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“Building Optimal Space Compactor for Test-Response Compaction with Unknown Values”
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The increasing number of scan cells in modern
designs challenges the scan-based testing on both test data
volume and test application time. In order to reduce the
test data volume and test application time with the same
number of ATE channels, researchers have been actively
pursuing new solutions to scan-in stimulus compression
and scan-out response compaction. For scan-out response
compaction, the greatest barrier is the presence of
unknown values (or unknowns) among simulated scan-out
responses. If no unknown value exists, a time compactor,
such as MISRs (Multiple Input Signature Registers), can
compress an infinitely long output sequence into a
fixed-length signature and guarantee a negligible aliasing
probability. However, even one unknown in the scan-out
responses would result in an unpredictable good-circuit
signature for MISR, from which no faulty-circuit
signature could be differentiated. Therefore, space
compactors emerge to be an important solution to the
scan-out response compaction due to its unknown-tolerant

property.

In this project, we will first analyze the masking
effects (error masking and unknown- induced masking)
caused by a space compactor. Second, we will attempt to
mathematically derive the probabilities that each masking
effect happens based on any given configuration of the
space compactor. Third, we will correlate the above
probabilities of the masking effects to a direct test-quality
metrics (for example stuck-at fault coverage), instead of
any indirect metrics such as number of tolerated
unknowns in each scan-shift cycle (used in other previous
work). Last, we will develop an automatic design flow for
building a space compactor with maxima compaction
ratio while achieving desired level of test quality based on
given testing resources.
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1. Introduction

The greatest barrier to effective test-response
compaction is the presence of unknown values (or
unknowns) among scan-out responses. If no unknown
value exists, a time compactor, such as MISRs (Multiple
Input Signature Registers), can compress an infinitely
long output sequence into a fixed-length signature and
guarantee a negligible aliasing probability. The method in
[1] applies the concept of MISR for response compaction.
However, even one unknown in the scan-out responses
would result in an unpredictable good-circuit signature for
MISR, from which no faulty-circuit signature could be
differentiated. The methods in [2], [3] and [4] attempt to
mask unknowns before they reach the time compactor.
However, [2] and [3] require pattern-dependent circuitry
and [4] requires a special ATPG to support its compaction
scheme. Besides, they may mask some known scan-out
responses in addition to unknowns.

The selective compactors proposed in [5] and [6]
select only the scan-out responses with faulty values for
observation and hence avoid the masking effect due to
unknowns. All other responses are discarded. However,
an important assumption of structural testing is that the
patterns for the target modeled faults could detect many
un-modeled faults as well. Therefore, discarding a
majority of scan-out responses would degrade the overall
test quality.

Another class of response compactors, caled space
compactors, alow unknown vaues feeding to the
compactor but use an XOR matrix to reduce the
probability that a response is masked by the unknown
values [8] [9]. The methods proposed in [10] and [11]
further use storage elements along with an XOR matrix to
improve the compaction ratio and unknown tolerance. The
methods proposed in [8], [9], [10] and [11] can guarantee
some degree of error detection in the presence of one
unknown. However, for high-ratio response compaction, a
large number of responses will be processed by the space
compactor, and hence the probability that more than one
unknown concurrently appears at the inputs of the
compactor is high. For such a multiple-unknown situation,
some responses may become unobservable due to the
masking of unknowns. Different configurations of a space
compactor may result in different percentages of
responses being observable. The method proposed in [12]
analyzes this observable percentage for a special case of a
convolutional compactor [11], which contains only one
output. A tree-search-based approach proposed in [13] can
calculate the observable percentage for a convolutional
compactor. However, this tree-search-based approach

may not be scalable for alarge convolutional compactor.

For the space compactors which can tolerate more
than one unknown, the method proposed in [14] uses a
binary linear code with Hamming distance d to detect a
varying number of errors with a varying number of
unknowns up to d-2. In [15], the authors propose a
convolutional compactor which can guarantee a certain
level of error detection if the total number of unknowns
appearing during a period of scan-out cycles is below a
target threshold. Due to a more restrictive construction
rule in [14] and [15], the methods proposed in [14] and
[15] result in limited compaction ratio. In addition, if the
number of unknowns exceeds the target threshold, its
percentage of observable responses remains unclear.

