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ACCIDENT CHAIN AND CAUSALITY ANALYSIS

Student: Yi-Shih Chung Advisor: Dr. Jifsai Wong

Institute of Traffic and Transportation
National Chiao Tung University

Abstract

Analyzing accident causality has been one of theymeays to enhance traffic safety.
The objective of this research was to explore douting factors and accident causality by
utilizing crash databases with mature methodologie$ powerful computational powers
from chain perspective. Rough sets theory was &doipt this research to obtain accident
chains from cross-sectional databases. This theoldvantageous due to its ability to
simultaneously control numerous factors, whicheaflthe fact that the occurrence of
accidents results from complex interactions of maytributing factors. The other
advantage is that rough set rules are generatecbimparing the individual differences,
which would partially alleviate the issue of aggBgn bias.

Three studies were conducted based on the conteptinlent chains. The first study
was to assess the ability of rough sets theoryxmlaming the underlying process of
accident occurrence and in demonstrating accidésatins by systematically loading
combinations of condition attributes into roughss&econd, the issue of data heterogeneity
was examined from chain perspective by groupingdaats with the occurring frequency
of rules. Finally, accident causality was addressedomparing individual rules in pairs.

Taiwan's crash databases were adopted in the esalpistudy, where single
auto-vehicle (SAV) accidents were chosen as thgesulbo analysis. It was found that
lower/upper approximation, accuracy of approximatiquality of approximation, number
of generated rules, and hit rates could effectialgress the differences between accident
types. The occurrence of crashes with facility nfajow similar paths and is more
predictable; these crashes have some similarigasden the crashes with architecture, with
facility, off-road and rollover types. Moreovergsificantly different features were shown
between frequently repeated and sparsely uniques.rdlhe former rules linked to the
characteristics of high-risk drivers shown in petsidies while the latter was connected with
poor road conditions. Providing better road envinent has been considered as an effective
way to improve traffic safety; however, better reambuld encourage high-risk drivers to
raise their driving speeds. Furthermore, insteadref single factor the combinations of
unfavorable factors were found to be the causealrigdo fatal accidents. If one or several
undesired factors were removed from the chaindaotiseverity might be reduced.

The proposed approaches in the research provideyaavanalyze accidents closer to



the essence of accident occurrence. Meanwhileg thpproaches also provide alternative
ways to alleviate issues often seen in safety reBesaich as aggregation bias, heterogeneity
of accident data, confounding factors, and so dwes& approaches can be expanded based
on analysts' on-hand data and their understanditeyget subjects.

Keywords: Accident Chain, Traffic Safety, Rough Sets, Agattezn Bias, Heterogeneity
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Chapter 1 INTRODUCTION

The chapter consists of four sections. Sectionatildressed the principal concept on
analyzing accident characteristics and causalitythis study. The research problems,
objectives, and framework were introduced in Secli®, 1.3, and 1.4, respectively.

1.1 Accident Causality Analysis from Chain Perspecte

Exploring the causality of accidents is what tramggtion professionals and others
have devoted themselves to. Understanding the ldgustaccidents can help us to know
not only how accidents occur but also the possidgs to avoid accidents. To improve
traffic safety, apprehending only correlations & enough. Moreover, knowing distorted
causal facts is even more dangerous. For exant@enstallation of street lights had been
believed to increase safety, but it has been welwn that the installation could result in
higher driving speeds and may lead to more accddglvik, 2004). Therefore,
understanding the causality of accident occurrentbe best and may be the only way to
effectively manage traffic safety.

The causes of an accident have usually been dedcwiith the closest-to-accident
factors. Researchers, however, have tended to znalgcidents in a more thorough
perspective — looking into not only an acciderglitbut also the activities and factors prior
to and subsequent to the accident. Some accidests fwund to be preventable not by
correcting driving behaviors but by adjusting babes prior to driving (Ebyet al, 2000;
Simoes, 2003). In other words, an accident mayrbegmted if one or more undesirable
elements during in process were removed (BakeRars$, 1961; Fleury and Brenac, 2001,
Reason, 1997). Therefore, analyzing and preverdswdents from the chain perspective
becomes an alternative approach to understandoideant causality.

Analyzing accidents via the chain concept shoulddben along with two elements:
the consideration of multiple factors and the #&pito make causal inference between
factors. The consideration of multiple factorseets the fact that the generating process of
accidents is complicated. Unless all importantdestare accounted for, the confounding
effects would bias the estimation results (Elvik02). As for the relationships between
factors and accident consequences, there shouwd dieectional connections to show their
causality. In short, the consideration of multifdetors and the causal relationship between
factors are the two required elements in implemgntiraffic accident analyses and
preventions from the chain perspective.

There have been two types of related researchafiay to such an idea. One of them
pre-specifies the contents of chains. The conteinés accident chain include contributing



factors and accident outcomes. For example, ER@OB) proposed to use a causal chain
approach to reduce possible confounding effectssafiety countermeasure evaluation
studies. The approach was named a causal approaehtise causality between factors and
accident consequences was designated by profelssammitreated as a true causality prior
to data exploration. The sequence of factors wasnpol a logical and temporal order; the
strength of links between factors was then estichatdth data. Such an analysis is
particularly useful to evaluate the effectivenessafety countermeasures related to road
improvement since engineering improvement usualliows physical laws; accordingly
causal relationships between factors are concfée second type of research is to explore
possible chains from data; the plausibility of polescausality is then judged. The causal
chains derived from this approach are not limited the evaluation of safety
countermeasures. Instead, all possible causal £hairan accident database could be
explored. For example, Chang and Wang (2006) adapie classification and regression
tree technique in analyzing the traffic injury setyein Taiwan. The population and
conditions with higher risks of being injured waentified by observing the derived trees.
Research adopting this approach usually interptie¢s outcomes from the correlation
perspective rather than the causality perspectiwe;logical and temporal orders in the
generating process of accidents are not alwayso#xpl

Three opportunities appear gradually providing thetential to overcome the
aforementioned shortcomings, which include the b®og comprehensive accident
databases in Taiwan, powerful computational capisil and mature methodologies. The
accident databases in Taiwan have been built andtaieed by National Police Agency,
Ministry of the Interior. Although not as complets Fatality Analysis Reporting System
(FARS, the accident database of United States)r aftveral revisions and improvements,
the current Taiwan accident databases provide sonmortant factors for analyses.
Moreover, the Al and data mining methodologies haeen growing in recent years.
Although some techniques are black-box types, ethee easier to understand and have
good performance as well. In addition, the evolutcd computational power provides the
opportunity to calibrate parameters with complesfs. Grabbing these opportunities may
provide the potential to explore accident causdtibyn cross-sectional databases and thus
motivate this research.

1.2 Research Problems

Learning accident patterns is one of the many waydemonstrate accident chains.
Different accident cases could be represented aWitbrent contributing factors, interactive
relationships, and activity chains. However, pddagling to an accident are countless and



complicated if all details are concerned; it woldd technically impossible to analyze
accidents in such a detail. A compromise way ilassify data based on either prior
knowledge or on statistical information extracteohi data, which is called a pattern. An
accident pattern describes a typical condition ofident occurrence such as driver
characteristics, vehicle types, weather conditiams road conditions. When similar
conditions occur, similar accident consequenceddvoel expected.

The first problem this research desired to addness whether those accident patterns
significantly exist or accidents just occur withquatterns. If accident patterns significantly
exist, how their characteristics could be explovsctident patterns are expected to consist
of most important factors in accident occurreneejtsmight be possible to identify the
causes of accidents and quantify them.

All in all, this research was trying to explore @ent causality by examining the
following problems in sequence:

® Do accident patterns significantly exist?
® |f yes, what are their characteristics?

® Can the corresponding causes and generating pescessidentified, quantified and
analyzed?

1.3 Research Objectives
There were two primary objectives in this research:

1. Propose an approach for identifying accident pasterand exploring their
characteristics:
The approach proposed in this research was aimedlimonate the effects of
confounding factors and reveal individual differescof accidents. Given this
objective, two types of methodologies were employ®tde was the classification
methodology which was adopted to eliminate the @onding factors among entities.
The second one was statistical methodologies inmgjudiescriptive statistics and
regression-type technigues. They were adopted pioex the characteristics of the
derived accident patterns.

2. Propose an approach for examining accident caysalit
Accident patterns represent accident chains, amilextt chains demonstrate the
circumstances under which accidents occur. The nseabjective was aimed to
examine accident causality based on the deriveddexticpatterns.



