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Development and Applications of Parallellized 2D and 3D Fluid Modeling
Codes for Atmospheric Pressure Plasma Jet (1 Years)
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Development and Applications of Parallellized 2D and 3D Fluid Modeling
Codes for Atmospheric Pressure Plasma Jet (1 Years)
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Abstract

Atmospheric Pressure Plasma Jet (APPJ)
represents one of the future important low-
temperature plasmas used in modern materials
processing. Its importance stems from its wide
applications, such as surface cleaning, dry etching,
sputtering and photoresistor stripping, in addition to
its low cost as compared to low-pressure plasmas.
Thus, fundamental understanding of the plasma
physics within APPJ is important in developing this
kind of processing equipment. In this proposed
research project, we intend to apply the fluid
modeling technique to simulate the atmospheric
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pressure plasma jet (APPJ), in which the INER is
currently interested. We shall employ the finite
element method (FEM) for all the PDEs involved in
describing the APPJ since it is more flexible both in
treating complicated geometry and parallel
implementation. Stabilized FEM shall be used to
discretize the continuity equation for all charged
species considering the large drift term in the sheath,
Considering the flat or round APPJ, in which INER is
interested, we will first develop a simulation code for
2D/axisymmetric coordinate system in the first phase
and then extend it into a 3D version in later phases to
deal with more realistic operating conditions. All
simulation codes will be parallelized under the AO
(Application Ordering) framework of PETSc.

In this proposed one-year project, we have
developed and verified a parallelized 1D and
2D/axisymmetric  fluid modeling code using
stabilized FEM. Note stabilized FEM is used to treat
plasma properties with large gradient, such as in the
sheath. Important assumptions include drift-diffusion
approximation for the momentum fluxes of charges
species and cross sections for evaluating transport
coefficients.

Keywords: two-dimenisional, Atmospheric Pressure
Plasma Jet, Stabilized FEM, Fluid Modeling.

I. INTRODUCTION

For the past two decades, studies in low-
temperature  (non-thermal) atmospheric-
pressure (AP) non-equilibrium plasmas have
attracted tremendous attention due to their
numerous emerging applications, including
electrostatic precipitation, ozone production,
electromagnetic reflection, absorption, and
phase shifts, plasma mitigation of the shock
waves in supersonic/hypersonic flows,



surface treatment, thin-film deposition,
chemical  decontamination,  biological
decontamination and medical applications,
to name a few[Becker ef al., 2004]. These
excited applications would not have been
possible were it not based on the extensive
basic research on the generation and
sustainment of relative large volumes of
non-thermal (“cold”) plasmas at atmospheric
pressure and relatively small input power.
Thus, fundamental understanding of the AP
plasmas using various kinds of gases
mixtures under different types of power
sources becomes very important in
optimizing the generation of cold plasma at
lower cost.

Several distinct features have made the
non-thermal AP plasmas very appealing in
practical applications. First, being thermally
non-equilibrium in these plasmas, second,
the use of atmospheric pressure increases the
opportunity of generating chemically active
species  (radicals) due to three-body
processes, such as excited dimmers and
trimers. Third, the use of atmospheric
pressure greatly reduces the operational cost
without the need of using sealed chamber,
vacuum pumps, which is very expensive in
procurement and maintenance. However,
generating plasma at atmospheric pressure
often requires very large applied voltage
which is very power-consuming. Thus, how
to effectively reduce the level of power
input becomes a critical issue.

In general there are several types of AP
plasma sources. They include DC and low-
frequency plasmas, and high-frequency AP
plasmas using radio frequency, microwave
or respectively pulsed power sources
[Becker et al., 2004]. Optimal use of various
kinds of AP plasmas requires the
fundamental  understanding of  fluid
mechanics, heat transfer, plasma chemistry,
plasma kinetics and interaction between
charged particles and electromagnetic field.
Due to its intrinsic complexity, most
researches are still based on exeperimental
observations, expect Kushners’s group,
which is necessary in efficiently optimizing
the performance in practical applications. In
Kushner’s group, both finite difference and
finite element methods have been used to

solve fluid modeling equations
[http://uigelz.ece.iastate.edu/GroupMembers
/KushnerMJ.html]. However, there are three
important numerical issues that remain
unsolved in plasma fluid modeling
technique. First, the model can be solved by
Newton-Krylov-Schwarz type scheme using

the inexact Newton iterative scheme
[Hwang, 2005]. Second, no three-
dimensional version of plasma fluid

modeling code is available. Third, there is
no scalable parallelized version of plasma
fluid modeling code. Based on the above
observations, there is a need to develop a
plasma fluid modeling code which includes
the following features: parallel processing,
fully coupled axisymmetric/three-
dimensional equation solver and flexibility
in treating complex geometry of objects.

II. BASIC GOVERNING EQUATIONS

In this section, we will describe the
governing equations, preliminary FEM
discretization, Newton-Krylov-Swartz (NKS)
scheme in turn. In addition, PETSc library
which is the backbone of the proposed
numerical solver will also be introduced
briefly for completeness.

Governing Equations

We consider an atmospheric plasma
system consisting of electron and ions. In
the following, variables with subscript e, p
represent properties for electron and ion
respectively. Note these coefficients for
charged species are all functions of E/P
alone, which is the well known local-field
approximation (LFA). In addition, all
momentum fluxes in the continuity
equations of charged species are modeled
based on drift-diffusion approximation. We
assume that thermal state of the electrons
can be described by a single electron
temperature 7,, while the heavy particles,
including ions are in thermal equilibrium
with a single temperature 7. In what follows,
we will describe all conservation equations
for charged and neutral species along with
the filed equation (Poisson’s equation)
describing the variation of electric field.



