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一、 中文摘要 

由於現代設計中掃描單位數量的劇增，掃描式測

試的測試資料量以及測試時間都急劇增加。為了要在

相同數目的 ATE通訊管道下縮減測試資料量與測試時
間，研發人員近年一直很積極地在尋找新的掃入資料

壓縮 (scan-in stimulus compression) 與掃出回應壓密 

(scan-out response compaction) 的解決方法。對於掃出
回應壓密而言，最大的困難點就是處理模擬結果中掃

出回應裡的未知值。如果沒有未知值存在，時間壓密

器 (例如Multiple Input Signature Registers) 可以將一組
無限長的輸入序列壓密成一組固定長度的簽證，而且

保證會有小到可以被忽略的同名機率。然而，只要掃

出回應中有一個未知值存在，整個預期中正確電路的

簽證就會變成未知，以致錯誤電路的簽證就沒有辦法

被識別出。因此，由於它的抗未知值特性，空間壓密

器也就變成掃出回應壓密的重要解法。 

在這個計畫中，我們首先會分析時間壓密器所產

生的遮蔽效應 (包含錯誤遮蔽以及未知值遮蔽) 。第
二，我們會嘗試著理論推導出各種不同時間壓密器結

構下各類遮蔽效應發生的機率。第三，我們會將各類

遮蔽效應發生的機率跟一個直接的測試品質度量做連

結，而非像以往的研究報告中與非直接測試品質度量

做連結。最後，我們會發展一套自動設計流程，在給

定最低可接受之測試品質與可用測試資源之下，來產

生最大壓密比率的空間壓密器。 

 
 
 
 
 
 
 

英文摘要 

The increasing number of scan cells in modern 
designs challenges the scan-based testing on both test data 
volume and test application time. In order to reduce the 
test data volume and test application time with the same 
number of ATE channels, researchers have been actively 
pursuing new solutions to scan-in stimulus compression 
and scan-out response compaction. For scan-out response 
compaction, the greatest barrier is the presence of 
unknown values (or unknowns) among simulated scan-out 
responses. If no unknown value exists, a time compactor, 
such as MISRs (Multiple Input Signature Registers), can 
compress an infinitely long output sequence into a 
fixed-length signature and guarantee a negligible aliasing 
probability. However, even one unknown in the scan-out 
responses would result in an unpredictable good-circuit 
signature for MISR, from which no faulty-circuit 
signature could be differentiated. Therefore, space 
compactors emerge to be an important solution to the 
scan-out response compaction due to its unknown-tolerant 
property.  

 
In this project, we will first analyze the masking 

effects (error masking and unknown- induced masking) 
caused by a space compactor. Second, we will attempt to 
mathematically derive the probabilities that each masking 
effect happens based on any given configuration of the 
space compactor. Third, we will correlate the above 
probabilities of the masking effects to a direct test-quality 
metrics (for example stuck-at fault coverage), instead of 
any indirect metrics such as number of tolerated 
unknowns in each scan-shift cycle (used in other previous 
work). Last, we will develop an automatic design flow for 
building a space compactor with maximal compaction 
ratio while achieving desired level of test quality based on 
given testing resources. 
 
 



二、計畫緣由、目的、研究方法與實驗結果 

1. Introduction 
The greatest barrier to effective test-response 

compaction is the presence of unknown values (or 
unknowns) among scan-out responses. If no unknown 
value exists, a time compactor, such as MISRs (Multiple 
Input Signature Registers), can compress an infinitely 
long output sequence into a fixed-length signature and 
guarantee a negligible aliasing probability. The method in 
[1] applies the concept of MISR for response compaction. 
However, even one unknown in the scan-out responses 
would result in an unpredictable good-circuit signature for 
MISR, from which no faulty-circuit signature could be 
differentiated. The methods in [2], [3] and [4] attempt to 
mask unknowns before they reach the time compactor. 
However, [2] and [3] require pattern-dependent circuitry 
and [4] requires a special ATPG to support its compaction 
scheme. Besides, they may mask some known scan-out 
responses in addition to unknowns. 