1.4 Research Framework

Given the objectives, the research framework wlastrated in Figure 1-1. Prior to
analyzing accidents, framework of driving safetyswauilt up as the basis to select
appropriate contributing factors, to develop suéapproaches, and to judge the validity of
derived accident patterns. Meanwhile, the connastiamong accident data, accident
analyses, and countermeasure development weresgestto help define the research scope.
Three studies were then conducted based on theagevef data. The first one was a
generalized two-step approach for exploring acgidbaracteristics from chain perspective.
Based on this, the second study was undertakeanfmyzing the heterogeneity of accident
data, a phenomenon usually shown on accident dgcrlly on cross-section data. The
third study was conducted to examine accident diyiday comparing rules in pairs.
Empirical studies were presented in the followihgmter. The related issues were discussed
in Chapter 5 and the conclusions and recommendati@ne drawn in Chapter 6.
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Chapter 2 CONCEPTUAL FRAMEWORK OF DRIVING SAFETY

The aim of this chapter was to build a conceptuaméwork which explains the
generating process of accidents from chain persgecthe necessity and advantages of
applying the chain concept on analyzing and prengraccidents were revealed from the
built framework.

2.1 Coverage of Driving Safety

There has been some research proposing framewadksnadels to explain driving
behavior and its connections between accidents. ¢fethem were built from the chain
perspective but focused on a certain issue (EIRBO3; Juarezet al, 2007); others
interpreted driving behaviors yet usually put moftheir attentions merely on the driving
stage (Fuller, 2005; Sumer, 2003; Wilde, 2001).tHis study, some of the cases were
extended and integrated as a more general con¢éatoework of driving safety.

To understand the causes of an accident, analymhgthe behaviors at the driving
stage is not enough. Juaret al. (2007), for example, proposed a multilevel model t
prevent death among minority young drivers from anotehicle crashes. They suggested
that effective prevention should cover the wholé&/idg processes instead of focusing
merely on the driving stage. The whole driving @sg includes the prior-to-driving
environment factors, the driving behaviors, and thash outcomes. In particular, the
prior-to-driving environment factors are those whimay affect the young driver’s choice
on seat belt use or vehicle choice. Fleury and @&ref2001) also suggested analyzing
accidents through looking into the whole drivingopess. They proposed to analyze
accidents at five stages: the situation prior teinly, the driving situation, the discontinuity
situation, the emergency situation, and the colffissituation. The conditions of one stage
are affected by its previous stage and affectutsaequent stage. Both researches indicate
that driving behaviors as well as the occurrencerashes should not be fully determined
by local factors, i.e. only factors at the drivisijgge. Consequently, the construction of the
chain framework should be built first from the faxg prior to driving until the factors
representing the end of the event.

Numerous factors are involved in the chain. Sonsearch proposed to explicitly
partition them into several stages such as FlendyBrenac (2001); other research, however,
such as Juarezt al. (2007) and Sumer (2003) who presented a contertadiated model
which divided factors into distal and proximal cextt did not. Fleury and Brenac (2001)
proposed to divide factors into a distinctive fatages since their approach was proposed to
conduct an in-depth study; therefore, detailedraqdired information for each stage would
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be collected. On the other hand, Stiimer’s appro2@3) was to analyze the relationship
among personality, driving behaviors, and accidedirsce the focus was put on linking the
connections between psychological factors and tiegudiriving behaviors, only two levels
of connections were represented (i.e. the connedigtween psychological factors and
driving behaviors, and the connection between behavand accident outcomes) although
psychological factors could affect the activitieopto driving and then affect the driving
behaviors. In brief, the partitions of factors @adhe chain should depend on the available
data and the purposes of the analyses. Nonethéhess)earer sequential connections are
the factors, the more solid the results.

It is assumed that our proposed framework is tadbepted in the research with an
accident database. An accident database usuallsisterof three types of data: person,
vehicle, and accident characteristics. Althoughdtguences for all factors can not be fully
determined, a rough partition can be achieved. &@mple, mode choice must be made
prior to driving. Therefore, the numerous factorsyided by an accident database can be
divided at least four stages: prior to drivingvarg, incidents or accidents, and rescue.

2.2 Construction of Driving Safety Framework

At the prior-to-driving stage, the decision of thip characteristics is the critical factor,
affecting safety-related trip characteristics likden to drive, which route to take, or
whether to take passengers or not — should be dmresi. Elder drivers, for example, are
found to develop more driving strategies than ystexg (Ebyet al, 2000; Simoes, 2003).
The strategies include not driving after dark, Egoing on freeways, driving only in
familiar areas, planning routes where protectedtighs can be made and driving with a
co-pilot; all of which fit to compensate their ploga impairment (Ebyet al, 2000; Simoes,
2003). Therefore, the age factor should be reptedeat this stage. With similar deduction,
numerous factors can be found at the prior to migistage. To organize these factors, the
multilevel model proposed by Juaret al. (2007) is adopted and modified. The trip
characteristics are mainly determined by four sétctors: driver characteristics, vehicle
characteristics, local laws and enforcement, asdgrager characteristics. Of which, driver
characteristics are further affected by social extntnational/regional culture, family, and
peers; driver and vehicle characteristics are hattmer affected by public polices such as
driver education and the required safety equipmerte necessity of these factors at the
driving stage has been declared by Juated. (2007).

The relationships between factors at the driviegestand those at the incident/accident
stage have been intensively studied. Some reséacubed on analyzing individual driving
behaviors with respect to behavioral or socialrsms such as Wilde (2001), Stmer (2003)

6



and Fuller (2005); other research put the focumeasuring the effects of particular factors
on accidents such as traffic flow, surface condgjoenforcement, etc. Although the
involved factors are numerous, they can be roughiyded into three types: driver
characteristics, vehicle characteristics, and emvirent factors (Kimet al, 1995). To
simplify our framework, all the factors at the dniy and the incident/accident stages are
represented in these three sets. Of which, thec@mwient factors are further divided into
local driving conditions, such as traffic, weathdight and enforcement, and the
transportation infrastructure, such as the setfigpeed limit, stop signs, surface condition,
etc.

The last stage goes to the rescue stage. The daattdhis stage are rarely discussed.
The focus would be put on the response of emergsaciyce. Detailed discussions will be
given in the subsequent chapter.

All the factors and relationships are illustratesl ia Figure 2-1. The proposed
framework is constructed in two dimensions: theetidimension, and the factor interaction
dimension. This framework represents that the gecge of accidents is dynamic, and the
factors are interacted at each stage. Moreover, hodes (three dotted circles and one
dotted star labeled “Crash”) are drawn to collbet éffect of the interactions resulted from
the aforementioned factors. The last dotted staresents the accident outcomes resulted
from the accident chain. In addition, the dottea Iconnecting the five dotted nodes imply
that the effects conducted at one stage would aglatenand affect the subsequent stages
either immediately, intermediately, or in a longirdn addition to the age factor, another
example regarding the vehicle’s characteristichatprior-to-driving stage is the choice of
cars. It is clear that the choice of cars woul@etfthe driving behavior at the driving stage
in terms of, for instance, whether the driver imilaar with the car, and also affects the
accident severity at the accident and rescue steigems of, for instance, the compatibility
of collided vehicles. Obviously, with the propostdmework, the accident generating
processes can be more correctly identified andpreéed. Thus, research results based on
the framework should be more convincing.
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FIGURE 2-1 Conceptual framework of driving safety.

2.3 Risk Factors

Numerous factors have been studied for their geighip with accidents which are not
possible to give a complete discussion in a stutly limited length. Therefore, no attempt
is made to provide a complete coverage of all pbssisk factors. Instead, the aim is to
introduce the representative factors and orgahemtat stages in the proposed framework.

2.3.1 Prior to Driving

Drivers are going to decide their driving planfaststage including which route to go,
which vehicle to use, what time to start the tapd expected time to end the trip. These
decisions are usually affected by the driver cheratics, vehicle characteristics, passenger
characteristics, local laws, and enforcement.

Of the interactions between these factors, studiladed to driver characteristics have
grabbed most attentions. For example, different grgeips would show different decision
characteristics. Older drivers would like to deyestrategies such as stopping night driving
or finding co-pilots to compensate their decliniagility to cope with complex traffic
situations (Ebyet al, 2000; Simoes, 2003). Yet, young drivers were ¢uelating to
alcohol use and seat belt nonuse which would likin¢rease the accident risks (Ferguson,
1996).