More importantly, none of these space- compaction
schemes can correlate its unknown- tolerant compaction
to a test-quality metric such as fault coverage.
One-unknown tolerance, multiple-unknown tolerance, or
any error-masking probability is not a direct index to the
coverage loss caused by the compactor. In fact, our
experimental results indicate that this coverage loss is
somewhat inversely proportional to the percentages of
observable responses under unknown-induced masking
for a given test set. Therefore, it is desirable to estimate
the percentage of observable responses for a space
compactor and then correlate this observable percentage
to its coverage loss. In other words, we attempt to
measure the quality of a space compactor based on the
fault coverage or other test-quality metrics, not on the
number of unknowns tolerated or other error-masking
probabilities.

In this project, we develop a design flow for
constructing space compactors to achieve a desired level
of test quality while maximizing compaction ratio. We
first derive an equation to predict the observable
percentage of scan-out responses for a given XOR matrix
and unknown percentage. Based on this equation, we can
efficiently build a space compactor to support a maximal
number of scan chains and aso observe a desired level of
responses. Furthermore, for a given test set, we can
predict the coverage of the target fault model and the BCE
[16] for different observable percentages. Therefore, when
designing a space compactor, we start from specifying a
desired level of both target-fault coverage and BCE for a
given test set. With this desired coverage, we can
determine its corresponding percentage of observable
responses. Last, we construct the space compactor with
maximal compaction ratio to satisfy this observable
percentage, and, in turn, satisfy the desired test quality (i.e.
fault coverage and BCE).



The rest of the report is organized as follows. In
Section 2, we first show that the error masking (aliasing)
barely affects fault coverage for a space compactor. The
unknown-induced masking is the major concern for
coverage loss. In Section 3, we describe a mathematical
formula for predicting the percentage of observable
responses under unknown-induced masking. We also
show how to use this mathematical analysis to construct a
space compactor with a maximal compaction ratio and a
desired observable percentage. In Section 4, we propose a
simulation-based scheme to predict the stuck-at-fault
coverage and BCE for different observable percentages,
so that we can correlate the observable percentage of a
space compactor directly with the test quality. Section 5
describes the flow of constructing an optimal space
compactor based on a desired stuck-at-fault coverage or
BCE coverage.

2. Masking Effects of XOR Matrices

Two types of masking effects may affect the fault
detection for a space compactor. The first is error
masking or so-called aliasing. Error- masking means that
multiple error values cancel one another out through the
XOR matrix and result in the same values as those of the
fault-free circuit at the outputs of the space compactor.
The second masking effect is unknown-induced masking.
Unknown-induced masking occurs when a compacted
output response in the fault-free circuit is infected by
unknown values. Once the compacted output response of
the fault-free circuit becomes unknown, it is impossible to
differentiate any faulty response from this fault-free
output response.

In practice, error masking (aliasing) rarely affects the
fault coverage. This is because few faults will propagate
all of the faulty values to the space compactor in the same
scan-shift cycle under a test pattern. Even if al of the
faulty values arrive in the same scan-shift cycle, aliasing
may not happen at every output. A fault is un-detected
only if al itsfaulty values are aliasing at every output and
for every test pattern. In Table 1, we show the results of
using a simple XOR tree to compact the responses of 50
scan chains into 1 output for four large ISCAS and ITC
circuits. In this experiment, we generated ATPG patterns
for stuck-at faults without applying any compaction
scheme. Then we ran another stuck-at-fault simulation,
applying a 50-to-1 XOR tree. No unknown values existed
in this experiment. Therefore, the fault coverage loss (if
any) is solely dueto error-masking.

circuit #of | detflt wio un-det fit aliasing | aliasing
pttn compactor | with compactor fit fit %
$35932 27 43105 0 35 0.081
838417 189 39177 0 18 0.046
$38584 | 191 42013 0 16 0.038
bl7 536 66638 15 126 0.189

