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When there exist heteroscedastic errors and/or departures from normality in the data, a
popular approach is to transform the response. Originally, transforming the response was
proposed both as a means of achieving homoscedasticity and approximate normality and for
inducing a simpler linear model for the transformed response (Box and Cox, 1964). In such
situations, Box and Cox (1964) proposed the following response transformation normal

homoscedastic regression model for modeling independent continuous data:
hiy; ) =fx;p+a, i=1,..,n,

where Y; is the observation for subject i, A is a finite-dimensional transformation parameter
vector, h(-;A) is a strictly increasing and differentiable transformation, X; is a known covariate
vector for subject i, A is a finite-dimensional regression parameter vector, f(-; /) is a regression

. .. 2 . . 2
function, and &s are i.i.d. N(0,0%) errors with unknown variance o > 0.

When both heteroscedastic errors and departures from normality cannot be removed
simultaneously in the data by any single transformation, the Box-Cox model is further
generalized to the following response transformation normal heteroscedastic regression model

for modeling independent continuous data:

h(yi; ) = f(xi; B) + 9(f(xis B).xis &, 1=1,...,n,

where y is a variance parameter vector, g(-,-;) is a positive weight function, and &s are i.i.d.
N(0,1) standardized errors.

However, if the range of the response transformation is different from R (=(—0, «)), the
corresponding errors cannot be normally distributed. Commonly-used examples are the power
transformations (Box and Cox, 1964), exponential transformations (Manly, 1976), and
Aranda-Ordaz transformations (Aranda and Ordaz, 1981). Moreover, the corresponding errors

don't even have the same distributions, due to the fact that they may have different supports.
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Thus, Chen and Wang (2003) proposed the following general response transformation

truncated normal heteroscedastic regression model

h(yi;A) = f(xi; 0) + 9(f(xi; P xispa,  i=1,...,n,
where &s are independent truncated N(Ci(4,5,), 1) standardized errors with median 0.

However, there does not exist any closed-form formula for the likelihood function
proposed by Chen and Wang (2003). Thus, it takes too much time to calculate this likelihood
function by any numerical iteration method. A closed-form formula for the likelihood function
will be very important in a Bayesian framework; otherwise, it is nearly impossible to do the

Bayesian inference in practice.

Thus, in this project, in a Bayesian framework, we first modify the likelihood function
proposed in Chen and Wang (2003) and then propose the following general transformation

truncated normal heteroscedastic regression model

hiysd) =f(xi:) + 9fxi:P.xis e, 1=1,....n,

where Y; is the observation for subject i, A is a finite-dimensional random transformation
parameter vector with normal (or truncated normal or uniform) prior distribution, h(:;2) is a
strictly increasing and differentiable transformation, X; is a known covariate vector for subject i,
s a finite-dimensional random regression parameter vector with normal (or truncated normal
or uniform) prior distribution, f(;f) is a regression function, y is a random variance parameter
vector with inverse Wishart (or truncated inverse Wishart or vague) prior distribution, g(-,-;7) is
a positive weight function, and &s are independent truncated N(0, 1) standardized errors. Next,
we propose the corresponding Markov chain Monte Carlo (MCMC) posterior estimation,
hypothesis testing, credible region, and prediction, and the corresponding finite-sample and

large-sample properties for the proposed Bayesian regression model.
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For modeling independent continuous data, it is common practice simply to assume the

following normal homoscedastic regression model: Fori=1, ..., n,

(1) yl :f(xl;ﬁ)-i_gl’ i: 1, ey n,

where Y; is the observation for subject i, X; is a known covariate vector for subject i, fis a

|
finite-dimensional regression parameter vector, f is a known regression function of both x; and £,

.. ) . . 2
and gs are i.i.d. N(0, 0%) errors with unknown variance o> 0.