Different enforcement schemes would also affecttiner’s decisions on making trips.
Mountainet al. (2005) claimed that speed management schemedfeatraute choice and
this can have a significant effect on accidentfiwithe scheme.

For policy factors, the licensing procedures haaeiqularly significant impacts on
trip decisions. The licensing procedures for youlmyers are concerned since their
immature driving skills and they tend to seek riskke effect of restrain the licensing
procedures for young drivers, such as delayingilpge licensure, imposing night driving
curfews, and extending periods of supervised madaif driving, have been found positive
effect in many areas (Ulmet al, 2000). Therefore, different policy settings woaliflect
the amount of traffic exposure and the way showipgon roads for different types of
drivers.

2.3.2 Driving
1. Relationships between factors and accidents

The risk factors related to the driver charactesstvehicle characteristics, and
passenger characteristics are the first three edast factors introduced, followed by the
factors related to local laws, enforcement, andcgol

® Driver Characteristics

Many factors related to driver characteristiase been considered as connecting
to crashes. The socio-demographic factors have Heermost intensively studied
factors. Of which, age and gender are the two factehich have been particularly
extensively studied. Younger drivers are argued htve high rates of crash
involvement due to inexperience in assessing traffuations. The over-representation
in accidents for young drivers is partly due to tlaek of driving experience
(Williamson, 2003); another possibility attributée young drivers’ risk-taking
behavior (Murray, 1997). Yagil (1998) surveyed G88le drivers in the Israeli army
with questionnaire; he found that young driversmgee likely to violate the law than
older drivers either from instrumental motives (suas perceived danger of
punishment from violations) or from normative mesv(such as a sense of obligation
to obey the law).

As for the gender factor, some literatures ttmat male drivers have higher
accident rates and result in severer accidentsfdraale drivers do. Male drivers tend
to be involved in fatal accidents since their riaking behaviors and attitudes; such
behaviors include speeding and alcohol consumpt@n. the contrary, accidents
related to female drivers are usually nonfatal @utheir immature skills (Masset al,



1995, 1997; Laapotat al, 1998). While these observations for male driverge been
consistent in decades, those for female driverslatdted because of a continuously
increasing number of license holders and higheosxye on roads for female drivers
than before (Kim, 1995; Forwaet al, 1998 and McKennat al, 1998). Laapottet al.
(2004) claimed that generally, male drivers ar& sseking while female drivers are
risk aversion. Moreover, the immaturity in drivisgills for female drivers directly
relates to possibility and types of accidents aitiothe skill differences between male
and female drivers may have declined.

In addition to socio-demographic factors, fastsuch as psychological and
situational factors would affect the occurrence andsequence of accidents as well.
Psychological characteristics are very crucial risk-taking preference and relate to
traffic accidents. With observational studies, p®Jogical characteristics are found
significantly related to drivers’ socio-demograpHiactors. Mizell (1997) found the
majority of aggressive drivers are relatively youpgorly educated males who have
criminal records, histories of violence, and aldopmblems. Shinar and Compton
(2004) also found that men were more likely tharm&a to commit aggressive actions.
Furthermore, drivers’ psychological characteristics significant to accidents as well.
Beirness et al. (1993) found that the crash-group display a lowgrde of
self-confidence than the non-crash group; Gulgnal. (1989) found that poor
self-esteem and high hostility formed a particyldéethal combination.

Situational factors include transient factorsd gpersonal habits. The former
indicates the factors that may increase risk couting to states of fatigue, distraction,
irritability, and self-doubt (Norriet al, 2000) while the latter refers to personal life
habits affecting the occurrence of accidents swcliranking habits. Moskowitz and
Fiorentino (2000) found that the impairment resiilttom alcohol consumption
include divided attention, drowsiness, decreasiigglance, increasing reaction time,
etc. Most of the studies found that male or youndewrers have significant
relationship with alcohol-related accidents (Hamis1997; Abdel-Atyet al, 2000;
Keall et al, 2005). As for the fatigue factor, it contributescidents by deteriorating
drivers’ alertness, by impairing their judgment,daby slowing their reactions
(Lyznicki et al, 1998). As reviewed by Stutet al. (2003), drivers’ sleep habits and
work pattern have been found significantly relate@ccidents. Night or rotating shift
workers and commercial vehicle operators have fogmit relationships with accidents.
Unlike the alcohol and fatigue factors, there i shcertainty for the contribution of
drugs and illness to accidents (Drumraeal, 2004; Hansotiat al, 1991).

Vehicle characteristics
In the past, most concerns have been put ometh&onships between accident
severity and vehicle types as well as the proteciquipments. Elvilet al. (1997)
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found that the overall injury accident rate of heaehicles is nearly the same as for
passenger cars, but accidents involving heavy leshioore often result in fatalities or
serious injuries than accidents involving passencgs only. Three fundamental
differences between heavy vehicles and passengeracafound by Abdel-Aty (2004)
including: mass incompatibility, stiffness incompdity, and geometric
incompatibility. In particular, the geometry incoatjbility, i.e. the imbalance in ride
height, would cause significant impact while thdlision type is on the frontal (sight
reduction) or side (intrusion into smaller vehigles

Advanced safety vehicle (ASV) has recently leeoa popular way to avoid
accidents. Of which, the installation of intelligetmiving support systems aims to help
drivers recognize the road environment correctlgrrwdrivers while errors occur,
guide driver’s maneuvering, or to proceed with awdtic driving. The main feature of
the system is to provide safety-related informatnirivers to avoid incidences. Yet,
only the right information provided at the rightapé and at the right time can bring
positive effect on reducing accident risks. Inappiate information style or too much
information may cause information overloading aveldrivers to distraction (Yamada
and Kuchar, 2006). Moreover, when drivers decrdébhee speed in response to the
warning messages, they tend to raise their follgvapeed to compensate the loss of
time (Boyle and Mannering, 2004).

Passenger characteristics

The presence of passengers may provide posiffeets on accident prevention.
Volirath et al. (2002) found that the presence of passengers qookide a general
protective effect; however this is not found forupg drivers especially for driving
during darkness, in slow traffic and at crossroads.

The seating position of passengers affectpéissenger death and injury in traffic
crashes. Glasst al. (2000) found that motor vehicle occupants are lateer risk of
death or non-fatal injury when riding in the rearats of passenger vehicles as
compared with riding in the front seat. Similar uks are found by Smith and
Cummings (2004).

Environment characteristics

Numerous factors related to the environmertofacmay affect the occurrence of
accidents and its consequences. These factorglenchad design and road furniture,
road maintenance, traffic control, weather, anavftlnditions. Interested readers can
refer to the book by Elvik and Vaa (2004) whichegva very thorough discussion of
these factors, except the last two, via systenmatcview and meta-analysis.

The weather factors, in addition to their rnelaships between road factors, may
affect drivers’ cognition process. For example, agged effect of precipitation over
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days was discovered in Eisenberg’s research (20l)js, if it rained a lot yesterday,
then on average, today there are fewer crashes. miay come from the adaptive
behaviors by drivers.

As for the flow factors, a significant relatgimp between crashes and mean speed
and variation of speed has been found (Garber dnllaE, 2000; Gololet al, 2004).
The complexity of information perceived by drivesshigher and the predictability of
traffic situation for drivers may be worse whileetmean speed and variation of speed
increases. Note that this relationship may notiteal since drivers may pay more
attention on flow situation while it gets more cdigted.

® Regulation and policy characteristics
The stricter the rule enforcement the moreatswvould comply with the rules.
However, this is not necessary for all drivers. i¥d§998) found that the young
drivers’ instrumental motives, which are a reactioitiated by a desire to avoid
punishment or to receive positive rewards, are @etian older drivers’.

2. Integration of factors

The driving behavior has been characterized by teotly solving problems that
involve thinking, choosing and deciding betweeffiedént alternatives (Vaa, 2001). Several
models have been proposed; interested readersedanto Fuller’s study (2005) for a
thorough review.

