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中文摘要 
 

噴射式大氣電漿源的特色為電漿可以從電極

噴出，電漿面極小，能量集中，處理效率高，沒

有 arcing 問題，應用效果是大氣電漿中最好的，

在工業的應用包括局部清潔及處理用途。因此，

對噴射式大氣電漿源(APPJ)有基礎的認識，在發

展設備上是很重要的。在本研究計畫中我門計劃

使用流體模式模擬噴射式大氣電漿，我門使用適

於處理複雜幾何與計算平行化的有限元素法(FEM)
離散求解 APPJ 的物理方程式。 

在提出的三年計畫中，在第一階段中我們首

先使用 Stabilized FEM 在 Fluid Modeling 的架構下

發展一套程式用以模擬二維/軸對稱座標系統，

Fluid Modeling 考慮帶電粒子的漂移-擴散傳輸，

使用 Stabilized FEM 處理如鞘層區電漿參數變化

較劇烈的地方。程式中重要假設包含利用 drift-
diffusion approximation 求解帶電粒子的動量通

量。所有的模擬程式將被平行化在 PETSc 的 AO
資料結構下。此後，程式可以再任何平行化的機

器上執行例如 PC clusters。 
 

關鍵字: 二維，噴射式大氣電漿(APPJ)，Stabilized 
FEM，流體模型。 

 
Abstract 

Atmospheric Pressure Plasma Jet (APPJ) 
represents one of the future important low-
temperature plasmas used in modern materials 
processing. Its importance stems from its wide 
applications, such as surface cleaning, dry etching, 
sputtering and photoresistor stripping, in addition to 
its low cost as compared to low-pressure plasmas. 
Thus, fundamental understanding of the plasma 
physics within APPJ is important in developing this 
kind of processing equipment. In this proposed 
research project, we intend to apply the fluid 
modeling technique to simulate the atmospheric 

pressure plasma jet (APPJ), in which the INER is 
currently interested. We shall employ the finite 
element method (FEM) for all the PDEs involved in 
describing the APPJ since it is more flexible both in 
treating complicated geometry and parallel 
implementation. Stabilized FEM shall be used to 
discretize the continuity equation for all charged 
species considering the large drift term in the sheath, 
Considering the flat or round APPJ, in which INER is 
interested, we will first develop a simulation code for 
2D/axisymmetric coordinate system in the first phase 
and then extend it into a 3D version in later phases to 
deal with more realistic operating conditions. All 
simulation codes will be parallelized under the AO 
(Application Ordering) framework of PETSc. 

In this proposed one-year project, we have 
developed and verified a parallelized 1D and  
2D/axisymmetric fluid modeling code using 
stabilized FEM. Note stabilized FEM is used to treat 
plasma properties with large gradient, such as in the 
sheath. Important assumptions include drift-diffusion 
approximation for the momentum fluxes of charges 
species and cross sections for evaluating transport 
coefficients.  

 
Keywords: two-dimenisional, Atmospheric Pressure 
Plasma Jet, Stabilized FEM, Fluid Modeling. 
 
I. INTRODUCTION  

For the past two decades, studies in low-
temperature (non-thermal) atmospheric-
pressure (AP) non-equilibrium plasmas have 
attracted tremendous attention due to their 
numerous emerging applications, including 
electrostatic precipitation, ozone production, 
electromagnetic reflection, absorption, and 
phase shifts, plasma mitigation of the shock 
waves in supersonic/hypersonic flows, 
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surface treatment, thin-film deposition, 
chemical decontamination, biological 
decontamination and medical applications, 
to name a few[Becker et al., 2004]. These 
excited applications would not have been 
possible were it not based on the extensive 
basic research on the generation and 
sustainment of relative large volumes of 
non-thermal (“cold”) plasmas at atmospheric 
pressure and relatively small input power. 
Thus, fundamental understanding of the AP 
plasmas using various kinds of gases 
mixtures under different types of power 
sources becomes very important in 
optimizing the generation of cold plasma at 
lower cost. 

Several distinct features have made the 
non-thermal AP plasmas very appealing in 
practical applications. First, being thermally 
non-equilibrium in these plasmas, second, 
the use of atmospheric pressure increases the 
opportunity of generating chemically active 
species (radicals) due to three-body 
processes, such as excited dimmers and 
trimers. Third, the use of atmospheric 
pressure greatly reduces the operational cost 
without the need of using sealed chamber, 
vacuum pumps, which is very expensive in 
procurement and maintenance. However, 
generating plasma at atmospheric pressure 
often requires very large applied voltage 
which is very power-consuming. Thus, how 
to effectively reduce the level of power 
input becomes a critical issue. 

