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1. Abstract 
This report presents an approach for modeling 

hysteresis nonlinearity in a piezo actuator, and a hybrid 
controller is designed combining inverse hysteresis 
compensator and NCTF tuned PID controller.  A 
feedforward neural network is defined to describe the 
Preisach model. This model is extended with two 
additional inputs--- input extrema and input rate, to 
identify the piezo actuator’s rate-dependent hysteresis 
behavior throughout the major loop and minor loops. 
An NCTF tuned PID controller augmented with inverse 
hysteresis model is then developed to compensate the 
hysteretic behavior, modeling error, and disturbance to 
improve the positioning/tracking stability and accuracy. 
The effectiveness of this algorithm is experimentally 
verified through the tracking control of a piezo 
actuator. 

 
Keyword:  
Piezo, rate-dependent hysteresis, feedforward neural 

networks, NCTF tuned PID 
中文摘要 

本計劃研製壓電平台數位控制器。一種結合反
遲滯補償和 NCTF 調整型 PID 的控制器已經設計出
來。在反遲滯補償上，使用類神經網路或取描述
Presisach 模型。經由加上極值和速率，對於遲滯的
主迴路和次迴路都可以附有速率相關的行為。NCTF
調整型 PID 的控制器可以清除干擾的影響，進而改
善位置和追蹤控制的精度，還能兼顧系統穩定性。
這種壓電平台數位控制器已經經過實驗的驗證。 
 
關鍵字：  

壓電致動器，速率相關遲滯，類神經網路，特徵
軌跡跟隨控制器。 
 
2. Introduction 

  The so-called smart materials, for example 
piezo-ceramic material and ferromagnetic material, 
have interested more and more researchers because of 
their special properties considered useful applications. 

Hysteresis is a kind of non-smooth nonlinearity, 
naturally existing in a wide range of disciplines such as 
piezo actuators, damper-spring systems and gear box, 
etc. Hysteresis can produce multiple output states for a 
given input state, thus it may frustrate the performance 
of the control system leading to close-loop instability 
and complicate the task of controller design and 
analysis [1]. Also, it may generate the undesired 
amplitude-dependent phase shifts and harmonic 

distortions, which reduce the effectiveness of feedback 
control [2].  

Hysteresis has been studied for decades, and various 
models have been proposed to efficiently capture the 
hysteretic characteristics [3], such as the Preisach 
model (PM), the Maxwell slip model, and the 
Prandtl-Ishlinskii (PI) operator. By developing a look 
up table and interpolator based on the measurement of 
first-order reversal curves, PM has become one of the 
most popular models for its well defined and reliable 
experimental identification procedure.  

Preliminary experiment shows that the hysteresis 
behavior of a piezo actuator is rate-dependent, 
increasing with the rate of control input. Therefore, the 
performance of the system with hysteresis will be poor 
if the system without using the corresponding 
mechanism to compensate for the hysteresis behavior. 
The classical PM is a rate-independent model 
possessing Wiping-out and congruency properties that 
must be modified to adequately describe piezo’s 
hysteresis and frequency dependent behavior. 

Based on the geometric similarities between PM and 
feedforward neural network (FNN) that’s much easier 
to identify the weighting functions of FNN [4]. An 
FNN, with two consecutive input extrema and the rate 
of input between the extrema as additional inputs, is 
developed to address the issue of rate-dependent 
hysteresis in piezo actuator. 

Althought, open-loop feedforward inverse control 
can be chosen for its simplicity and guaranteed stability, 
the robustness of a feedforwad inverse control system 
is susceptible to the modeling error and unmeasured 
disturbance. To combat this problem, a nominal 
character trajectory following (NCTF) controller tuned 
PID controller combining feedforward compensation is 
used to overcome the residual hysteretic behavior of 
the piezo actuator. This algorithm is experimentally 
verified through the tracking control of a piezo 
actuator. 