 
The selective compactors proposed in [5] and [6] 

select only the scan-out responses with faulty values for 
observation and hence avoid the masking effect due to 
unknowns. All other responses are discarded. However, 
an important assumption of structural testing is that the 
patterns for the target modeled faults could detect many 
un-modeled faults as well. Therefore, discarding a 
majority of scan-out responses would degrade the overall 
test quality.  

 
Another class of response compactors, called space 

compactors, allow unknown values feeding to the 
compactor but use an XOR matrix to reduce the 
probability that a response is masked by the unknown 
values [8] [9]. The methods proposed in [10] and [11] 
further use storage elements along with an XOR matrix to 
improve the compaction ratio and unknown tolerance. The 
methods proposed in [8], [9], [10] and [11] can guarantee 
some degree of error detection in the presence of one 
unknown. However, for high-ratio response compaction, a 
large number of responses will be processed by the space 
compactor, and hence the probability that more than one 
unknown concurrently appears at the inputs of the 
compactor is high. For such a multiple-unknown situation, 
some responses may become unobservable due to the 
masking of unknowns. Different configurations of a space 
compactor may result in different percentages of 
responses being observable. The method proposed in [12] 
analyzes this observable percentage for a special case of a 
convolutional compactor [11], which contains only one 
output. A tree-search-based approach proposed in [13] can 
calculate the observable percentage for a convolutional 
compactor. However, this tree-search-based approach 

may not be scalable for a large convolutional compactor. 
 
For the space compactors which can tolerate more 

than one unknown, the method proposed in [14] uses a 
binary linear code with Hamming distance d to detect a 
varying number of errors with a varying number of 
unknowns up to d-2. In [15], the authors propose a 
convolutional compactor which can guarantee a certain 
level of error detection if the total number of unknowns 
appearing during a period of scan-out cycles is below a 
target threshold. Due to a more restrictive construction 
rule in [14] and [15], the methods proposed in [14] and 
[15] result in limited compaction ratio. In addition, if the 
number of unknowns exceeds the target threshold, its 
percentage of observable responses remains unclear. 

 
More importantly, none of these space- compaction 

schemes can correlate its unknown- tolerant compaction 
to a test-quality metric such as fault coverage. 
One-unknown tolerance, multiple-unknown tolerance, or 
any error-masking probability is not a direct index to the 
coverage loss caused by the compactor. In fact, our 
experimental results indicate that this coverage loss is 
somewhat inversely proportional to the percentages of 
observable responses under unknown-induced masking 
for a given test set. Therefore, it is desirable to estimate 
the percentage of observable responses for a space 
compactor and then correlate this observable percentage 
to its coverage loss. In other words, we attempt to 
measure the quality of a space compactor based on the 
fault coverage or other test-quality metrics, not on the 
number of unknowns tolerated or other error-masking 
probabilities. 

 
In this project, we develop a design flow for 

constructing space compactors to achieve a desired level 
of test quality while maximizing compaction ratio. We 
first derive an equation to predict the observable 
percentage of scan-out responses for a given XOR matrix 
and unknown percentage. Based on this equation, we can 
efficiently build a space compactor to support a maximal 
number of scan chains and also observe a desired level of 
responses. Furthermore, for a given test set, we can 
predict the coverage of the target fault model and the BCE 
[16] for different observable percentages. Therefore, when 
designing a space compactor, we start from specifying a 
desired level of both target-fault coverage and BCE for a 
given test set. With this desired coverage, we can 
determine its corresponding percentage of observable 
responses. Last, we construct the space compactor with 
maximal compaction ratio to satisfy this observable 
percentage, and, in turn, satisfy the desired test quality (i.e. 
fault coverage and BCE). 

