為迴歸

函數；γ 為未知的變異數參數向量；g(⋅,⋅;γ)為正的加權函數；且 εi為獨立標準化 truncated 
N(ci(λ,β,γ), 1) 誤差且中位數為 0。然而，此概似函數並沒有公式可以直接計算，因此需要

花很多時間用數值疊代方法才可求得。在貝氏架構中，有公式可以直接計算的概似函數是

極為重要的。 

 

    因此，在這個計畫中，在貝氏架構下，首先我們修改 Chen 和 Wang (2003)的概似函

數來提出下列一般反應值變換不等變異 truncated 常態迴歸模型 

h(yi;λ) = f(xi;β) + g(f(xi;β),xi;γ)εi,   i = 1, …, n, 
的貝氏推論，此處 yi 為第 i 個觀察值；λ 為未知的隨機變換參數向量且擁有常態(或

truncated 常態或 uniform)先驗分布；h(⋅;λ) 為單調遞增的變換函數；xi為已知的第 i 個解

釋變數向量；β 為未知的隨機迴歸參數向量且擁有常態(或 truncated 常態或 uniform)先

驗分布；f(⋅;β)為迴歸函數；γ 為未知的隨機變異數參數向量且擁有 inverse Wishart(或
truncated inverse Wishart 或 vague)先驗分布；g(⋅,⋅;γ)為正的加權函數；且 εi為獨立標準化 

truncated N(0, 1) 誤差。其次，我們提出此貝氏迴歸模型的 Markov chain Monte Carlo 
(MCMC)後驗估計、後驗假設檢定、後驗 credible 區域、後驗預測及相關的有限樣本和大

樣本性質。 

 

 

 

I 



(2) 英文摘要及關鍵詞(keywords)： 

 Institute of Statistics, National Chiao Tung University 
 
Title ： Bayesian Inference under the General Response Transformation Heteroscedastic 
Regression Model 
Principal Investigator：Chih-Rung Chen 
Sponsor：National Science Council 
Keywords ： Bayesian Inference, Power Transformation, Exponential Transformation, 
Aranda-Ordaz Transformation, Heteroscedasticity 
 
     When there exist heteroscedastic errors and/or departures from normality in the data, a 
popular approach is to transform the response. Originally, transforming the response was 
proposed both as a means of achieving homoscedasticity and approximate normality and for 
inducing a simpler linear model for the transformed response (Box and Cox, 1964).  In such 
situations, Box and Cox (1964) proposed the following response transformation normal 
homoscedastic regression model for modeling independent continuous data: 
 

h(yi;λ) = f(xi;β) + εi,   i = 1, …, n, 
 
where yi is the observation for subject i, λ is a finite-dimensional transformation parameter 
vector, h(⋅;λ) is a strictly increasing and differentiable transformation, xi is a known covariate 
vector for subject i, β is a finite-dimensional regression parameter vector, f(⋅;β) is a regression 
function, and εis are i.i.d. N(0,σ2) errors with unknown variance σ2 > 0. 
 
     When both heteroscedastic errors and departures from normality cannot be removed 
simultaneously in the data by any single transformation, the Box-Cox model is further 
generalized to the following response transformation normal heteroscedastic regression model 
for modeling independent continuous data: 
 

h(yi;λ) = f(xi;β) + g(f(xi;β),xi;γ)εi,   i = 1, …, n, 
 

where γ is a variance parameter vector, g(⋅,⋅;γ) is a positive weight function, and εis are i.i.d. 
N(0,1) standardized errors. 

  
However, if the range of the response transformation is different from R (≡(−∞, ∞)), the 

corresponding errors cannot be normally distributed. Commonly-used examples are the power 
transformations (Box and Cox, 1964), exponential transformations (Manly, 1976), and 
Aranda-Ordaz transformations (Aranda and Ordaz, 1981).  Moreover, the corresponding errors 
don't even have the same distributions, due to the fact that they may have different supports. 
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Thus, Chen and Wang (2003) proposed the following general response transformation 
truncated normal heteroscedastic regression model 

  
h(yi;λ) = f(xi;β) + g(f(xi;β),xi;γ)εi,   i = 1, …, n, 

  
where εis are independent truncated N(ci(λ,β,γ), 1) standardized errors with median 0. 
 