 
The report is organized as follows. The classical 

Preisach model is briefly presented in Section II. The 
rate-dependent hysteresis model and the corresponding 
identification method by FNN are presented in section 
III. An NCTF tuned PID controller is introduced in 
section IV. Finally, experimental implementation and 
conclusions are summarized in Section V and VI. 
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3. Problem Formulation 

The existence of nonlinear multi-path hysteresis in 
piezo-ceramic material complicates the control of a 
piezo actuator in high precision applications. Previous 
experiment shows the maximum hysteretic error is 
typically about 15% in static positioning applications. 
Still worse, the hysteresis is rate-dependent, increasing 
with the rate of control input, as shown in Fig. 1. 

Feedback controller with function of hysteresis 
compensation is an effective way to solve the phase lag 
phenomena of a precision positioning system. That is 
to find a mathematical model that closely describe the 
hysteresis behavior of a piezo actuator, and then feed 
forward the inverse hysteresis model to linearize the 
actuator’s response. 
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Fig. 1. Hysteresis of piezo-ceramic material is 
rate-dependent. The plot shows the response of a piezo 
actuator at two different driving frequencies. 

 
4. Proposed Method 

4.1 Brief introduction of the Classical Preisach 
Model 

 
The classical Preisach model (PM) is the most popular 
model for its well defined and reliable experimental 
identification procedure based on the measurement of 
first-order reversal curves. The classical Preisach 
model can be expressed as 
 

 (1) 
 

 
Where βαγ ,  is the hysteresis operator, responses 

as a relay element with “up” and “down” switching 
value α  and β  whose values are determined by the 
input-voltage signal )(tv  as shown in Fig.2. The 
function ( )βαµ ,  is the weighting function estimated 
from measured data and is called the Preisach function. 

 The double integration in expression (1) is 
performed in the limited triangle S  in βα , -plane, 
graphically described in Fig. 2, 
where ( ){ }min max,S v vα β β α= ≤ ≤ ≤ , minv  and  maxv  
are the minimal and maximal values of the input 
respectively. The implementation of the Preisach model 
can be simplified to a problem of developing a method 
to experimentally estimate the weighting function 

( )βαµ ,  for a given piezo actuator. By properly 
assigning weighting functions, the sum of model’s 
output will approach a hysteresis curve. 
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Fig. 2. An elementary hysteresis operator [ ]( ), v tα βγ  
and a geometric interpretation of the Preisach model

 
4.2 Neural network identification procedure 

 
By using an approach with the fact that Preisach 

models have some similarities to neural networks 
configurations, Adly et. al. [4] introduces a method for 
solving the identification problem of the classical 
Preisaxh model in the (partial) absence of the 
congruency property.  

This case considers a four-layer feedforward 
network, as depicted in Fig. 3, and the 
back-propagation (BP) training algorithm  is applied 
to multilayer FNN consisting of processing elements 
with continuous differentiable activation functions 
[4~7]. The basis for this weight update algorithm is 
simply the gradient-descent method. 

 
Fig. 3 Four-layer back-propagation network 

 
First, assumes each perceptron element in this 

network has a bipolar sigmoid activation function, 
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values and 1λ =  [6]. Each element q in the hidden 
layer receives a net input of and produces an output of 
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where i
qnet  and i

q y denote the net input and 
output of the thi unit in the thq layer, ij

q w denote the 
connection weight from j

q y1− to i
q y . The network has 

m input nodes and one output node.  
Second, consider the error signals and their back 

propagation to update the connection weights. The 
error value and error signals are defined as follows: 

 
    (4) 
 

( ) ( )i
Q

i
Q

ii
Q netayd ′−=δ       (5) 

 
    (6) 

     (7) 
 

 
   (8) 
 

where .2,...,1Q, Q-q =  
 
4.3 Control system design 
To compensate the bounded modeling error and 

external disturbance, an NCTF tuned PID feedback 
controller with function of hysteresis feedforward 
compensation is employed. First, a FNNs model shown 
in Fig. 4 is setup for inverse hysteresis. The obtained 
inverse model will be augmented with feedback control 
to compensate the effect of hysteresis. 
 