 



The rest of the report is organized as follows. In 
Section 2, we first show that the error masking (aliasing) 
barely affects fault coverage for a space compactor. The 
unknown-induced masking is the major concern for 
coverage loss. In Section 3, we describe a mathematical 
formula for predicting the percentage of observable 
responses under unknown-induced masking. We also 
show how to use this mathematical analysis to construct a 
space compactor with a maximal compaction ratio and a 
desired observable percentage. In Section 4, we propose a 
simulation-based scheme to predict the stuck-at-fault 
coverage and BCE for different observable percentages, 
so that we can correlate the observable percentage of a 
space compactor directly with the test quality. Section 5 
describes the flow of constructing an optimal space 
compactor based on a desired stuck-at-fault coverage or 
BCE coverage. 

 
2. Masking Effects of XOR Matrices 

Two types of masking effects may affect the fault 
detection for a space compactor. The first is error 
masking or so-called aliasing. Error- masking means that 
multiple error values cancel one another out through the 
XOR matrix and result in the same values as those of the 
fault-free circuit at the outputs of the space compactor. 
The second masking effect is unknown-induced masking. 
Unknown-induced masking occurs when a compacted 
output response in the fault-free circuit is infected by 
unknown values. Once the compacted output response of 
the fault-free circuit becomes unknown, it is impossible to 
differentiate any faulty response from this fault-free 
output response. 

 
In practice, error masking (aliasing) rarely affects the 

fault coverage. This is because few faults will propagate 
all of the faulty values to the space compactor in the same 
scan-shift cycle under a test pattern. Even if all of the 
faulty values arrive in the same scan-shift cycle, aliasing 
may not happen at every output. A fault is un-detected 
only if all its faulty values are aliasing at every output and 
for every test pattern. In Table 1, we show the results of 
using a simple XOR tree to compact the responses of 50 
scan chains into 1 output for four large ISCAS and ITC 
circuits. In this experiment, we generated ATPG patterns 
for stuck-at faults without applying any compaction 
scheme. Then we ran another stuck-at-fault simulation, 
applying a 50-to-1 XOR tree. No unknown values existed 
in this experiment. Therefore, the fault coverage loss (if 
any) is solely due to error-masking. 

 

 
Table 1: Error masking by applying a 50-to-1 simple XOR tree 

 
In Table 1, Column 2 lists the number of ATPG 

patterns. Column 3 lists the number of detected faults 
without using any compactor. Column 4 lists the number 
of un-detected faults using the 50-to-1 XOR tree. Column 
5 lists the number of faults which produce aliasing faulty 
values in at least one test pattern. Column 6 lists the ratio 
of the aliasing fault count to the total detected fault count 
in percentage. The results indicate that only a very small 
portion of faults can generate aliasing faulty values 
(0.189\% at most), even though the compactor in use has a 
high chance of error masking (50 chains to only one 
output). Furthermore, those faults generating aliasing 
faulty values on one pattern may not generate aliasing 
faulty values on the other patterns. The results in Table 1 
show that all aliasing faults can eventually be detected for 
s35932, s38417, and s38584. Only 15 faults are 
un-detected for b17. In summary, the fault coverage loss 
due to error masking is trivial, if any, and thus is not a 
major issue in designing a space compactor. 

 
On the other hand, unknown-induced masking 

influences the fault coverage more significantly than error 
masking. When multiple unknowns go to a space 
compactor, some responses may not be observed at all 
due to unknown-induced masking, and the fault coverage 
is directly proportional to the percentage of observable 
responses. In this paper, we focus on optimizing the 
percentage of observable responses with a given unknown 
percentage. Therefore, our rules for constructing a 
single-weight Xor matrix is different from the rules of the 
X-Compactor, which requires an odd weight (number of 
Xor gates each column) and a unique matrix column for 
each chain. An odd weight and unique columns can 
reduce the aliasing probability. However, it may not 
always be helpful in reducing the probability of 
unknown-induced masking. For our Xor matrix, the 
weight can be arbitrary and the matrix columns can be 
identical. 
 