In general there are several types of AP 
plasma sources. They include DC and low-
frequency plasmas, and high-frequency AP 
plasmas using radio frequency, microwave 
or respectively pulsed power sources 
[Becker et al., 2004]. Optimal use of various 
kinds of AP plasmas requires the 
fundamental understanding of fluid 
mechanics, heat transfer, plasma chemistry, 
plasma kinetics and interaction between 
charged particles and electromagnetic field. 
Due to its intrinsic complexity, most 
researches are still based on exeperimental 
observations, expect Kushners’s group, 
which is necessary in efficiently optimizing 
the performance in practical applications. In 
Kushner’s group, both finite difference and 
finite element methods have been used to 

solve fluid modeling equations 
[http://uigelz.ece.iastate.edu/GroupMembers
/KushnerMJ.html]. However, there are three 
important numerical issues that remain 
unsolved in plasma fluid modeling 
technique. First, the model can be solved by 
Newton-Krylov-Schwarz type scheme using 
the inexact Newton iterative scheme 
[Hwang, 2005]. Second, no three-
dimensional version of plasma fluid 
modeling code is available. Third, there is 
no scalable parallelized version of plasma 
fluid modeling code. Based on the above 
observations, there is a need to develop a 
plasma fluid modeling code which includes 
the following features: parallel processing, 
fully coupled axisymmetric/three-
dimensional equation solver and flexibility 
in treating complex geometry of objects. 

 
II. BASIC GOVERNING EQUATIONS 

 
In this section, we will describe the 

governing equations, preliminary FEM 
discretization, Newton-Krylov-Swartz (NKS) 
scheme in turn. In addition, PETSc library 
which is the backbone of the proposed 
numerical solver will also be introduced 
briefly for completeness. 

 
Governing Equations 
 

We consider an atmospheric plasma 
system consisting of electron and ions. In 
the following, variables with subscript e, p 
represent properties for electron and ion 
respectively. Note these coefficients for 
charged species are all functions of E/P 
alone, which is the well known local-field 
approximation (LFA). In addition, all 
momentum fluxes in the continuity 
equations of charged species are modeled 
based on drift-diffusion approximation. We 
assume that thermal state of the electrons 
can be described by a single electron 
temperature Te, while the heavy particles, 
including ions are in thermal equilibrium 
with a single temperature T. In what follows, 
we will describe all conservation equations 
for charged and neutral species along with 
the filed equation (Poisson’s equation) 
describing the variation of electric field. 



 4

 
Continuity equations 
 
    Continuity equation for ion species p, 
either positive or negative charge, can be 
written as, 

p
p p

n
S

t
∂

+∇ ⋅Γ =
∂

                      (1 ) 

where 
               p p p p pn E D nµΓ = − − ∇              (1a) 

( , , )p p e i izS S n n α=                     (1b) 
 Note the form of source term as shown in 
eq. (1b) can be modified or added according 
to the modeled reactions describing how ion 
species p is generated or destroyed. 
Boundary conditions at walls are applied 
considering thermal diffusion flux and drift 
diffusion flux. 

Continuity equation for electron species e 
can be written as,  

e
e e

n S
t

∂
+∇ ⋅Γ =

∂
                            (2 ) 

where 
e e e e en E D nµΓ = − − ∇                     (2a) 

 ( , , )e e e i izS S n n α=                         (2b) 
 
Similar to Sp, the form of Se can also be 
modified or added according to the modeled 
reactions which generate or destroy the 
electron. Boundary conditions at walls are 
applied considering thermal diffusion flux 
and drift diffusion flux. 
 
Electron energy density equation 
 
    In this proposed research electron energy 
density equation is solved. Electron kinetic 
energy, defined as 3

2e B eK Tε = , can be written 

as 
3 5 5( ) ( )
2 2 2B e e B e B e e e e e izK n T K T K n D T eE S I

t
∂

+∇⋅ − ∇ = − ⋅Γ −
∂

 

           (3) 
 
Note izI  is the ionization energy of the 
neutral species. On the right-hand side of the 
energy equation, the terms in turn represent 
the Ohmic heating, the loss of electron 
energy due to ionization and energy transfer 
to heavy particles due to elastic collisions, 

respectively. Of course, energy loss due to 
excitation can be modeled by adding a 
source term to the right-hand side of energy 
equation. However, it can be absorbed into 
the first term of the right-hand side of 
energy equation for simplicity as 
demonstrated in Liau et al., [2003] for argon 
AP plasma. Boundary conditions for 
electron energy at walls are applied 
considering drift and thermal induced 
energy transport. 
 