The Risk Homeostatic Model (RHM) proposed by Wi(@®01) was adopted as the
basis in this research to connect other risk factdassumed all drivers would have a target
level of risk which comes from the perceived castd benefits of action alternatives. By
comparing with the driver’s perceived level of rigke driver would tend to adjust his
driving behaviors to achieve the target risk. Thadfits and costs of action alternatives are
obtained from either comparatively risky or safédaors. After the driving alternative is
taken place, that would be lagged feedback to therdthat may increase or decrease his
perceived level of risk or cause an accident. T$mple and intuitive structure can
accommodate these factors discussed above asaitkstin Figure 2-2 where the dotted
box is RHM.
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FIGURE 2-2 Interactions between drivers and risky &ctors.

The decision making skills are mainly based on thier’s experience, driver
education and physical ability. With more drivingperience, the driver is expected to make
a decision closer to his desired adjustment moeeiggly and quickly. Moreover, when
with good driver education, the driver is expectedhave better sense to make a right
decision and thus perform better in decision malskigis. This skill is also affected by the
driver’s physical ability. For example, the reanttome for a drunk driver is longer.

The vehicle handling skills are affected by theveir's experience, familiarity with the
vehicle, driver education and the vehicle charasties. With more driving experience, the
driver is expected to handle the vehicle bettet, tYas would be affected by his familiarity
with the vehicle. The driver may not be able todiarithe vehicle well if unfamiliar with the
car. Moreover, when with good driver education, dneer is expected to perform better in
vehicle handling. The vehicle handling skills alsoaaffected by the vehicle functions. For
example, driving a truck is more difficult thanwdng an automobile.

The perceived level of risk is based on the drgvgréerceptual skills and perceived
information from the passengers, the vehicle aedetivironment. The perceptual skills are
affected by the driver’s experience, driver edwsgtiand physical ability. With more
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driving experience, the driver is expected to baemgensitive to perceive the necessary
information. For example, the experienced driveexpected to be able to perceive the
necessary information from high speed flow thanicedrivers. Moreover, when with good
driver education, the driver is expected to be nsamesitive to catch important information
and thus perform better in perceptual skills. Theed's physical ability would also affect
his perceptual skills such as spatial contrastitd@hg color perception and visual field.

The driver’s perceived information comes from cominations, the vehicle and the
environment. When the driver and passengers talkatth other, or the driver uses cell
phones, the driver has to handle more complicateatrmation. Moreover, the interaction
between the driver and the car is another sourcenfofmation. Some information is
directly revealed from the vehicle equipments saglspeedometer, thermometer, etc.; other
information comes from the driver’s control and thghicle’s response such as kinetic
energy and friction. Furthermore, information alsomes from the environment. The
critical information generating from road envirommheincludes horizontal and vertical
alignment, degree of curvature, gradient, accessrap speed limits, road markings and
signs, etc (Proctoet al, 2001). The information tells drivers the road a@ition and helps
drivers adjust their behavior. The weather condii®also important since it would affect
the driver’s visual ability and vehicle movemenhefefore, natural light and rain condition
is critical for drivers, and wind and snow inforneat for some special areas.

Two types of flow information are critical to drige one is flow factors and the other
is flow compatibility. As discussed in previous seas, mean speed and variation of speed
are two major indexes to accidents. The driver sdgeddeal with much more information
and response more quickly while the flow speedg$ land fluctuate considerably. On the
other hand, the flow with high mixed types of raggkrs gives more information to drivers
than the flow with low mixed types of road users.

The regulatory information reminds and warns thgedrto obey the rules; different
enforcement schemes provide different informatiordtivers. For example, the response
for drivers may be to slow down the vehicle wheeirsg an automated photographic speed
detector; however, they may also slow down thaiteaee what happened when seeing the
police.

The target level of risk is affected by the drigefactors. The critical factors include:
socio-demographic factors; psychological factongngitional situational factors; and
personal habit.
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2.3.3 Incident/Accident

This stage describes a discontinuous situationinwitie road safety system such as the
driver falls asleep or a sudden stop of the previcar. When a collision happens, a good
response of the driver may be able to mitigatestheerity. For example, a driver loses the
control of the vehicle since the surface is icadeaperienced driver would brake the car
gradually rather than immediately. Moreover, he also take a suitable position to protect
himself while a collision happens such as holdhgad in the arms. The driver’s action is
affected by his experience, driver education angsishl ability. With more experience,
good driver education and physical ability (e.gorsér reaction time), the driver is expected
to mitigate the severity of the collision and pateimself well.

The protection equipments of a vehicle and the @ity of collided vehicles
would affect the severity of a collision. The equgnts, such as seat belts, airbags and
anti-lock brake systems, can protect the driver andupants to some degree from a
collision. On the other hand, the compatibility tbk collided vehicles would affect the
severity of a collision due to the mass incomphtybi stiffness incompatibility and
geometric incompatibility as discussed on the mnewisection. Those incompatibilities
depend on the vehicle types and bumping positidhe severity of a collision can be
alleviated when the road design concerns abouttysaiech as installations of safety
fencing.

2.3.4 Rescue

An efficient emergency response provides bettevicerto save the injuries. The
efficiency of an emergency response depends odist@nce between collision position and
service providers, and the flow conditions.

2.4 Accident Data in Driving Safety Analysis

Comprehensive data provide solid bases to understad model accident causality.
Therefore, transportation engineers and profeslsdreve devoted themselves to collect as
much data as possible. As stated previously, nunsefexctors at each stage would affect the
occurrence of accidents or their severity. Althouigkvould be practically impossible to
collect perfect data contents, with the improvemehttechnology and data collection
methodologies, more accurate and comprehensivendatabeen trying to be gathered.
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2.4.1 Crash-Centered Data

Crash-centered data include the data surroundiegticurrence of accidents, which
usually include six types: crash information, roagwinformation, vehicle information,
driver information, citation/adjudication informati, and injury control information (Ogle,
2007).

1. Crash information

Crash data describe the information of events, cketi and persons involved in a
crash. General characteristics include the datee,tilocation, drivers, occupants, and
vehicles involved. Other categories are severityhef crash (whether the crash ended in
property damage only, an injury, or a fatality) atite type of collision (single or
multi-vehicle, pedestrian involved or not, etc.heTconditions of the roadway surface and
of traffic control devices are also important aspeaf crash data (NHTSA, 2003). Crash
data in Taiwan are usually gathered by police depmats. Hospitals also have the
responsibility to report a death or injury to pelidepartments as long as patients go into a
hospital due to car accidents.

2. Driver information

Driver information includes information about theehsed drivers. It may include:
driver license number, type of license, licensdustadriver restrictions, convictions for
traffic violations, crash history, and driver edtiea data. This type of information is
maintained by motor vehicle supervision officesiediorate General of Highways, MOTC
in Taiwan.

3. Citation/Adjudication information

Citation and adjudication information is also vifai describing driver characteristics.
Information may include the identification of thge of violation, location, date and time,
the enforcement agency, and so on. Motor vehidel@émts that would reflect enforcement
activity are also useful for traffic safety purpesS®NHTSA, 2003). This type of data is
usually maintained by police agencies in Taiwan.

4. \ehicle information

Vehicle information includes information on the miification and ownership of
vehicles registered in the country. This informatghould also be available for commercial
vehicles and carriers. Data contents may includgcieemake, model, year of manufacture,
body type, and miles traveled in order to prodieeimformation needed to support analysis
of vehicle-related factors. In Taiwan, motor vedidupervision offices play the role to
supervise such data. Insurance companies also uwstnirsformation.
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5. Roadway information

A system of roadway inventory is a collection chdavay characteristic data. It usually
includes a list of the roads along with roadwayataan, identification, and classification. In
addition, the inventory contains a physical desmnipof the roadway components, such as
alignment, number of lanes, lane width, presencenedians and shoulders, and type and
presence of roadside barriers. Photograph/videal&ig may also be a part of the roadway
inventory (NHTSA, 2003). In Taiwan, this type oftdas collected and maintained by
different agencies. For example, highway informmati® primarily maintained by National
Expressway Engineering Bureau, and the city roadmanly maintained by local
governments.

Except roadway inventory information, traffic cotoins on the roadways are also
important and needed to be gathered. It may besatell manually or by means of
automatic traffic recorders. In Taiwan, loop detesthave been installed in highways and
expressways; recently, closed-circuit televisiod #me system of electronic toll collection
(ETC) become another useful ways to monitor tradfimgestions and to detect possible
incidents.

6. Injury control information

Injury control information refers to the informatidracking injury causes, magnitude,
costs, and outcomes. When the injury causes comne tiraffic incidents/accidents, such a
case would be of interest. This type of informatamuld be maintained by public health
sectors such as Bureau of National Health Insurantespitals in Taiwan.