3. Observable Percentage under Unknown- Induced 
Masking 
 
3.1 Mathematical Analysis 

In this project, we use single-weight space compactors, 
in which the number of Xor gates is identical for every 
column of the Xor matrix. We first give the definition of 
an observable response under unknown-induced masking. 



A response (at an input of the space compactor) is 
observable if the response can be propagated to at least 
one output of the compactor whose fault-free value is not 
unknown. If all outputs to which this response is 
propagated are unknowns, then it is an unobservable 
response. Figure 1 shows an exemplary X-Compactor 
containing a 20-to-6 XOR matrix. Each scan chain in this 
example is connected to 3 outputs through the XOR 
matrix (i.e. weight of 3). 

 

 Figure 1: A 20-to-6 X-Compactor 
 
In the following, we derive an equation to predict the 

percentage of observable responses (called observable 
percentage in the rest of the report). The input parameters 
for calculating the observable percentage include the 
number of scan chains S (i.e. the number of inputs of the 
compactor), the number of outputs of the compactor M, 
the weight of an XOR matrix W (i.e. the number of 
outputs a response would propagate to), and the 
probability that a scan-out response is an unknown p. The 
observable percentage OP can be expressed by the 
following equation. The derivation details are omitted 
here. 
 
 
 
 

Table 2 compares the observable percentage predicted 
by the derived equation with the simulation results, for 
M=10, S=100, p=1%, and different weights (W). In all the 
following simulations, we randomly generate unknowns 
based on the percentage p, and then report the observable 
percentage of 1-million samples. The average and 
maximum errors reported in Table 2 are 0.35% and 0.56%, 
respectively. 

 

 
Table 2: Observable percentage with respect to different 
weights (given 10 outputs, 100 chains, and 1% unknowns). 

 
We further validate the accuracy of the derived 

equation by varying other input parameters. In Table 3, 

we tried different unknown percentages (p) and fixed the 
other input parameters (M=10, S=100, W=3). The average 
and maximum errors are 0.24% and 0.52%, respectively. 
In Table 4, we tried different numbers of scan chains and 
fixed the other input parameters. The average and 
maximum errors are 0.37% and 0.47%, respectively. 
 

 
Table 3: Observable percentage with respect to different 
unknown percentages (p) (given 10 outputs, 100 chains, and 
weight of 3). 
 

 
Table 4: Observable percentage with respect to different 
numbers of scan chains (S) (given 10 outputs, 1% unknowns, 
and weight of 3). 
 
3.2 Finding Maximal Compaction Ratio for a Desired 
Observable Percentage 

The above mathematical analysis enables an efficient 
and effective prediction of the observable percentage. It 
avoids a tedious, brute-force simulation. With this 
equation, we can easily derive the observable percentage 
for various configurations of an XOR matrix and further 
construct a space compactor with a maximal compaction 
ratio. 

 
The input parameters of this construction procedure 

are: (1) the number of ATE channels (outputs M) that can 
be used to observe the scan-out responses, (2) the 
unknown percentage among the responses (p), and (3) a 
desired level of observable percentage (op). The goal of 
this construction procedure is to find out the maximal 
number of scan chains (S) and an optimal weight (W) 
under which the observable percentage is higher than the 
desired level (op). Note that we allow the use of identical 
Xor columns. Therefore, there is no upper bound for the 
number of supported scan chains as long as its observable 
percentage can meet the desired level. 

 
The search for the maximal number of scan chains and 

optimal weight is straightforward. For each number of 
scan chains, we just list the observable percentage with 
respect to each possible weight (i.e. 1 to M/2), and then 
choose the maximal number of scan chains along with a 
weight which can achieve a higher observable percentage 
than op. For example, given 8 outputs, 0.5% unknowns, 
and a desired observable percentage of 90%, Table 5 lists 
the predicted observable percentages of each weight for 
different numbers of scan chains in units of 20. 
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Computing those predicted observable percentages takes 
only seconds. As the table shows, the maximum number 
of scan chains is 240 and the optimal weight is 2 for the 
desired observable percentage of 90%. In a similar 
manner, we can further continue the experiment to search 
for a more specific number of scan chains within 240-260. 