When heteroscedastic errors and/or departures from normality exist in the data, a popular
approach is to transform the response. Originally, the response transformation was proposed
both as a means of achieving homoscedasticity and approximate normality and for inducing a
simpler linear model for the transformed response (Box and Cox, 1964). In such situations, we
may assume the following response transformation normal homoscedastic regression model to
extend the normal homoscedastic regression model (1) for modeling independent continuous data:

Fori=1,...,n,
(2) hiy;A) =fx;p+¢, 1=1,...,n,

where A is a finite-dimensional response transformation parameter vector, h(.;4) is a known
strictly increasing and differentiable response transformation, and &s are i.i.d. N(0, ¢°) errors with

. 2
unknown variance o > 0.

When both heteroscedastic errors and departures from normality cannot be removed
simultaneously in the data by any single response transformation, we may assume the following
response transformation normal heteroscedastic regression model to extend the response
transformation normal homoscedastic regression model (2) for modeling independent continuous
data: Fori=1,...,n,



3) h(yid) =i p) + 9P xisng,  i=1,...n,

where y is a finite-dimensional variance parameter vector, g is a known positive weight function
of f(xi;f), xiand y, and gs are i.i.d. N(0, 1) standardized errors.

When the range of the response transformation may be different from R, Chen and Wang
(2003) proposed the following general response transformation truncated normal heteroscedastic
regression model to extend the response transformation normal heteroscedastic regression model

(3) for modeling independent continuous data: Fori=1,...,n,

4) h(yid) =i p) + 9P xisng,  i=1,....n,

where gs are independent truncated N(0, 1) standardized errors. Three commonly-used families
of response transformations with ranges possibly different from R in the literature are presented
to illustrate the importance and applicability of the proposed model. The likelihood inference
under the proposed model is discussed thoroughly. Finally, when the range of the response
transformation is not R, the inappropriateness of the likelihood inference under the response
transformation normal heteroscedastic regression model (3) is shown to further demonstrate the

importance of that work.

Some references are available in the literature for the specification of the prior distributions
under the Box-Cox response transformation normal homoscedastic regression model. For
example, Box and Cox (1964) developed a Bayesian approach with data-dependent priors.
Pericchi (1981) and Sweeting (1984) suggested other non-data-dependent priors.

In the literature, all Box-Cox response transformation Bayesian regression models are
misleading because they used incorrect likelihood functions by making the impossible
assumption that the Box-Cox transformed response is normally distributed. However, the

Box-Cox transformed response cannot be normally distributed because of the support constraint.

(2) ¥ 3 pen:

In this project, we assume that the transformed response is truncated normally distributed
to satisfy the support constraint. So all results in this project are correct and can be applied to

response transformation Bayesian regression models.



Since the likelihood function under the general response transformation model with
heteroscedastic errors (4) proposed in Chen and Wang (2003) has no closed-form formula, it
takes too much time to find this likelihood function by any numerical iteration method.
However, a closed-form formula for the likelihood function will be very important in a Bayesian

framework; otherwise, it is nearly impossible to do the Bayesian inference in practice.

Thus, in this project, in a Bayesian framework, we first modify the likelihood function
proposed in Chen and Wang (2003) and then propose the following general response

transformation truncated normal heteroscedastic regression model

hiysd) =f(xi:B) + 9fxi:P.xis e, 1=1,....n,

where Vi is the observation for subject i, A is a finite-dimensional random transformation
parameter vector with normal (or truncated normal or uniform) prior distribution, h(-;4) is a
strictly increasing and differentiable transformation, X; is a known covariate vector for subject i, £
is a finite-dimensional random regression parameter vector with normal (or truncated normal or
uniform) prior distribution, f(-;f) is a regression function, yis a random variance parameter vector
with inverse Wishart (or truncated inverse Wishart or vague) prior distribution, g(-,-;) is a
positive weight function, and gs are independent truncated N(0, 1) standardized errors. Next,
we propose the corresponding Markov chain Monte Carlo (MCMC) posterior estimation,
hypothesis testing, credible region, and prediction, and the corresponding finite-sample and

large-sample properties for the proposed Bayesian regression model.