The input, output, and interrelationships among dfementioned data types were
depicted in Figure 2-3. This schematic was reaedrgom the one proposed by NHTSA
(2003) to map with the proposed conceptual fram&wbddriving safety (Figure 2-1).

By comparing Figure 2-1 and Figure 2-3, it could disserved that except driving
culture and government policies, other factors Haeen covered in Figure 2-3. Since the
analysis of crash is the primarily interested ontep crash information plays the central
role in the schematic. Driver information, vehialdormation, roadway information, and
injury information have close connections with ¢rasinformation while
citation/adjudication information is connected tiver information.

The ellipse in the illustration implies an infornaat processing center. For example,
the input of vehicle information includes vehicldgles, registrations, inspections, and
carrier data. After data cleaning, integration, amhlysis by the ellipse of vehicle
information center, it outputs useful informatiauchk as vintage, tag, or owner information
to crash information. Meanwhile, vehicle informatitself also produces its own report.
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FIGURE 2-3 Crash-centered data flow schematic.

2.4.2 Behavior-Centered Data

Except crash-centered data, driving behavior datse lbeen also concerned as an
important source of data researching driving safétiile crash-centered data are usually
collected by specific agencies or sectors, behaseatered data are usually gathered by
researchers or engineers according to their rasearproject of interest. This type of data
includes all the data required to explain drivirghéviors including unobservable factors
such as driver’s psychological factors.

One of the many ways to collect such data is usjagstionnaires; that is, collect
information of interest based on self-rating methddifferent types of questionnaires have
been developed. The very first driving behaviorsgiemnaire was developed by Reason et
al. (1990). They outlined 50 different abnormaldrg behaviors and collected 520 samples
in England. By using exploratory factor analysiseyt concluded that driving behaviors
could be roughly divided into three types: errodgliberate violations and harmless
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mistakes. This questionnaire had been followed byyresearchers such as Blockey and
Hartley (1995), Parker and Reason (1995), and @mllet al. (2002). In addition to driving
behavior questionnaire, researchers also exploredng behaviors from different
perspectives. For example, Gulian et al. (1988) @undlan et al. (1989) developed the
so-called driving behavior inventory to measure thi&tionships among driving stress,
aggregation and alertness. French et al. (19932loleed driving style questionnaire to
examine the behaviors related to accident involvenaad risky driving behaviors. One
also can find other questionnaires scaling drivetiser characteristics such as driver’s
attitudes to violations (West and Hall, 1997) areir's vengeance intensions (Wiesenthal et
al., 2000). Recently, Taubman-Ben-Ari et al. (206dye tried to synthesize past studies
into a multidimensional driving style inventory.

While the aforementioned questionnaires focusedriving behaviors, the other class
of questionnaires concerns more about the psyclualofgctors affecting behaviors such as
attitude and perception. One of the most well kn@pplications is the Theory of Planned
Behavior, or TPB, developed by Ajzen (1985). Theotty stated a structure that behavior is
determined by driver’s intention, and intentiondistermined by attitude, subjective, and
perceived behavioral control. Researchers had expptiis theory to evaluate the intentions
committing some risky behaviors such as speedirdriving and drinking.

Except questionnaires, simulators are the otherepiomtools for researchers to collect
driving behaviors. In particular, driver’s situati@wareness would be the area which had
adopted simulators to collect driving behavior mf@ation most frequently. Bolstad (2000)
adopted simulators to explore whether driver’sation awareness would be significantly
different with respect to age. Ma and Kaber (208&)luated the impact of using navigators
and cell phones on situation awareness with simordatkass et al. (2007) developed
different scenarios on simulator to measure thiiemices of using hand-free cell phones
between novice and experienced drivers.

In addition to the above approaches, researcheostal to collect practical driving
behavior information with in vehicle data record@k$DR). The first application of vehicle
data recorders is event data recorder. Similahed'black box” equipped in aircrafts, event
data recorder began to be installed in vehicle&9i0’s to record technical vehicle and
occupant information for a brief period of time ¢sads, not minutes) before, during and
after a crash. For instance, EDRs may record (&)cpash vehicle dynamics and system
status, (2) driver inputs, (3) vehicle crash sigrat (4) restraint usage/deployment status,
and (5) post-crash data such as the activatiom @ugomatic collision notification (ACN)
system (Ogle, 2007). More recently, recorders lase been used to study driver behaviors
in non-crash situations. For example, IVDR has bag@opted in the trucking industry to
monitor and improve driving safety in the last ttyeyears (Toledo et al., 2007).
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2.4.3 Other Data

In addition to the aforementioned two types of datiher data could also contain
information regarding the occurrence of accidemsl/@ severity, and require being
collected for a complete analysis of driving safstich as law enforcement or related
regulations and laws.

2.5 DISCUSSION

This chapter contains a review on literature foteptial factors and their possible
connections to accidents. The review ended in timstcuction of a conceptual framework
of driving safety, which consists of two dimensioti® interactions of potential factors and
driving stages. It represented the belief thatdbeurrence of an accident results from a
series of miserable or unfortunate events. Thistraation did not intend to reproduce all
possible types of accident occurrences. Insteaal, bthlt framework was treated as a
blueprint for the following analyses.

To adopt safety data into analysis, the issue & daality should be born in mind. The
first element of data quality is comprehensivendSsllecting data has been a time
consuming and high cost task; instead of full infation, researchers could obtain only
partial information. They should be aware of whayt have and have not collected; more
importantly, what the role of the collected infotma plays in the driving safety framework.
The second element is timeliness of the data;ishdtow quickly safety data are available
and updated for use. The third element goes t@at¢haracy of accident data. This refers to
how close the recorded accident characteristicgruth. For example, not all traffic
accidents are reportable; not all reportable actglare reported; not all reported accidents
are correctly recorded. Researchers must be awaitee cexistence of measurement bias
when applying accident data. The last elementadritegration of accident data. Accident
data come from many sources representing diffelmamls of population. It would be a
challenge to integrate all information and prodwseful knowledge. Even though the
information within the same level, how to correclyopt them and explore reliable results
is still a big challenge in safety research fields.

Safety data analyses are of many types such asebefod after evaluations,
cross-section evaluations, comparison group evahst analysis of collision trends,
identification of hazardous locations, collisioter@omparisons of locations with different
features, cost-benefit analysis in developmentoointermeasures, risk estimation/analyses/
evaluations, and questionnaire-, simulator-, andemibased driver safety evaluation
(Persaud, 2001). While some types of these analyrsespecific to roadway safety, others
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relate to driver or vehicle safety; and some amayzver all three aspects.

Followed by accident data analyses, correspondngtermeasures could be designed
and implemented. Based on analysis results atréiftdevels, countermeasures focusing on
different coverage of populations are developede Gimould be careful to design
countermeasures when applying analysis results.ekample, when inferences about the
nature of individual accidents are based solelynupggregate statistics collected for the
group to which those individuals belong, the sdecaécological fallacy would generate.

Due to the availability of data, this research addponly crash-centered data, in
particular, the traffic crash database maintaingdNational Police Agency, Ministry of the
Interior. Accordingly, this research was a crosstieeal study. The data represent the whole
population in Taiwan.
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Chapter 3aMETHODOLOGY

The purpose of this chapter was to introduce thinoa®logies applied in this research.
Section 3.1 discussed the challenges and oppaesinibiced by today’s traffic safety
analysis; related literature was reviewed in Sect®2. The methodologies designed
specific to such data were developed in the sulesegections, t. A two-stage approach for
analyzing such data was introduced in Section Bh@ primary method employed in this
research was presented in Section 3.4. Moreover, approach to analyzing the
heterogeneity of accident data was proposed inidde@&.5, followed by an approach
examining accident causality in Section 3.6. Tlhapter ended in a discussion in Section
3.7.