Table 1: Error masking by applying a 50-to-1 simple XOR tree

In Table 1, Column 2 lists the number of ATPG
patterns. Column 3 lists the number of detected faults
without using any compactor. Column 4 lists the number
of un-detected faults using the 50-to-1 XOR tree. Column
5 lists the number of faults which produce aliasing faulty
values in at least one test pattern. Column 6 lists the ratio
of the aliasing fault count to the total detected fault count
in percentage. The results indicate that only a very small
portion of faults can generate aliasing faulty values
(0.189\% at most), even though the compactor in use has a
high chance of error masking (50 chains to only one
output). Furthermore, those faults generating aliasing
faulty values on one pattern may not generate aliasing
faulty values on the other patterns. The results in Table 1
show that all aliasing faults can eventually be detected for
s35932, s38417, and s38584. Only 15 faults are
un-detected for b17. In summary, the fault coverage loss
due to error masking is trivial, if any, and thus is not a
major issue in designing a space compactor.

On the other hand, unknown-induced masking
influences the fault coverage more significantly than error
masking. When multiple unknowns go to a space
compactor, some responses may not be observed at all
due to unknown-induced masking, and the fault coverage
is directly proportional to the percentage of observable
responses. In this paper, we focus on optimizing the
percentage of observable responses with a given unknown
percentage. Therefore, our rules for constructing a
single-weight Xor matrix is different from the rules of the
X-Compactor, which requires an odd weight (number of
Xor gates each column) and a unique matrix column for
each chain. An odd weight and unique columns can
reduce the aiasing probability. However, it may not
aways be helpful in reducing the probability of
unknown-induced masking. For our Xor matrix, the
weight can be arbitrary and the matrix columns can be
identical.

3. Observable Percentage under Unknown- Induced
Masking

3.1 Mathematical Analysis

In this project, we use single-weight space compactors,
in which the number of Xor gates is identical for every
column of the Xor matrix. We first give the definition of
an observable response under unknown-induced masking.



A response (at an input of the space compactor) is
observable if the response can be propagated to at least
one output of the compactor whose fault-free value is not
unknown. If al outputs to which this response is
propagated are unknowns, then it is an unobservable
response. Figure 1 shows an exemplary X-Compactor
containing a 20-to-6 XOR matrix. Each scan chain in this
example is connected to 3 outputs through the XOR
matrix (i.e. weight of 3).

Output

Scanchan1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Figure 1: A 20-to-6 X-Compactor

In the following, we derive an equation to predict the
percentage of observable responses (called observable
percentage in the rest of the report). The input parameters
for calculating the observable percentage include the
number of scan chains S (i.e. the number of inputs of the
compactor), the number of outputs of the compactor M,
the weight of an XOR matrix W (i.e. the number of
outputs a response would propagate to), and the
probability that a scan-out response is an unknown p. The
observable percentage OP can be expressed by the
following equation. The derivation details are omitted
here.

¥ . (W)
OP=1-3 (- 1)) x(¥ )(pxpert+1- p)°
(W)

Table 2 compares the observable percentage predicted
by the derived equation with the simulation results, for
M=10, S=100, p=1%, and different weights (W). In all the
following simulations, we randomly generate unknowns
based on the percentage p, and then report the observable
percentage of 1-million samples. The average and
maximum errors reported in Table 2 are 0.35% and 0.56%,
respectively.

weight (W) 1 2 3 4 5 6 avg
predicted obs. % | 90.48 | 9522 | 95.52 | 94.44 | 92.30 | 88.99
simulated obs. % | 90.40 | 95.08 | 95.31 | 93.90 | 91.74 | 88.50
error 0.08 0.14 0.21 0.54 0.56 0.49 0.35

Table 2: Observable percentage with respect to different
weights (given 10 outputs, 100 chains, and 1% unknowns).