(3) =+ frsFst -

Originally, the response transformation was proposed both as a means of achieving
homoscedasticity and approximate normality and for inducing a simpler linear model for the
transformed response (Box and Cox, 1964). In such situations, Box and Cox (1964) proposed
the following response transformation model for modeling independent continuous data: For i =
1,....Nn,

h(ylaﬂ’):XITﬂ—i_ (S‘i’ |:1, .. N,



where y; is the observation for subject i with support (0, ), 4 is a real-valued response
transformation parameter with h(yi;4) = (yi* — 1)/4 if A # 0 and log(y;) if A = 0, X; is a known
covariate vector for subject i, fis a finite-dimensional regression parameter vector, and &s are i.i.d.
N(0, ¢%) errors with unknown variance o* > 0. However, the Box-Cox transformed response
cannot be normally distributed because the support of & is (X' B— 1/, 0) if 1> 0 or (-0, —X;' B
— 1/2) if A< 0. If gs are N(0, &) errors with unknown variance o > 0, then their supports
should be R.

When the range of the response transformation may be different from R, Chen and Wang
(2003) proposed the following general response transformation model with heteroscedastic errors
to extend the response transformation model with heteroscedastic errors (3) for modeling

independent continuous data: Fori=1,...,n,

h(y;A) = f(x:B + 9(fxis A xispe,  i=1,...,n,

where &s are independent truncated N(0, 1) standardized errors. Three commonly-used
families of response transformations with ranges possibly different from R in the
literature are presented to illustrate the importance and applicability of the proposed
model. The likelihood inference under the proposed model is discussed thoroughly.
Finally, when the range of the response transformation is not R, the inappropriateness of
the likelihood inference under the response transformation model with heteroscedastic
errors (3) is shown to further demonstrate the importance of that work.

Some references are available in the literature for the specification of the prior distributions
under the Box-Cox response transformation model with homoscedastic errors. For example,
Box and Cox (1964) developed a Bayesian approach with data-dependent priors. Pericchi (1981)
and Sweeting (1984) suggested other non-data-dependent priors.

In the literature, all Box-Cox response transformation Bayesian regression models are
misleading because they used incorrect likelihood functions by making the impossible
assumption that the Box-Cox transformed response is normally distributed. However, the

Box-Cox transformed response cannot be normally distributed because of the support constraint.
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In this project, in a Bayesian framework, we first modify the likelihood function proposed
in Chen and Wang (2003) and then propose the following general transformation truncated

normal heteroscedastic regression model



h(ysd) =f(xi:) + 9(fxi:P.xis e, 1=1,....n,

where Vi is the observation for subject i, A is a finite-dimensional random transformation
parameter vector with normal (or truncated normal or uniform) prior distribution, h(-;4) is a
strictly increasing and differentiable transformation, X; is a known covariate vector for subject i, £
is a finite-dimensional random regression parameter vector with normal (or truncated normal or
uniform) prior distribution, f(-;f) is a regression function, yis a random variance parameter vector
with inverse Wishart (or truncated inverse Wishart or vague) prior distribution, g(-,-;) is a

positive weight function, and gs are independent truncated N(0, 1) standardized errors.

First of all, let 8= (4", A, ¥) be the d-dimensional parameter vector and let @ be the
corresponding parameter space, where #is chosen to have a subjective proper or non-informative
improper prior density function with a closed-form formula 7(#). For example, fori=1, ..., n,
the support of y; is (0, ), h(yi;A) = (yi* = 1)/ if A # 0 and log(y;) if A = 0, f(xi;8) = xi' B, and
9(f(xi;9).,2is) = o exp[y f(xi.B) + zi' 1o] for y= (o, 1, ')'. Moreover, = (4, B, o, 1, 1" is
chosen to have the prior density function 7(6) = m(4)m(L,0) m(11,)2), where m(A) is a known
subjective normal probability density function (p.d.f.) or uniform, m(f,0) is a known subjective
normal-inverse-gamma p.d.f. or o« 1/0, and m(y,5%) is a known subjective normal p.d.f. or

uniform.