3.1 Challenges in Accident Analysis

The definition of causality is strict. In epidenagly, for example, the Surgeon General
(1964) claimed that to diagnose cancer of smokaeagses, the following ad hoc rules for
judging causality could be adopted: 1) Strengthasdociation (meaning some statistical
measure of association is strong); 2) Dose-respeffiset (the more of the causal factor, the
larger the effect); 3) No temporal ambiguity (dsedollows exposure to risk factor); 4)
Consistency of findings (several studies produnalai results); 5) Biological plausibility
(the hypothesis makes sense in view of what is kndnv biology); 6) Coherence of
evidence (some combination of 4 and 5); and 7) iBpeg (causal factor causes this
disease, and this disease is due to this caudalrfaSome of these rules are deficient if
being directly applied in traffic safety. Rule &y fexample, is not necessary true in traffic
safety: empirical evidence shows that the relatignbetween expected accident frequency
and traffic flow is usually not lineart. Yet, mastthem are desirable (or just need a few
modifications) in traffic safety including rules 4, and 5. A more concise definition of
causality is given by Pearl (2000) who assertetl ¢hasality has to meet three criteria: 1)
Correlation: Cause and effect must vary togetheifi@e sequence: The cause must come
before the effect; and 3) Non-spurious: The refeiiop between cause and effect cannot be
explained by any third variable. These criteria barviewed as the baseline for all kinds of
causality including traffic safety.

Factual knowledge of causality is not easy to comé& he best way to obtain causality
is via randomized experiments. Yet, it is techycahpossible and immoral to do so in
traffic safety research. Another two ways are olm@nal before-after studies and
cross-section studies. An observational before-adtedy is to randomly divide a set of

" Golob et al. (2004) gave a complete review orr theblished article, Freeway Safety as a Functfon o
Traffic Flow, in Accident Analysis and Preventidvol.36, No.6, pp.933-946.
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candidate entities into those to be treated anskthot prior to the implementation of some
effect. After a certain period of implementatiome tdifferences between treated and
untreated groups are compared. On the other hanadbservational cross-section study
arises when the attributes and accident historyepfities (such as road sections,
intersections, drivers, etc.) are used in an attetmpestimate the safety effect of the
difference in treatment (or attribute) in questi@bservational before-after studies have
been demonstrated being able to explore correghtssunder a meticulous study design
(Hauer, 1997) while the capability of observatiocabss-section studies still opens to
guestion (Hauer, 2006).

Since observational studies, whether before-aftarass-section, are not as robust as
randomized experiments in causal-effect interpigiaf inconsistent or even controversial
conclusions are sometimes found in reports or mluanticles. For example, Davis (2004)
mentioned that although many studies have usedt&tat methods to correlate accident
experience with variations in traffic and road ctiods, the transferability of such models
have been found that the significance of accideatliptors can differ for data collected in
the same geographic region but at different tinassyell as for data collected in different
regions. In another example, Elvik and Greibe presethe result of a meta-analysis (2005)
for the studies evaluating the road safety effeftporous asphalt. They concluded that
“While some studies have evaluated these effeotsalhof these studies can be trusted and
their findings are highly inconsistent.” These insstencies mainly result from four
difficulties: the existence of confounding factotise determination of scope of causality,
the quality and availability of data, and the calitglnf methodologies.

The leading and the most important difficulty confesm confounding factors. A
confounding factor is any exogenous (i.e. not ificed by the road safety measure itself)
variable affecting the number of accidents or mgsiwhose effects, if not estimated, can be
mixed up with effects of the measure being evatliaiée results of a study should never
be trusted if confounding factors are not well colied (Elvik, 2002). Factors that are
commonly regarded as potential confounding factersbservational before-after studies
include: long term trends affecting accident coneeges; general changes of the number
of accidents from before to after the road safe¢asare is introduced; any other treatments
that have been implemented during the ‘beforeadtet’ periods; regression-to-the-meant;
adjustments to the reportability limit; and traffiow (Hauer, 1997). Confounding factors of
accidents are abundant and various such that a cwelirol over them becomes very
difficult. This reflects in the following three diulties.

* “The entities may have been chosen for treatmerdise they had unusually many or few acciderttein
past... one can hardly hope that the ‘unusual’ is@dpasis for predicting what would be expectethen
future had treatment not been applied.” Hauer (L987.74.
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Since confounding factors are numerous, an immedsaue raises: how to define the
scope of the causality of an accident; i.e. whiattdrs should be considered and which
should not. In early days, the causes of an actidesre usually attributed to the
closest-to-accident factors. Researchers, howevwre recently tended to analyze an
accident more thoroughly — not only the accideselitbut also the activities prior to and
subsequent to the accident. For example, Eby €2@00) and Simoes (2003) found that
elderly people tend to avoid night driving, reddigeway driving, driving only in familiar
areas, and driving with a co-pilot to compensate tfeeir age-related decline and the
corresponding difficulties in performing the driginask. An accident, therefore, may not
occur if one or several undesirable activitieshis taccident chain were broken (Baker and
Ross, 1961). An analysis of accident chains carobghly divided into several stages, for
example: the situation prior to driving, the drigisituation, the accident or discontinuity
situation, the emergency situation, and the colfissituation (Fleury and Brenac, 2001). It
is obvious that the driving situation, such as paset material, illumination, traffic signals,
etc., would affect accident occurrence, but thevitiels in other stages are difficult to
recognize whether they have impacts on accidentromace and/or severity.

The other concern on the selection of contribufagors is the use of statistical null
hypothesis significance testing (NHST for shortecBll the first rule to define causality
claimed by Surgeon General (1964). some statisieehsure of association is strong.
NHST has been regarded as a good measure to tledim@portance of factors. However, a
‘not significant’ factor in statistical sense istregjual to a ‘not important’ or ‘useless’ factor
in traffic safety. A fair way to say about a nogssficant factor is: “I cannot be sure that the
safety effect is not zero”. Since a ‘non-rejectllypothesis is of scarce help on dropping
potential factors and it is expected that the farth factor away from an accident (such as
factors in the prior to driving stage), the morsigmificant a factor would be, it becomes
more and more difficult for researchers to cho@stafrs via NHST in research.

The third difficulty goes to the availability andigity of data. Although most accident
databases have been designed to contain as machmation as possible, some attributes
such as driver’s psychological status are stilliclift to discover except in some in-depth
investigation projects. Thereafter, even thouglaerident case is fully described with all
the recorded data, it is an incomplete descripfamthe case. Furthermore, although
accident databases are panel data, i.e. data @f zagets are collected over some periods,
the targets are usually defined by administratreas such as city and county rather than
specific intersections, road segments or specifiedulations. Moreover, not all traffic
accidents are reportable; not all reportable actglare reported; not all reported accidents
are correctly recorded. With these deficiencieg #vailability and quality of data is
guestionable. This problem exists in many couninekiding Taiwan (Lai et al., 2006).
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Assume data has been screened where confoundiogsface all considered; potential
causal factors are determined; and the qualityatd ¢s assured. The last difficulty goes to
the capability of analytical techniques. Statidtim@thodology has been the most frequently
one to be adopted on analyzing accident data. Goiovel statistical methods, such as
logistic regression models, are great for analyzlgtionships which are clear between
dependent and independent variables. Moreover, rfgpvesentative’ variables are usually
chosen to interpret dependent variables. The cdiovext statistical approach is great to
explore relationships but would be inappropriatexamine causality since the complicated
interrelationships among factors are difficult ovell controlled.

3.2 Literature Review of Crash-Centered Data Analyis

Some of the aforementioned challenges have be&ledad very original technique is
called crash type analysisleveloped by Snyder and Knoblaunch (1971) andiexbpb
urban pedestrian crashes. A crash type analysmisly done manually. Trained analysts
are asked to read crash reports and conclude typest. For example, Preusser et al. (1995)
asked one analyst who developed a preliminary setash type groups and preliminary
definitions to review half of the computer genedateash reports. A second analyst then
reviewed the preliminary group definitions. Crosstewing selected cases from each other,
the two analysts together finalized the crash tgpénitions and made final crash type
assignments for the total crash events. Ten simyaleh types were defined including: ran
off road, ran traffic control, oncoming, LT (leftsin) oncoming, motorcyclist down, run
down, stop/stopping, and road obstacle. It was dothat the five defined crash types
accounted for 86% of all of the motorcycle craskrgs studies. This approach is easily
implemented; however, it is labor intensive andeticonsuming. Moreover, since the
capability of man brain, only single or few factamsuld be accounted simultaneously to
determine crash types; i.e. only the most sigmifidactors would be considered. Yet, this is
counterintuitive to the contemporary theory of decit occurrence: the occurrence of
accidents is a series of miserable or unfortunatats; as long as one or some those events
are blocked, accidents would not occur (Baker andsR1961; Davis and Swenson, 2006;
Elvik, 2003; Fleury and Brenac, 2001; Heinrich, 19Reason, 1997).