 

 
Table 5: Predicted observable percentage with respect to 
different numbers of chains and weights, given M = 8 and p = 
0.5%. 

 
Maximizing the number of scan chains can reduce the 

test data volume stored for the good-circuit results of the 
space compactor. Also, it can shorten the test application 
time because the length of the scan chains becomes 
shorter. However, if there is a limit on the number of scan 
chains, we could connect multiple scan cells of a scan 
chain to the compactor as shown in Figure 2. In this 
triple-connection example, once the output result of the 
compactor is observed by the ATE for one scan-out cycle, 
the results for the next two scan-shift cycles will be 
discarded. In this way, the test data volume can be 
reduced although the time application time remains the 
same. 
 

 
Figure 2: Multiple connection of one scan chain 
 
4. Observable Percentage vs. Test Quality 
 
4.1 Fault Coverage and BCE for Different Observable 
Percentages 

The next question we attempt to answer is: how would 
the observable percentage be related to the test quality? 
As an attempt to make some observations before 
answering this question, we conducted experiments on 
four large ITC and ISCAS circuits (with more than 1000 
flip-flops) to observe the trend of observable percentages 
on the test quality. We used the same stuck-at-fault 

patterns as those used in Table 1. The patterns were 
generated by an industrial, in-house ATPG. We ran 
stuck-at-fault simulation using these patterns and 
randomly selected scan-out responses for observation 
based on a given observable percentage. Table 6 lists the 
stuck-at-fault coverage and the coverage loss for different 
observable percentages. The definition of coverage loss is 
the coverage of observing all responses (obs. %=1.0) 
minus the coverage of the given observable percentage. 
The results show that the coverage loss with respect to an 
observable percentage is highly circuit-dependent. Using 
the average to predict the coverage loss would result in a 
significant error. 
 

 
Table 6: Stuck-at-fault coverage loss with respect to different 
observable percentages. 
 

We conducted similar experiments for another 
important test quality metric, BCE [16], which quantifies 
the impact of multiple-detection of the stuck-at faults and 
can also approximate the bridge-fault coverage. Table 7 
lists the BCE's and the BCE loss for different observable 
percentages. A similar trend was observed as in Table 7. 
The BCE and the loss vary from circuit to circuit. 
Therefore, we can conclude that the circuit and the test 
patterns must be taken as input parameters for accurate 
analysis. 
 

 
Table 7: BCE loss with respect to different observable 
percentages. 
 
4.2 Prediction of Fault Coverage and BCE 

In this session, we propose a one-time 
fault-simulation-based method to predict both the 
stuck-at-fault coverage and BCE for any given list of 
observable percentages. The inputs to this prediction 
method include a test set, the circuit, and a list of 



observable percentages. The outputs are the predicted 
fault coverage and BCE for each of the given observable 
percentages in the list. In this prediction method, we first 
fault-simulate the given pattern set assuming all responses 
to be fully observable. During the fault simulation, we 
compute two additional statistics for each fault. One is the 
number of patterns that a fault f is detected by, denoted as 
DNf. The other statistic is the total number of outputs (i.e. 
scan-out responses) that a fault can be propagated to, for 
the whole pattern set. We denote it as ONf for fault f. 
After the fault simulation, we calculate the fault coverage 
and BCE for each observable percentage based on the 
DNf and ONf statistics. 

 
Our equation for predicting fault coverage (denoted as 

FC) of a given observable percentage (op) is: 
 
 
 

The definition of BCE given in [16] is:  
  
 
 

where Nf is is the number of patterns detecting f and F 
is the set of total faults.  
 

Our equation for predicting BCE of a given 
observable percentage (op) is:  
 
 
 

where 
 
 
 

The derivation of above two prediction equations is 
omitted here. 