We further validate the accuracy of the derived
equation by varying other input parameters. In Table 3,

we tried different unknown percentages (p) and fixed the
other input parameters (M=10, S=100, W=3). The average
and maximum errors are 0.24% and 0.52%, respectively.
In Table 4, we tried different numbers of scan chains and
fixed the other input parameters. The average and
maximum errors are 0.37% and 0.47%, respectively.

unknown % (p) | 0.25% | 0.50% | 0.75% | 1.00% | 1.50% | 2.00% || avg.
predicted obs. % | 99.54 | 98.62 | 97.26 | 95.52 | 91.09 | 85.70
simulated obs. % | 99.49 | 98.51 97.10 | 95.31 90.73 | 85.18

error 0.05 0.11 0.16 0.21 0.36 0.52 0.24

Table 3: Observable percentage with respect to different
unknown percentages (p) (given 10 outputs, 100 chains, and
weight of 3).

chains (S) 100 200 300 400 500 600 avg.
predicted obs. % | 95.52 | 85.67 | 73.35 | 60.69 | 48.95 | 38.74
simulated obs. % | 95.31 | 85.36 | 73.01 | 60.25 | 48.48 | 38.30
error 0.21 0.31 0.34 0.44 0.47 0.44 0.37

Table 4: Observable percentage with respect to different
numbers of scan chains (S) (given 10 outputs, 1% unknowns,
and weight of 3).

3.2 Finding Maximal Compaction Ratio for a Desired
Observable Percentage

The above mathematical analysis enables an efficient
and effective prediction of the observable percentage. It
avoids a tedious, brute-force simulation. With this
equation, we can easily derive the observable percentage
for various configurations of an XOR matrix and further
construct a space compactor with a maximal compaction
ratio.

The input parameters of this construction procedure
are: (1) the number of ATE channels (outputs M) that can
be used to observe the scan-out responses, (2) the
unknown percentage among the responses (p), and (3) a
desired level of observable percentage (op). The goa of
this construction procedure is to find out the maximal
number of scan chains (S) and an optimal weight (W)
under which the observable percentage is higher than the
desired level (op). Note that we allow the use of identical
Xor columns. Therefore, there is no upper bound for the
number of supported scan chains as long as its observable
percentage can meet the desired level.

The search for the maximal number of scan chains and
optimal weight is straightforward. For each number of
scan chains, we just list the observable percentage with
respect to each possible weight (i.e. 1 to M/2), and then
choose the maximal number of scan chains along with a
weight which can achieve a higher observable percentage
than op. For example, given 8 outputs, 0.5% unknowns,
and a desired observable percentage of 90%, Table 5 lists
the predicted observable percentages of each weight for
different numbers of scan chains in units of 20.



Computing those predicted observable percentages takes
only seconds. As the table shows, the maximum number
of scan chains is 240 and the optimal weight is 2 for the
desired observable percentage of 90%. In a similar
manner, we can further continue the experiment to search
for amore specific number of scan chains within 240-260.

chains W=1 W=2 W=3 W=4
160 90.49 94.79 94.72 92.99
180 89.36 93.87 93.62 91.48
200 88.25 92.91 92.45 89.89
220 87.15 91.92 91.21 88.21
240 86.03 90.89 89.92 86.45
260 85.00 89.83 88.57 84.64
280 83.94 88.74 87.17 82.78

Table 5: Predicted observable percentage with respect to
different numbers of chains and weights, given M = 8 and p =
0.5%.

Maximizing the number of scan chains can reduce the
test data volume stored for the good-circuit results of the
space compactor. Also, it can shorten the test application
time because the length of the scan chains becomes
shorter. However, if thereis alimit on the number of scan
chains, we could connect multiple scan cells of a scan
chain to the compactor as shown in Figure 2. In this
triple-connection example, once the output result of the
compactor is observed by the ATE for one scan-out cycle,
the results for the next two scan-shift cycles will be
discarded. In this way, the test data volume can be
reduced although the time application time remains the
same.

uutputszl

¥or matrix

scan chains
Figure 2: Multiple connection of one scan chain
4, Observable Percentage vs. Test Quality