In order to conquer those deficiencies, techniqudsch can consider multiple
variables are developed and adopted. Two typescbhiques have been applied to analyze
the relationships between factors and accidents. i©traditional statistical techniques. In
previous studies, logistic regression (Al-Ghamd@02, Kim and Kim, 2003; Chandraratna
et al.,, 2006), factorial analysis of correspondeEAC) combined with hierarchical
ascendant clustering (HAC) (Laflamme and EilertelPeton, 1997; Berg et al., 2004), and

25



entropy classification methods (Strnad et al., 198tko and Jovd, 2000) are the most
frequently applied techniques; yet, these techrsiquaan contain only a limited number of
variables. Unobserved heterogeneity was ignoredaaodient cases were treated as with
complete information. Of these techniques, FAC coetdb with HAC is the only one
appropriate to include abundant explanatory vaemblvhile the other two approaches use a
few “representative” explanatory variables in timalgsis. As a consequence, some typical
accidents are not well discovered and effects ef specified variables are improperly
magnified.

The other types of techniques are artificial ingelhce (Al) and data mining. The
techniques of this category have become very popatently due to the improvements in
computer power. Some well-known techniques suclclassification trees and neural
networks have been adopted in accident researder([2¢ al., 2006; Karlaftis and Golias,
2002; Sohn and Shin, 2001). Classification treeh sas CART and C4.5 are top-down
techniques which decompose accident data by loaghipdanatory variables sequentially.
The top layer consists of input nodes (i.e. acdidiata). Decision nodes determine the
order of progression through the graph. The leafdke tree are all possible outcomes or
classifications, while the root is the final out@r{for example, accident types). Neural
networks are nonlinear techniques which mimic tperations of human brains and have
been regarded as great techniques for predicticcuracy. In summary, traditional
techniques are very efficient at solving problemghwsimpler relationships among
explanatory variables with a continuous domain. Ewesy, most Al and data mining
techniques can reflect the complicated relatiorsshimong numerous explanatory variables
but they are usually of black-box type that is lesipful in interpreting accident causality.

To claim causality, one has to evaluate the relatips between factors and
consequences with rigorous criteria, such as Raéwree criteria: correlation, time sequence,
and non-spurious relationships. Although classiiicemethods are powerful to explore the
complicated relationships between influential fast@nd consequences, they can not
automatically determine the time sequence and panesis relationships. Accordingly,
factors with significant classifying ability do noecessarily imply causality. For example,
Clarke et al. (1998) presented a decision treentd @ccidents to classify injury levels.
Season turned out to be the factor with the me@stsdlying power. Yet, season might not be
the closest-to-event factor, and some other faatoght exist between season and injury
level.

All in all, the methodologies analyzing crash-ceatedata have been evolved in the
last 30 years. One could employ the state-of-theraethodologies to explore the
correlations of factors involved in accidents. Heer to improve our understanding on
accident causality, another approach is needed.
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3.3 A Two-Stage Approach for Accident Chain Analys

This study proposed a simple two-stage approacbxploring accident characteristics
and uncovering accident causality based on crastei® data. The proposed approach
consisted of two steps: The first step was to dlasscidents such that accidents belonging
to same classifications are under the conditioh miast critical features are identical. The
second step was to verify the causal relationsfigns classification results. The relevant
methodologies were introduced in the following.

3.3.1 Classification

The classification step is expected to relieve #eindant heterogeneity existing
among accidents. Heterogeneity represents the p@sgresence of unobserved or
inattentively accounted driver-, trip-, area-, rgaahd other-specific factors (Karlaftis and
Tarko, 1998). Unless heterogeneity is appropriatelgtrolled, the estimation results and
causality interpretations can be trusted. The adopbdf classification techniques can
classify accidents into sets with relatively homogeus attributes. Instead of a whole
dataset, sub-datasets are analyzed and less hexteitygeffects are expected.

With the emergence of computational power, the iegpbns of data mining
techniques have become very popular including tdific accident analysis and prevention
field. The avoidance of pre-specified functionatnis and the ability to simultaneously
handle multiple factors may be the two most ativadieatures to adopt such methodologies
(Chang and Wang, 2006). These advantages areyariycuseful in adopting the proposed
framework since the more the important risk factem® under control, the more
homogeneous the results of classifications.

The primary two types of classification techniquesccident analysis are tree-based
and rule-based classification techniques. Theliessed techniques are to sequentially break
down a whole dataset into smaller and smaller sathsets such that the sub-datasets at the
deepest nodes are of the least heterogeneity. eicheesce of factor loading depends on the
choice of classifiers. Common classifiers incluaer@py, Gini coefficient, Bayesian, etc.
The differences of applying different classifiers analyzing accidents are usually decided
by their prediction accuracy while the entropy sifisation was popular in earlier research
(Vorko and Jov, 2000). On the other hand, a relatively new temph®i named
classification and regression tree, becomes angibpular choice. This technique can
automatically search for the best predictors apdst threshold values for all predictors to
classify the target variable, and has been shousetul tool to effectively identify the risky
factors affecting injury severity of traffic acciatls (Chang and Wang, 2006).
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The rule-based technique is another classificagohnique in traffic accident analysis
and prevention. This type of techniques is to leates first from a given dataset; thereatfter,
the accidents in this dataset are classified basdtle derived rules. Some common ways to
learn rules from a given dataset include Apriore(@s, et al.,, 2003), neural networks
(Tseng, et al., 2005), genetic algorithm (Clarkealet 1998), etc. Recently, the use of the
rough sets theory becomes another alternative dssity and analyze accidents. Its
non-parametric and non-black-box type process esaihle theory to become attractive in
exploring the features of accident occurrences.

In short, the first step of traffic accident anadysnd prevention from the chain
perspective is to classify accidents into relagiv@mogeneous groups with multiple factors.
Consequently, each group represents a specific aypccident conditions described by
driver, vehicle, trip and environment charactecsti driver's behaviors, and accident
consequences. However, the classification techsigeen not identify the sequential
relationships between factors which are requirednterpret causality. To obtain more
accurate causal relationships, another methodasoggguired.

3.3.2 Causal Inference

The causality between factors and accident conseggeis not easy to verify since
most accident analysis and prevention are obsenadtistudies rather than experimental
studies. Studies adopted conventional statisteehriiques such as logistic regression are
difficult to verify all these elements except tharrelations between factors. To overcome
these problems, researchers have been proposing caasal inference models. Of which,
the model proposed by Pearl (2000) was concerneal @ticularly useful tool and has
been applied in some traffic accident analysis {(and Swenson, 2006).

To construct a causal model, one needs to ideatd#gt of exogenous variables, a set of
endogenous variables, and for each endogenousbkai@astructural equation describing
how that variable changes in response to changie iexogenous and/or other endogenous
variables. This possible causality is representgd ldirected acyclic graph. Events are
defined in terms of values taken on by the modedsables. Knowledge of these values
will almost always be to some degree uncertain.allow for uncertainty, Pearl (2000)
defined a probabilistic causal model as a causaletnaugmented with a probability
distribution over the values taken on by the madelkogenous variables, so that this
probability distribution determines the probabégito be assigned to the truth or falsity of
counterfactual propositions. The probabilities @ted to counterfactual statements can be
computed by augmenting the model with nodes refigdihe counterfactual situation, and
then applying algorithms for computing Bayesianatpd on graphical models.
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3.4 Rough sets Theory

Among the Al and machine learning techniques, rosgfis theory was chosen to be
implemented at the first stage rather than othehrtigues because of the following reasons:
First, the algorithms for rough sets theory areliexpand easily understood which makes
rough sets theory be preferred than some blackiyymex methods such as neural networks.
Second, unlike classification trees which must whersall factors sequentially, rough sets
theory can consider all factors either simultangoos sequentially. It is convenient for
researchers to deal with some factors where theyasure about their occurrence order.
Third, rough sets theory is non-parametric, swvatids issues such as pre-specified function
forms or multi-collinearity among independent vhles as in traditional statistics or
membership functions in fuzzy theory. Fourth, rowsgts theory can effectively handle
discrete variables with multilevel categories. Thuss believed that rough sets theory is a
suitable method for analyzing relationships amoragtdrs and accidents under
considerations of the process of accident occuerenc

Rough sets theory was proposed by Pawlak in 1982has been shown to be an
excellent mathematical tool for the analysis ofeatg with incomplete information (Greco
et al., 2001). Although accident databases haven lmesigned to contain as much
information as possible, they can not provide ifufibrmation describing the occurrence of
an accident.