However, there does not exist any closed-form formula for the likelihood function 
proposed by Chen and Wang (2003).  Thus, it takes too much time to calculate this likelihood 
function by any numerical iteration method.  A closed-form formula for the likelihood function 
will be very important in a Bayesian framework; otherwise, it is nearly impossible to do the 
Bayesian inference in practice. 
 

Thus, in this project, in a Bayesian framework, we first modify the likelihood function 
proposed in Chen and Wang (2003) and then propose the following general transformation 
truncated normal heteroscedastic regression model 

  
h(yi;λ) = f(xi;β) + g(f(xi;β),xi;γ)εi,   i = 1, …, n, 

  
where yi is the observation for subject i, λ is a finite-dimensional random transformation 
parameter vector with normal (or truncated normal or uniform) prior distribution, h(⋅;λ) is a 
strictly increasing and differentiable transformation, xi is a known covariate vector for subject i, 
β is a finite-dimensional random regression parameter vector with normal (or truncated normal 
or uniform) prior distribution, f(⋅;β) is a regression function, γ is a random variance parameter 
vector with inverse Wishart (or truncated inverse Wishart or vague) prior distribution, g(⋅,⋅;γ) is 
a positive weight function, and εis are independent truncated N(0, 1) standardized errors.  Next, 
we propose the corresponding Markov chain Monte Carlo (MCMC) posterior estimation, 
hypothesis testing, credible region, and prediction, and the corresponding finite-sample and 
large-sample properties for the proposed Bayesian regression model. 
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(三)報告內容：請包括前言、研究目的、文獻探討、研究方法、結果與討論（含

結論與建議）…等。若該計畫已有論文發表者，可以 A4 紙影印，作為成果報

告內容或附錄，並請註明發表刊物名稱、卷期及出版日期。若有與執行本計畫

相關之著作、專利、技術報告、或學生畢業論文等，請在參考文獻內註明之，

俾可供進一步查考。 

 

 (1) 前言： 

 
     For modeling independent continuous data, it is common practice simply to assume the 
following normal homoscedastic regression model: For i = 1, …, n, 
 
(1)                          yi  = f(xi;β) + εi,   i = 1, …, n, 
 
where yi is the observation for subject i, xi is a known covariate vector for subject i, β is a 
finite-dimensional regression parameter vector, f is a known regression function of both xi and β, 
and εis are i.i.d. N(0, σ2) errors with unknown variance σ2 > 0. 
 

When heteroscedastic errors and/or departures from normality exist in the data, a popular 
approach is to transform the response.  Originally, the response transformation was proposed 
both as a means of achieving homoscedasticity and approximate normality and for inducing a 
simpler linear model for the transformed response (Box and Cox, 1964).  In such situations, we 
may assume the following response transformation normal homoscedastic regression model to 
extend the normal homoscedastic regression model (1) for modeling independent continuous data:  
For i = 1, …, n, 
 
(2)                        h(yi;λ) = f(xi;β) + εi,   i = 1, …, n, 
 
where λ is a finite-dimensional response transformation parameter vector, h(.;λ) is a known 
strictly increasing and differentiable response transformation, and εis are i.i.d. N(0, σ2) errors with 
unknown variance σ2

 > 0. 
 
     When both heteroscedastic errors and departures from normality cannot be removed 
simultaneously in the data by any single response transformation, we may assume the following 
response transformation normal heteroscedastic regression model to extend the response 
transformation normal homoscedastic regression model (2) for modeling independent continuous 
data:  For i = 1, …, n, 
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(3)                   h(yi;λ) = f(xi;β) + g(f(xi;β),xi;γ)εi,   i = 1, …, n, 
 
where γ is a finite-dimensional variance parameter vector, g is a known positive weight function 
of f(xi;β), xi and γ, and εis are i.i.d. N(0, 1) standardized errors. 
 