4.1 Fault Coverage and BCE for Different Observable
Per centages

The next question we attempt to answer is. how would
the observable percentage be related to the test quality?
As an attempt to make some observations before
answering this question, we conducted experiments on
four large ITC and ISCAS circuits (with more than 1000
flip-flops) to observe the trend of observable percentages
on the test quality. We used the same stuck-at-fault

patterns as those used in Table 1. The patterns were
generated by an industrial, in-house ATPG. We ran
stuck-at-fault simulation using these patterns and
randomly selected scan-out responses for observation
based on a given observable percentage. Table 6 lists the
stuck-at-fault coverage and the coverage loss for different
observable percentages. The definition of coverage lossis
the coverage of observing all responses (obs. %=1.0)
minus the coverage of the given observable percentage.
The results show that the coverage loss with respect to an
observable percentage is highly circuit-dependent. Using
the average to predict the coverage loss would result in a
significant error.

cki | obs.% [ 01 | 03 | 05 ] 07 | 09 [ 095 | 1.0

bl7 coverage | 74.74 | 84.93 | 88.57 | 90.50 | 91.62 | 91.84 | 92.04
cov. loss | 17.30 | 7.11 | 347 | 1.54 | 042 | 0.20 | 0.00

$35932 || coverage | 51.61 | 78.20 | 86.24 | 89.43 | 91.08 | 91.34 | 91.54
cov. loss [ 39.93 | 13.34 | 530 | 2.11 | 046 | 0.20 | 0.00

$38417 || coverage | 87.10 | 95.78 [ 97.73 | 98.80 | 99.29 | 99.46 | 99.53
cov. loss | 12.43 | 3.75 1.8 0.73 | 0.24 | 0.07 | 0.00

$38584 || coverage | 77.91 | 89.29 [ 93.22 | 95.07 | 96.06 | 96.29 | 96.44
cov. loss | 1853 | 7.15 | 322 | 1.37 | 038 | 0.15 | 0.00

avg. [[cov.loss [22.05] 7.84 [ 345 [ 1.44 [ 038 [ 0.16 | 0.00

Table 6: Stuck-at-fault coverage loss with respect to different
observable percentages.

We conducted similar experiments for another
important test quality metric, BCE [16], which quantifies
the impact of multiple-detection of the stuck-at faults and
can aso approximate the bridge-fault coverage. Table 7
lists the BCE's and the BCE loss for different observable
percentages. A similar trend was observed as in Table 7.
The BCE and the loss vary from circuit to circuit.
Therefore, we can conclude that the circuit and the test
patterns must be taken as input parameters for accurate
anaysis.

ckt ] obs.% [ O [ 03 | 05 [ 07 [ 09 [ 095 [ 1.0

b17 BCE 66.16 | 77.77 | 82.16 | 84.65 [ 86.23 | 86.56 | 86.86
BCEloss [ 20.70 [ 9.09 | 470 | 2.21 | 0.63 | 0.30 | 0.00

535932 BCE 32.88 | 61.49 | 74.08 | 80.50 | 84.59 | 85.32 | 86.00
BCEloss | 53.12 [ 24.51 [ 11.92 | 5.50 | 1.41 | 0.68 | 0.00

538417 BCE 77.76 | 89.96 | 92.87 | 94.40 [ 95.14 | 95.33 | 95.43
BCEloss | 17.67 | 547 | 256 | 1.03 | 0.29 | 0.10 | 0.00

538584 BCE 68.81 | 81.82 | 86.94 | 89.73 [ 91.43 | 91.77 | 92.06
BCEloss | 23.25 [ 10.24 | 5.12 | 2.33 | 0.63 | 0.29 | 0.00

avg. || cov.loss [28.69 [12.33] 6.08 | 2.77 [ 0.74 | 0.34 [ 0.00

Table 7. BCE loss with respect to different observable
percentages.