Continuity equations

Continuity equation for ion species p,
either positive or negative charge, can be
written as,

on, - -

o +V.I' =S, (1)
where

fp =—,upan—Dlﬁnp (1a)

S,=8,(n,n,a.) (1b)

Note the form of source term as shown in
eq. (1b) can be modified or added according
to the modeled reactions describing how ion
species p 1is generated or destroyed.
Boundary conditions at walls are applied
considering thermal diffusion flux and drift
diffusion flux.

Continuity equation for electron species e
can be written as,

a”ew-fezse 2)
Ot

where
I, =—unE—-DVn, (2a)
S,=8,(n,n,a.) (2b)

Similar to S,, the form of S, can also be
modified or added according to the modeled
reactions which generate or destroy the
electron. Boundary conditions at walls are
applied considering thermal diffusion flux
and drift diffusion flux.

Electron energy density equation

In this proposed research electron energy
density equation is solved. Electron kinetic

energy, defined as. _3 K,T,, can be written
e 2 e

as

0.3 = 5 5 = -
—(=KynT)+V- (=K, T,-—K;nDVT)=—eE-T',-S,1I,
G KT+ V-G KL~ KynDVT) =~k T =51,

€)

Note /, is the ionization energy of the

neutral species. On the right-hand side of the
energy equation, the terms in turn represent
the Ohmic heating, the loss of electron
energy due to ionization and energy transfer
to heavy particles due to elastic collisions,

respectively. Of course, energy loss due to
excitation can be modeled by adding a
source term to the right-hand side of energy
equation. However, it can be absorbed into
the first term of the right-hand side of
energy equation for simplicity as
demonstrated in Liau ef al., [2003] for argon
AP plasma. Boundary conditions for
electron energy at walls are applied
considering drift and thermal induced
energy transport.

Field equation

There are two field equations that are
required the proposed AP plasma fluid
modeling code, including Poisson’s equation
and Maxwell’s equation. In the present
project, at least the Poisson’s equation for
electrostatics is solved.

Poisson’s equation for electrostatics due to
boundary conditions and distribution of
charged density can be written as,

S e

VieE)=-—( > n,- 2 n) 4
0 pos.ions neg. ions

E=-Vg (5)

Note ¢ is the instantaneous electrostatic

potential.

III. NUMBERICAL METHOD

Continuity equations

Since all continuity equations for charged
particles are similar in format, only FEM
formulation for the electron species is
demonstrated here for brevity. In this
proposed research, we employ Galerkin-
Least Square (or stabilized) FEM [Donea
and Huerta, 2003] for discretizing all
unsteady convection-diffusion equations.
Consider eq. (2) with the mass flux replaced
by eq. (2a) as,

LW En-Dan=S,  (©
We define the residual of the continuity
equation as,

== wE-Vn,—DAn —S, (7
The form of Galerkin is,
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L} w;R=0 where w; = &Z )
The form of least-square is,
OR
IQ @, R=0 where o, = . )

1

Finally, we combine the above two terms by
adding them together with a stability
parameter 7 multiplying least-square eq. as
the following form.

_[Q(a)c % —Vay, - uEn+DN o, Vn,—aS,)
(10)

on, - =
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Note how the stability parameter 7 depends
on mobility, diffusity, convective speed and
grid size is described in detail in [Franca and
Valentin, 2000].

IV. RESULTS AND DISCUSSIONS

Initially, we have conducted a CCP test
case [Passchier and Goedheer, 1993] using
Galerkin FEM. Unfortunately, We find
running a case with 12,500 cells using 32
cpu in INER cluster needs more than 20
days. It is too time-consuming to be
practical. So we are currently including
stabilized FEM to reduce grid size that will
greatly decrease computational time.

We turned back to simulate a quasi-1D RF
(P = 0.5 torr, Vp,, =200 V, f=13.56MHz, L
= 2 cm) case using Galerkin/least-square
FEM and conducted different grid tests to
gain the suitable parameter.

The test grids show in Fig. (1) Gap length
is 2 cm. It is divided in turn by 40 to 800
grids. Fig. (2) - (4) shows the distribution of

electron number density using 7., Tgu
and z-me:a : Among z-Codina and z-Shakib can be

found in [Donea and Huerta, 2003]. From
the three figures, we can find 7.,

performs better in coarse grids than 7.

and 7g,,., -

Completed code was tested on a PC-cluster
system with processors up to 32. Results are
summarized in Table 1, which shows that

parallel efficiency of ~60% can be obtained
for 32 processors for the present problem
size.

V. CONCLUSIONS AND FUTURE
WORKS

In the current report, we have selected
suitable z for our stabilized FEM. Important
conclusions are summarized as follows:

1. The case using Galerkin method for very
dense mesh can converge properly, but it
takes too much time to be practical.
Tests including stabilized term show that
the use of 7, in stabilized FEM
performs the best..

3. Parallel efficiency can reach up to ~60%
with 32 processors.

(e

We are now continuing to search a
proper  stabilized parameter in 2D
axisymmetric case to increase computational
efficiency.
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Fig. 1 Sketch of grid tests.
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Fig. 3 Distribution of N, for 7, ., .
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Fig. 4 Distribution of N, for 7, .

1 2 4 16 32
Eff. 100 | 87.32 | 92.06 | 69.93 | 58.28
(Lu@E)/ | % | % % % %
Gmress)
Table 1. Parallel efficiency of the

parallelized FEM code. (Test grid size: 160
x 80 quadrilateral elements)