     When the range of the response transformation may be different from R, Chen and Wang 
(2003) proposed the following general response transformation truncated normal heteroscedastic 
regression model to extend the response transformation normal heteroscedastic regression model 
(3) for modeling independent continuous data:  For i = 1, …, n, 
 
(4)                   h(yi;λ) = f(xi;β) + g(f(xi;β),xi;γ)εi,   i = 1, …, n, 
 
where εis are independent truncated N(0, 1) standardized errors.  Three commonly-used families 
of response transformations with ranges possibly different from R in the literature are presented 
to illustrate the importance and applicability of the proposed model.  The likelihood inference 
under the proposed model is discussed thoroughly.  Finally, when the range of the response 
transformation is not R, the inappropriateness of the likelihood inference under the response 
transformation normal heteroscedastic regression model (3) is shown to further demonstrate the 
importance of that work. 
 
     Some references are available in the literature for the specification of the prior distributions 
under the Box-Cox response transformation normal homoscedastic regression model.  For 
example, Box and Cox (1964) developed a Bayesian approach with data-dependent priors.  
Pericchi (1981) and Sweeting (1984) suggested other non-data-dependent priors. 
 
     In the literature, all Box-Cox response transformation Bayesian regression models are 
misleading because they used incorrect likelihood functions by making the impossible 
assumption that the Box-Cox transformed response is normally distributed.  However, the 
Box-Cox transformed response cannot be normally distributed because of the support constraint. 
 
 
 

 (2) 研究目的： 

 
     In this project, we assume that the transformed response is truncated normally distributed 
to satisfy the support constraint.  So all results in this project are correct and can be applied to 
response transformation Bayesian regression models. 
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     Since the likelihood function under the general response transformation model with 
heteroscedastic errors (4) proposed in Chen and Wang (2003) has no closed-form formula, it 
takes too much time to find this likelihood function by any numerical iteration method.  
However, a closed-form formula for the likelihood function will be very important in a Bayesian 
framework; otherwise, it is nearly impossible to do the Bayesian inference in practice. 
 

Thus, in this project, in a Bayesian framework, we first modify the likelihood function 
proposed in Chen and Wang (2003) and then propose the following general response 
transformation truncated normal heteroscedastic regression model 
 

h(yi;λ) = f(xi;β) + g(f(xi;β),xi;γ)εi,   i = 1, …, n, 
 
where yi is the observation for subject i, λ is a finite-dimensional random transformation 
parameter vector with normal (or truncated normal or uniform) prior distribution, h(⋅;λ) is a 
strictly increasing and differentiable transformation, xi is a known covariate vector for subject i, β 
is a finite-dimensional random regression parameter vector with normal (or truncated normal or 
uniform) prior distribution, f(⋅;β) is a regression function, γ is a random variance parameter vector 
with inverse Wishart (or truncated inverse Wishart or vague) prior distribution, g(⋅,⋅;γ) is a 
positive weight function, and εis are independent truncated N(0, 1) standardized errors.  Next, 
we propose the corresponding Markov chain Monte Carlo (MCMC) posterior estimation, 
hypothesis testing, credible region, and prediction, and the corresponding finite-sample and 
large-sample properties for the proposed Bayesian regression model. 
 
 
 

 (3) 文獻探討： 

 
Originally, the response transformation was proposed both as a means of achieving 

homoscedasticity and approximate normality and for inducing a simpler linear model for the 
transformed response (Box and Cox, 1964).  In such situations, Box and Cox (1964) proposed 
the following response transformation model for modeling independent continuous data:  For i = 
1, …, n, 
 

h(yi;λ) = xi
Tβ + εi,   i = 1, …, n, 
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where yi is the observation for subject i with support (0, ∞), λ is a real-valued response 
transformation parameter with h(yi;λ) = (yi

λ − 1)/λ if λ ≠ 0 and log(yi) if λ = 0, xi is a known 
covariate vector for subject i, β is a finite-dimensional regression parameter vector, and εis are i.i.d. 
N(0, σ2) errors with unknown variance σ2 > 0.  However, the Box-Cox transformed response 
cannot be normally distributed because the support of εi is (−xi

Tβ − 1/λ, ∞) if λ > 0 or (−∞, −xi
Tβ 

− 1/λ) if λ < 0.  If εis are N(0, σ2) errors with unknown variance σ2 > 0, then their supports 
should be R. 
 