Field equation 
 
   There are two field equations that are 
required the proposed AP plasma fluid 
modeling code, including Poisson’s equation 
and Maxwell’s equation. In the present 
project, at least the Poisson’s equation for 
electrostatics is solved. 
   Poisson’s equation for electrostatics due to 
boundary conditions and distribution of 
charged density can be written as, 

. . 0

( ) ( )p e
pos ions neg ions

eE n nε
ε

∇ ⋅ = − −∑ ∑          (4) 

E ϕ= −∇             (5) 
Note ϕ  is the instantaneous electrostatic 
potential. 
 
III. NUMBERICAL METHOD 
 
Continuity equations 
 
    Since all continuity equations for charged 
particles are similar in format, only FEM 
formulation for the electron species is 
demonstrated here for brevity. In this 
proposed research, we employ Galerkin-
Least Square (or stabilized) FEM [Donea 
and Huerta, 2003] for discretizing all 
unsteady convection-diffusion equations. 
Consider eq. (2) with the mass flux replaced 
by eq. (2a) as, 

e
e e e e e

n E n D n S
t

µ∂
− ⋅∇ − ∆ =

∂
         (6) 

We define the residual of the continuity 
equation as, 

          e
e e e e e

nR E n D n S
t

µ∂
≡ − ⋅∇ − ∆ −
∂

      (7) 

The form of Galerkin is, 
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0G Rω
Ω

=∫   where  e
G

i

n
u

ω ∂
=
∂

          (8) 

 
The form of least-square is, 

0Ls Rω
Ω

=∫   where  Ls
i

R
u

ω ∂
=
∂

         (9) 

Finally, we combine the above two terms by 
adding them together with a stability 
parameter τ  multiplying least-square eq. as 
the following form. 
 
   ( )

( )

 ( )

e
G G e e e G e G e

e
Ls e e e e

G e Ls e G e e G e e

n En D n S
t
n E n D n
t

S S En D n

ω ω µ ω ω

τω µ

ω τω ω µ ω

Ω

Ω

Ω Ω Γ

∂
−∇ ⋅ + ∇ ⋅∇ −

∂
∂

+ − ⋅∇ − ∆
∂

= + − − − ∇

∫

∫

∫ ∫ ∫

      (10) 

 
Note how the stability parameter τ  depends 
on mobility, diffusity, convective speed and 
grid size is described in detail in [Franca and 
Valentin, 2000]. 
 
IV. RESULTS AND DISCUSSIONS 
 
    Initially, we have conducted a CCP test 

case [Passchier and Goedheer, 1993] using 
Galerkin FEM. Unfortunately, We find 
running a case with 12,500 cells using 32 
cpu in INER cluster needs more than 20 
days. It is too time-consuming to be 
practical. So we are currently including 
stabilized FEM to reduce grid size that will 
greatly decrease computational time. 
 We turned back to simulate a quasi-1D RF 

(P = 0.5 torr, Vpp = 200 V, f = 13.56MHz, L 
= 2 cm) case using Galerkin/least-square 
FEM and conducted different grid tests to 
gain the suitable parameter. 
 The test grids show in Fig. (1) Gap length 

is 2 cm. It is divided in turn by 40 to 800 
grids. Fig. (2) - (4) shows the distribution of 
electron number density using Codinaτ , Shakibτ  
and Francaτ . Among Codinaτ and Shakibτ can be 
found in [Donea and Huerta, 2003]. From 
the three figures, we can find Codinaτ  
performs better in coarse grids than Francaτ  
and Shakibτ . 
Completed code was tested on a PC-cluster 

system with processors up to 32. Results are 
summarized in Table 1, which shows that 

parallel efficiency of ~60% can be obtained 
for 32 processors for the present problem 
size. 
 
V. CONCLUSIONS AND FUTURE 

WORKS 
 
 In the current report, we have selected 
suitableτ  for our stabilized FEM. Important 
conclusions are summarized as follows: 
1. The case using Galerkin method for very      

dense mesh can converge properly, but it 
takes too much time to be practical. 

2. Tests including stabilized term show that 
the use of Codinaτ  in stabilized FEM 
performs the best.. 

3. Parallel efficiency can reach up to ~60% 
with 32 processors. 
 
We are now continuing to search a 

proper stabilized parameter in 2D 
axisymmetric case to increase computational 
efficiency.  
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Fig. 1 Sketch of grid tests. 
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Fig. 2 Distribution of Ne for Codinaτ . 
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Fig. 3 Distribution of Ne for Shakibτ . 
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Fig. 4 Distribution of Ne for Francaτ  
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Table 1. Parallel efficiency of the 
parallelized FEM code. (Test grid size: 160 
x 80 quadrilateral elements) 
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