4.2 Prediction of Fault Coverage and BCE

In this sesson, we propose a onetime
fault-ssimulation-based method to predict both the
stuck-at-fault coverage and BCE for any given list of
observable percentages. The inputs to this prediction
method include a test set, the circuit, and a list of



observable percentages. The outputs are the predicted
fault coverage and BCE for each of the given observable
percentages in the list. In this prediction method, we first
fault-simulate the given pattern set assuming all responses
to be fully observable. During the fault simulation, we
compute two additional statistics for each fault. Oneis the
number of patterns that a fault f is detected by, denoted as
DNy. The other stetistic is the total number of outputs (i.e.

scan-out responses) that a fault can be propagated to, for
the whole pettern set. We denote it as ON¢ for fault f.

After the fault simulation, we calculate the fault coverage
and BCE for each observable percentage based on the
DNs and ON statistics.

Our equation for predicting fault coverage (denoted as
FC) of agiven observable percentage (op) is:
FC = % 8 [1- - op)™]

fTF
The definition of BCE givenin [16] is:
BCE=—+ a @-05")
F flF
where Nf isis the number of patterns detecting f and F
isthe set of total faults.

Our equation for predicting BCE of a given
observable percentage (op) is:

BCE =|i a [1- - 05%,)™"]
fiF
where
ON;

a, =1- (1- op)™

The derivation of above two prediction equations is
omitted here.

In Tables 8 and 9, we compare the predicted
stuck-at-fault coverages (prd. cov) and the predicted
BCE's (prd. BCE) with the simulation results (sim. cov
and sim. BCE). The results show that the average errors of
the stuck-at-fault coverage are 0.02%, 0.08%, 0.06%, and
0.03% respectively for the four circuits. The average
errors of the BCE are 0.14%, 0.08%, 0.14%, and 0.02%
respectively. These tables show the accuracy of the
proposed prediction scheme based on the above
equations.

ckt J[ obs.% [ 05 ] 06 [ 07 [ 08 [ 09 [ 0.95 [ avg

sim. cov. | 88.57 | 89.62 | 90.50 | 91.14 | 91.62 | 91.84
bl7 prd. cov. | 88.58 | 89.66 | 90.48 | 91.12 | 91.63 | 91.85
error 0.01 | 0.04 | 0.02 [ 0.02 [ 0.01 | 0.01 |0.02

sim. cov. | 86.24 | 88.01 | 89.43 | 90.39 | 91.08 | 91.34
$35932 || prd. cov. | 86.05 | 88.12 | 89.51 | 90.45 | 91.09 | 91.34
error 0.19 [ 0.I1 | 0.08 [ 0.06 | 0.01 | 0.00 | 0.08

sim. cov. | 97.73 | 98.37 [ 98.80 | 99.11 | 99.29 | 99.46
s38417 || prd. cov. | 97.87 | 98.44 | 98.85 | 99.14 [ 99.37 | 99.45
error 0.14 | 0.07 | 0.05 | 0.04 | 0.08 | 0.00 | 0.06

sim. cov. | 93.22 | 94.32 [ 95.07 | 95.62 | 96.06 | 6.29
$38584 || prd. cov. | 93.19 | 94.26 | 95.04 | 95.63 | 96.09 | 96.27
error 0.03 | 0.05 | 0.03 | 0.02 | 0.03 | 0.01 |0.03

Table 8: Comparison between the simulated coverage (sim.
cov.) and the predicted coverage (prd. cov.) for different
observable %.

cki ][ obs.% | 05 ] 06 [ 07 [ 08 | 09 | 095 [ avg
sim. BCE | 82.16 | 83.54 | 84.65 | 85.53 | 86.23 | 86.56
b17 |[prd. BCE | 82.46 | 83.79 | 84.75 | 85.60 | 86.29 | 86.59
error | 030 | 0.25 | 0.10 | 0.07 | 0.06 | 0.03 | 0.14
sim. BCE | 74.08 | 77.58 | 80.50 | 82.78 | 84.59 | 85.32
$35932 |[ prd. BCE | 73.90 | 77.71 | 80.59 | 82.82 | 84.59 | 8533
error | 0.18 | 0.13 | 0.09 | 0.04 | 0.00 | 0.01 | 0.08
sim. BCE | 92.87 | 93.76 | 94.40 | 94.84 [ 95.14 | 95.33
538417 || prd. BCE | 93.18 | 93.97 | 94.53 | 94.93 | 95.22 | 9533
error | 031 | 0.21 | 0.13 | 0.09 | 0.08 | 0.00 | 0.14
sim. BCE | 86.94 | 88.56 | 89.73 | 90.68 | 91.43 | 91.77
538584 || prd. BCE | 86.94 | 88.53 | 89.75 | 90.70 | 91.46 | 91.78
error | 0.00 | 0.03 | 0.02 | 0.02 | 0.03 | 0.01 | 0.02