     When the range of the response transformation may be different from R, Chen and Wang 
(2003) proposed the following general response transformation model with heteroscedastic errors 
to extend the response transformation model with heteroscedastic errors (3) for modeling 
independent continuous data:  For i = 1, …, n, 
 

h(yi;λ) = f(xi;β) + g(f(xi;β),xi;γ)εi,   i = 1, …, n, 
 
where εis are independent truncated N(0, 1) standardized errors.  Three commonly-used 
families of response transformations with ranges possibly different from R in the 
literature are presented to illustrate the importance and applicability of the proposed 
model.  The likelihood inference under the proposed model is discussed thoroughly.  
Finally, when the range of the response transformation is not R, the inappropriateness of 
the likelihood inference under the response transformation model with heteroscedastic 
errors (3) is shown to further demonstrate the importance of that work. 
 
     Some references are available in the literature for the specification of the prior distributions 
under the Box-Cox response transformation model with homoscedastic errors.  For example, 
Box and Cox (1964) developed a Bayesian approach with data-dependent priors.  Pericchi (1981) 
and Sweeting (1984) suggested other non-data-dependent priors. 
 
     In the literature, all Box-Cox response transformation Bayesian regression models are 
misleading because they used incorrect likelihood functions by making the impossible 
assumption that the Box-Cox transformed response is normally distributed.  However, the 
Box-Cox transformed response cannot be normally distributed because of the support constraint. 
 
 
 

 (4) 研究方法： 

 
In this project, in a Bayesian framework, we first modify the likelihood function proposed 

in Chen and Wang (2003) and then propose the following general transformation truncated 
normal heteroscedastic regression model 
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h(yi;λ) = f(xi;β) + g(f(xi;β),xi;γ)εi,   i = 1, …, n, 
 
where yi is the observation for subject i, λ is a finite-dimensional random transformation 
parameter vector with normal (or truncated normal or uniform) prior distribution, h(⋅;λ) is a 
strictly increasing and differentiable transformation, xi is a known covariate vector for subject i, β 
is a finite-dimensional random regression parameter vector with normal (or truncated normal or 
uniform) prior distribution, f(⋅;β) is a regression function, γ is a random variance parameter vector 
with inverse Wishart (or truncated inverse Wishart or vague) prior distribution, g(⋅,⋅;γ) is a 
positive weight function, and εis are independent truncated N(0, 1) standardized errors. 
 
     First of all, let θ ≡ (λT, βT, γT)T be the d-dimensional parameter vector and let Θ be the 
corresponding parameter space, where θ is chosen to have a subjective proper or non-informative 
improper prior density function with a closed-form formula π(θ).  For example, for i = 1, …, n, 
the support of yi is (0, ∞), h(yi;λ) = (yi

λ − 1)/λ if λ ≠ 0 and log(yi) if λ = 0, f(xi;β) = xi
Tβ, and 

g(f(xi;β),zi;γ) = σ exp[γ1 f(xi;β) + zi
Tγ2] for γ = (σ, γ1, γ2

T)T.  Moreover, θ ≡ (λ, βT, σ, γ1, γ2
T)T is 

chosen to have the prior density function π(θ) = π1(λ)π2(β,σ)π3(γ1,γ2), where π1(λ) is a known 
subjective normal probability density function (p.d.f.) or uniform, π2(β,σ) is a known subjective 
normal-inverse-gamma p.d.f. or ∝ 1/σ, and π3(γ1,γ2) is a known subjective normal p.d.f. or 
uniform. 
 