 
In Tables 8 and 9, we compare the predicted 

stuck-at-fault coverages (prd. cov) and the predicted 
BCE's (prd. BCE) with the simulation results (sim. cov 
and sim. BCE). The results show that the average errors of 
the stuck-at-fault coverage are 0.02%, 0.08%, 0.06%, and 
0.03% respectively for the four circuits. The average 
errors of the BCE are 0.14%, 0.08%, 0.14%, and 0.02% 
respectively. These tables show the accuracy of the 
proposed prediction scheme based on the above 
equations. 
 

 
Table 8: Comparison between the simulated coverage (sim. 
cov.) and the predicted coverage (prd. cov.) for different 
observable %. 

 
Table 9: comparison between the simulated BCE (sim. cov.) 
and the predicted BCE (prd. cov.) for different observable %. 
 

Simulation for the BCE calculation takes longer than 
the fault simulation for the coverage calculation. For the 
BCE calculation, a fault cannot be dropped until the 
number of detections exceeds a threshold when the 
change of BCE resulting from any more detections of the 
fault can be ignored. In the proposed prediction scheme, 
we drop a fault with more stringent constraints because 
we need to consider the accuracy of the BCE's for all op's 
in the given list. In this case, the threshold of the number 
of detections for fault-dropping depends on the predicted 
BCE of the lowest op. Note that the most time-consuming 
part of the proposed prediction scheme is fault simulation. 
Calculating the predicted coverage and the BCE for each 
op based on the above equations takes only a small 
fraction of the total runtime. In Table 10, we list the 
runtime of the original BCE calculation (a) and our 
prediction scheme for 20 op's (b), and for 40 op's (c). The 
lowest op in this experiment is 0.5. The results show that 
the extra runtime required for the proposed prediction 
scheme is quite low, in comparison with the original BCE 
calculation. Also, adding more op's in the list requires 
little extra runtime. Please also note that, we calculate 
both the predicted stuck-at-fault coverage and the BCE 
with one-time fault simulation. So the runtime reported in 
Table 10 already includes the runtime for stuck-at-fault 
coverage prediction. 
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Table 10: Runtime comparison (in seconds) between original 
BCE simutalion and our prediction scheme. 
 
5. Construct Space Compactors with Desired Level of 
Test Quality 

In this section, we summarize the flow for 
constructing an optimal space compactor. Given the 
circuit, the structural test set, the number of available 
ATE channels M for observing responses, and a desired 
level of stuck-at-fault coverage or BCE (c_level), we 
identify the configuration of the space compactor and the 
number of scan chains based on the following steps: 
 

a) Extract unknown percentage (xp) from the 
responses of the test set using logic simulation. 

b) List the predicted fault coverages and BCEs for 
different observable percentages based on the test 
set (as in Section 4.2). 

c) Choose a desired observable percentage (op) 
satisfying c_level. 

d) Construct the compactor with a maximal number of 
scan chains (max_c) based on given M, xp, and op 
(as in Section 3.2). 

e) Divide the scan cells into max_c chains or use the 
multiple-connection scheme for each chain (as 
discussed in Figure 3). 

 
三、結論 

In this project, we first shows that the error-masking 
effect has little impact on fault coverage for designing a 
space compactor. The effect of unknown-induced 
masking is, in fact, the main concern. We propose an 
analytical framework for predicting the percentage of 
observable responses under unknown-induced masking 
for a space compactor. This analysis is also valid for 
clustered unknowns. Based on this analysis, we can 
efficiently construct a space compactor with a maximal 
compaction ratio for achieving a desired level of 
observable percentage. Furthermore, we propose a 
simulation-based scheme to correlate an observable 
percentage of responses to its fault coverage and BCE. 
Enabled by this scheme, we can efficiently evaluate the 
quality of a space compactor based on the test-quality 
metrics such as fault coverage and BCE, instead of the 
indirect test-quality metrics like the number of tolerated 
unknowns or the aliasing probability. 
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