Table 9: comparison between the simulated BCE (sim. cov.)
and the predicted BCE (prd. cov.) for different observable %.

Simulation for the BCE calculation takes longer than
the fault simulation for the coverage calculation. For the
BCE calculation, a fault cannot be dropped until the
number of detections exceeds a threshold when the
change of BCE resulting from any more detections of the
fault can be ignored. In the proposed prediction scheme,
we drop a fault with more stringent constraints because
we need to consider the accuracy of the BCE's for al op's
in the given list. In this case, the threshold of the number
of detections for fault-dropping depends on the predicted
BCE of the lowest op. Note that the most time-consuming
part of the proposed prediction scheme is fault simulation.
Calculating the predicted coverage and the BCE for each
op based on the above equations takes only a small
fraction of the total runtime. In Table 10, we list the
runtime of the original BCE calculation (a) and our
prediction scheme for 20 op's (b), and for 40 op's (c). The
lowest op in this experiment is 0.5. The results show that
the extra runtime required for the proposed prediction
scheme is quite low, in comparison with the origina BCE
calculation. Also, adding more op's in the list requires
little extra runtime. Please dso note that, we calculate
both the predicted stuck-at-fault coverage and the BCE
with one-time fault simulation. So the runtime reported in
Table 10 aready includes the runtime for stuck-at-fault
coverage prediction.



ckt original 20-op prd. 40-op prd. (b)-(a) (c)-(b)
(a) (b) (©)
b17 114.7 126.4 128.2 11.7 1.8
$35932 6.4 7.7 8.8 1.3 1.1
s38417 23.1 26.9 27.5 38 0.6
$38584 20.1 23.0 233 29 0.3

Table 10: Runtime comparison (in seconds) between original
BCE simutalion and our prediction scheme.

5. Construct Space Compactors with Desired Level of

Test Quality
In this section, we summarize the flow for

constructing an optimal space compactor. Given the

circuit, the structural test set, the number of available

ATE channels M for observing responses, and a desired

level of stuck-at-fault coverage or BCE (c_level), we

identify the configuration of the space compactor and the
number of scan chains based on the following steps:
a) Extract unknown percentage (xp) from the
responses of the test set using logic simulation.

b) List the predicted fault coverages and BCEs for
different observable percentages based on the test
set (asin Section 4.2).

c) Choose a desired observable percentage (op)
satisfying c_level.

d) Construct the compactor with a maximal number of
scan chains (max_c) based on given M, xp, and op
(asin Section 3.2).

€) Divide the scan cells into max_c chains or use the
multiple-connection scheme for each chain (as
discussed in Figure 3).

Z KW

In this project, we first shows that the error-masking
effect has little impact on fault coverage for designing a
space compactor. The effect of unknown-induced
masking is, in fact, the main concern. We propose an
analytical framework for predicting the percentage of
observable responses under unknown-induced masking
for a space compactor. This anaysis is aso valid for
clustered unknowns. Based on this anaysis, we can
efficiently construct a space compactor with a maximal
compaction ratio for achieving a desired level of
observable percentage. Furthermore, we propose a
simulation-based scheme to correlate an observable
percentage of responses to its fault coverage and BCE.
Enabled by this scheme, we can efficiently evaluate the
quality of a space compactor based on the test-quality
metrics such as fault coverage and BCE, instead of the
indirect test-quality metrics like the number of tolerated
unknowns or the aliasing probability.
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