Next, derive the closed-form formula of the proposed likelihood function of θ, i.e., the 
conditional p.d.f. p(y|θ) of y given θ, by a similar method in Chen and Wang (2003), where y ≡ 
(y1, …, yn) T.  Then the posterior likelihood function of θ, i.e., the conditional p.d.f. p(θ|y) of θ 
given y, is ∝ π(θ)p(y|θ).  A Markov chain Monte Carlo (MCMC) approach is applied to generate 
an MCMC sample {θ t, …, θ t+m} of size m from p(θ|y) (∝ π(θ)p(y|θ)) for some large t and m. 
 
     Finally, the corresponding MCMC posterior estimation, hypothesis testing, credible region, 
and prediction, and the corresponding finite-sample and large-sample properties for the proposed 
Bayesian regression model can be easily derived via the techniques of the traditional Bayesian 
inference. 
 
 
 

(5) 結果與討論（含結論與建議）： 

 
     Since the likelihood function in Box and Cox (1964) is incorrect due to the support 
constraint, we need to find a correct likelihood function to use in response transformation 
regression model. 
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     Since the likelihood function under the general response transformation truncated normal 
heteroscedastic regression model (4) proposed in Chen and Wang (2003) has no closed-form 
formula, it is nearly impossible to calculate its likelihood function by any numerical iteration 
method. 
 

Thus, in this project, in a Bayesian framework, we first modify the likelihood function 
proposed in Chen and Wang (2003) and then propose the following general response 
transformation truncated normal heteroscedastic regression model 
 

h(yi;λ) = f(xi;β) + g(f(xi;β),xi;γ)εi,   i = 1, …, n, 
 
where yi is the observation for subject i, λ is a finite-dimensional random transformation 
parameter vector with normal (or truncated normal or uniform) prior distribution, h(⋅;λ) is a 
strictly increasing and differentiable transformation, xi is a known covariate vector for subject i, β 
is a finite-dimensional random regression parameter vector with normal (or truncated normal or 
uniform) prior distribution, f(⋅;β) is a regression function, γ is a random variance parameter vector 
with inverse Wishart (or truncated inverse Wishart or vague) prior distribution, g(⋅,⋅;γ) is a 
positive weight function, and εis are independent truncated N(0, 1) standardized errors.  Next, 
we propose the corresponding MCMC posterior estimation, hypothesis testing, credible region, 
and prediction, and the corresponding finite-sample and large-sample properties for the proposed 
Bayesian regression model by utilizing the techniques of the traditional Bayesian inference. 
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(五)計畫成果自評。 
 
     In the proposal of this project, I would like to propose the Bayesian inference under the 
general response transformation truncated normal heteroscedastic regression model (4) 
proposed in Chen and Wang (2003).  However, I found that it is nearly impossible to do the 
posterior inference utilizing the likelihood function proposed in Chen and Wang (2003).  The 
main reason is that there is no closed-form formula for its likelihood function.  So I need to 
use a numerical iteration method to calculate the likelihood function at many possible θ values.  
Even though I have calculated the likelihood function at several possible θ values, it only 
gives me a very rough picture of the likelihood function rather than the whole likelihood 
function.  Afterwards, I found a simple way to modify the general response transformation 
truncated normal heteroscedastic regression model (4) proposed in Chen and Wang (2003) in 
order to have a closed-form formula for its likelihood function.  Finally, the corresponding 
MCMC posterior estimation, hypothesis testing, credible region, and prediction, and the 
corresponding finite-sample and large-sample properties for the proposed Bayesian regression 
model can be easily derived via the techniques of the traditional Bayesian inference. 
 
     In the literature, all Box-Cox response transformation Bayesian regression models are 
misleading because they used wrong likelihood functions.  They assumed that the Box-Cox 
transformed response is normally distributed.  However, it cannot be normally distributed 
because of the support constraint.  In this project, we assume that the transformed response is 
truncated normally distributed to satisfy the support constraint.  So all results in this project 
are correct and can be applied to response transformation Bayesian regression models. 
 
 
 
(六)可供推廣之研發成果資料表。 
 
 
 
(七) 附錄 
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