 
Fig. 4 FNNs inverse hysteresis model 

 
PID controllers have been widely used in industrial 

processes because of their simple structure and robust 
performance in a wide range of operating conditions. 
However, the design of PID controllers requires 
specification of three parameters: proportional gain, 
integral time constant and derivative time gain. To 
determine these parameters, the certain knowledge of 
control processes is required. To avoid setting up a 
complicated controller, a nominal characteristic 
trajectory following (NCTF) controller has been 

proposed as a practical controller for point-to-point 
(PTP) positioning system [9-10]. The structure of 
NCTF controller, shown in Fig. 5, consists of a 
nominal characteristic trajectory (NCT) and a 
compensator. The basic concept of NCTF controller is 
to drive the state of a plant to tracking the phase plane 
trajectory by a state feedback control scheme where the 
feedback is a continuous function of time. Signal 
shown in Fig. 5 represents the difference between the 
actual error rate e&  and that of the NCT. The 
compensator, PI controller, is used to make the object 
follow the NCT and end at the origin of the phase plane 
( ee &  , ). However, the actual error rate of plant could be 
noisy and that flusters the output of compensator.  

 
Fig. 5 Structure of the NCTF control system. 

 
In this research, an NCTF tuned PID controller is 

implemented, as Fig. 6, by taking the advantage of both 
NCTF and PID to reach good control performances. 
The proportional gain of PID controller is dynamically 
tuned by the output signal of NCTF. The phase 
trajectory of the object is expected to track the 
designed phase trajectory. 
 

 
Fig. 6 Structure of the NCTF-based PID control 

system. 
 
 
5. Implementation 

The schematic diagram of experimental device 
is shown in Fig. 7. The closed loop control system 

includes piezo actuator, high voltage driver, position 
sensor, A/D-D/A converters and controller. The 
training data was generated by exciting a piezo actuator 
with the exciting voltage signal with fixed-magnitude 
decreasing-frequency, decreasing-magnitude 
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decreasing-frequency and decreasing-magnitude 
increasing frequency, as shown in Fig. 8(a)(b) and (c) 
respectively. 

 

 

Fig. 7 Block diagram of the experimental device. 

 
Fig. 8(a) Excitation decreasing-frequency and 

fixed-magnitude 

 
Fig. 8(b) Excitation decreasing-frequency and 

decreasing-magnitude 

 

Fig. 8(c) Excitation increasing-frequency and 
decreasing-magnitude 

 
To investigate the effectiveness of the proposed 

control design, the displacement tracking responses of 
the piezo actuator is demonstrated using the PC-based 
control system. The experimental results due to step 
and chaotic time series are shown in Fig. 9 and Fig. 
10(a); a microscopic view of the tracking response is 
shown in Fig. 10(b); the tracking error is shown in Fig. 
10(c). From the experimental results shown in Fig. 9 ~ 
Fig. 10(c), the tracking performance of the NCTF tuned 
PID controller augmented with inverse hysteresis 
model is good for the tracking command. 

  

 
Fig. 9 The step responses of piezo actuator with the 

inverse hysteresis compensator and NCTF tuned PID 
controller 

 
Fig. 10(a) The tracking performance 
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Fig. 10(b) A microscopic view of tracking 

performance 

 
Fig. 10(c) The compensation of tracking 

performance 
 
 
6. Conclusions 
 

In this report, an approach for modeling hysteresis 
nonlinearity in a piezo actuator is investigated with 
control input extrema and rate. A hybrid controller is 
designed combining inverse hysteresis compensator 
and NCTF tuned PID controller to overcome the 
bounded modeling error and external disturbance. The 
proportional gain of PID controller is continuously 
scheduled based on the NCTF information without 
chattering and high frequency oscillation caused by 
some discontinuous control signals. As a result, the 
high-precision tracking ability is obtained. 
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