Next, derive the closed-form formula of the proposed likelihood function of €, i.e., the
conditional p.d.f. p(y|6) of y given 6, by a similar method in Chen and Wang (2003), where y =
(Y1, ..., Yn) . Then the posterior likelihood function of 6, i.e., the conditional p.d.f. p(dy) of €
giveny, is oc 7(O)p(y|d). A Markov chain Monte Carlo (MCMC) approach is applied to generate
an MCMC sample {8', ..., 8"™} of size m from p(@ly) (< (O)p(y|d)) for some large t and m.

Finally, the corresponding MCMC posterior estimation, hypothesis testing, credible region,
and prediction, and the corresponding finite-sample and large-sample properties for the proposed
Bayesian regression model can be easily derived via the techniques of the traditional Bayesian

inference.

(5) 3% 23tk (§ Bih# i)

Since the likelihood function in Box and Cox (1964) is incorrect due to the support
constraint, we need to find a correct likelithood function to use in response transformation
regression model.



Since the likelihood function under the general response transformation truncated normal
heteroscedastic regression model (4) proposed in Chen and Wang (2003) has no closed-form
formula, it is nearly impossible to calculate its likelihood function by any numerical iteration
method.

Thus, in this project, in a Bayesian framework, we first modify the likelihood function
proposed in Chen and Wang (2003) and then propose the following general response

transformation truncated normal heteroscedastic regression model

h(ysd) =f(xi:) + 9(fxi:P.xis e, 1=1,....n,

where Vi is the observation for subject i, A is a finite-dimensional random transformation
parameter vector with normal (or truncated normal or uniform) prior distribution, h(-;4) is a
strictly increasing and differentiable transformation, X; is a known covariate vector for subject i, £
is a finite-dimensional random regression parameter vector with normal (or truncated normal or
uniform) prior distribution, f(-;f) is a regression function, yis a random variance parameter vector
with inverse Wishart (or truncated inverse Wishart or vague) prior distribution, g(-,-;) is a
positive weight function, and gs are independent truncated N(0, 1) standardized errors. Next,
we propose the corresponding MCMC posterior estimation, hypothesis testing, credible region,
and prediction, and the corresponding finite-sample and large-sample properties for the proposed

Bayesian regression model by utilizing the techniques of the traditional Bayesian inference.
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In the proposal of this project, I would like to propose the Bayesian inference under the
general response transformation truncated normal heteroscedastic regression model (4)
proposed in Chen and Wang (2003). However, I found that it is nearly impossible to do the
posterior inference utilizing the likelihood function proposed in Chen and Wang (2003). The
main reason is that there is no closed-form formula for its likelihood function. So I need to
use a numerical iteration method to calculate the likelihood function at many possible & values.
Even though I have calculated the likelihood function at several possible & values, it only
gives me a very rough picture of the likelihood function rather than the whole likelihood
function. Afterwards, I found a simple way to modify the general response transformation
truncated normal heteroscedastic regression model (4) proposed in Chen and Wang (2003) in
order to have a closed-form formula for its likelihood function. Finally, the corresponding
MCMC posterior estimation, hypothesis testing, credible region, and prediction, and the
corresponding finite-sample and large-sample properties for the proposed Bayesian regression

model can be easily derived via the techniques of the traditional Bayesian inference.

In the literature, all Box-Cox response transformation Bayesian regression models are
misleading because they used wrong likelihood functions. They assumed that the Box-Cox
transformed response is normally distributed. However, it cannot be normally distributed
because of the support constraint. In this project, we assume that the transformed response is
truncated normally distributed to satisfy the support constraint. So all results in this project

are correct and can be applied to response transformation Bayesian regression models.
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