Let U represent the universe, a finite set of objects an denote a set of condition
attributes, i.e. affecting factors for the occuoerf accidents. For example, five accident
cases () described with four attributesP() — driver’s age, vehicle type, climate and
accident type — are given as Table 3-1. koye U, x and y are indiscernible by the set
of condition attributesP if p(x,q)=p,(y, q) for every ge P where p(xq) denotes the
information function. A set that has objects witltirthat are indiscernible by the set of
condition attributesp is called a P-elementary set. The family of afineéntary sets is
denoted byP . It represents the smallest partitions of objdntsthe specified condition
attributes so that objects belonging to differeletimentary sets are discernible and those
belonging to the same elementary sets are indigderihe P-lower approximation of a set
of objectsY (Y c U), denoted byPY, and the P-upper approximation\gfdenoted bypy,
are defined as:

PY={Jx {XeP and xc Y

Py=Jx {XxeP and X~ Y=o}
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The objects belonging to the set of lower approxiomaare those definitely definable by
the elementary sets since objectsAM can be fully identified by the elementary sets in

P". On the other hand, those belonging to the sappér approximation but not to the set
of lower approximation can not be fully identifibgt the elementary sets iR".

TABLE 3-1 Example of Accident Cases with Describind-eatures

Case Driver’s age Vehicle type Climate Accidengtyp
1 Young Motorcycle Sunny Off-road
2 Old Automobile Sunny Off-road
3 Young Motorcycle Sunny Rollover
4 Middle-aged Motorcycle Sunny Rollover
5 Middle-aged Automobile Rainy Rollover

Accident case 1, for instance, is characterizethbyollowing statement:

The (off-road) accident is described by the folluyvattributes:
(driver’s age is young) and (vehicle type is mogole) and (climate is sunny).

The above statement is termedue in rough sets theory. The term in the first panesis

is called a decision attribute which is the cona&ptoncern, and the following attributes
are all termed condition attributes which is theeed information. In this example, there
are two concerned concepts, namely, off-road antitdges and rollover accident types.
Five cases are provided with three condition attab characterizing them. The three
condition attributesdriver’s age vehicle typeandclimateform four elementary sets — {1,3},
{2}, {4}, {5}. This means that case 1 and 3 are isckrnible while the other cases are
characterized uniquely with all available infornoati Since case 1 and 3 are indiscernible
and lead to different accident types, they are ¢éerivoundary-line cases representing those
can not be properly classified with the availabfdoimation. Therefore, the off-road
accident type is described with the lower approxioma set, {2}, and the upper
approximation set, {1,2,3}. Similarly, the concepf the rollover accident type is
characterized by its lower approximation set, {4a8H upper approximation set, {1,3,4,5}.

Sometimes, some particular condition attributes maindistinguish objects; they are
redundant. The condition attributes excluding reldum attributes are termaeduct in
rough sets theory. One possibility for the reduegarould be that the condition attribute
has the same value for all objects and is invariduat other possibility is that its value can
be substituted by values of other condition atteBuor their combinations of Boolean
relations.

The performance of the specified condition atteisuican be described with two
indicators: accuracy of approximation and quality @pproximation. Accuracy of
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approximation represents the percentage of thecia$sd objects definable with the
specified condition attributes. It can be definedalows:

7, ()= (E%rd (PY)’

wherecard refers to cardinality. The accuracy value rangemfO to 1. The closer to 1 is
the accuracy, the more discernible is the accidgm; i.e. more accident cases of this
accident type are discernible by the elementary generated by the specified condition
attributes. It implies that the associated accigatterns do exist unambiguously.

On the other hand, quality of approximation repnés¢he definable percentage of the

whole universe. Letx ={Y,Y,..,Y} be a classification olU, i.e. YnY =2, Vi,j<n

i=j and UYi =U. Y are called classes ok. The P-lower approximation and P-upper

i
i=1

approximation of X are represented by setspx={PY,PY,.. PY} and
PX ={PY, PY,.., PY}, respectively. Quality of approximation of clagsation X by a set of
attributes can be defined as follows:

Zn: card( PY)

7 (X) =1 card(U);

The value of quality ranges from O to 1. The clasel is the quality, the more objects of
the universe clearly belong to a single classxof This implies that the accident chains for
all accident types can be clearly identified. Aecits thus can be more accurately
recognized and the corresponding countermeasurésviged.

To recognize further the details of accident pattgules need to be extracted. A rule
is a combination of values of condition attributdherefore, the theoretical maximum
number of rules is the product of the categorieallb€ondition attributes. However, some
combinations may not show up since such accidetenpa have never happened before. A
rule exists if and only if at least one such aceidexists. Many rule generation algorithms
have been proposed in recent years (Greco et@)1)2but it is beyond this research’s
scope to discuss those algorithms. This reseamplgiapplies the most frequently used
algorithm — minimum covering — to generate rulds. dim is to generate the minimum
number as well as the shortest length of rule®tercall accidents.

Rough sets theory, as introduced, is a non-paramabproach which prevents the
pre-specification of function forms or membershimdtions which are usually difficult to
determine in accident research since the interasctnd relationships among attributes are
too complicated and uncertain. It allows reseakh@mdopt accident attributes as many as
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possible; moreover, any redundant attributes valldiscarded based on the definition of
reduct. With all non-redundant attributes, the mimm covering principle is applied to
generate rules. Those rules describe distinct entiscenarios for different accident types.
It should be noted that although accidents belanginthe same rule are treated as being
identical, accidents belonging to slightly diffetemles are not essentially different since
some of the considered critical non-redundanttatteis are overlapping.

3.5 Analyzing Heterogeneity of Accident Data

As stated previously, the heterogeneity of accidinéa plays a vital role in examining
accident characteristics and designing countermesastlihe objective of this section was to
propose an approach for analyzing the heterogeatagcident data based on rules derived
from rough sets.

For the purpose of accident analyses and prevenpeople have been interested in
causality and have tried to find the generatingcpsses of accidents, especially for those
that occur repeatedly. The occurring frequency aoifla is termed as rule strength in rough
sets theory. A rule with high frequency of accidecturrence indicates that many accidents
repeatedly occur under identical conditions for eamtical factors. Consequently, strong
causality between factors and outcomes may exissdich rules. On the other hand, a
low-frequency rule refers to only a few accideonis;urring under the associated conditions.
Accidents belonging to the same rule are treatedeatical, however, it should be noted
that accidents belonging to slightly different siire not essentially different since some of
the considered critical attributes could be pdytialverlapping in terms of the effect on
accident occurrence. For example, trip time andrihation of roads both affect drivers’
sight distance and consequently the occurrence aoidents. Therefore, to avoid
over-strictly classifying accidents, instead ofesylthe classification of accidents will be
based on rule strength which stands for the ocayfrequency of such accident conditions.
Accidents associated with the rules with low-ocigyrfrequency could be considered as
by-chance accidents. On the other hand, accidenterurules with high-occurring
frequency may imply that they did not occur by a®but for some reason or system error
such as poor road design. These accidents shoufghidemore attention by both policy
makers and traffic engineers. Therefore, the rnéngth is considered as a helpful indicator
to cluster accidents for further analyses.

As stated, the proposed approach consisted of tages. In the first stage, accidents
were grouped with respect to rule strength; acogtgi accident characteristics were
extracted with multinomial logistic regression imetsecond stage. In the following, the
proposed approach is explained step by step. Theftiur steps describe how to apply
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rough sets theory and statistical tests to grogmants while the last step describes a way
to use a multinomial logistic regression model xtr&cting accident characteristics. The
whole process is depicted as in Figure 3-1.

A
Accident Rough set Rules learned
dataset theory from dataset
Accident groups
with equivalent
rule strength
First stage
v v v
Accidents Accidents Accidents
with rule with rule LU with rule
strength=1 strength=2 strength=m
\

Statistical test

: I

Y Accident Accident . e Accident
A group / group 2 group n
[ [
Second stage ¢
Multinomial
logistic
regreesion

FIGURE 3-1 Framework of analyzing heterogeneous aaent data.

® Step 1: Learning rules from accident datasets
A whole accident dataset was first analyzed witlhigio sets theory. Condition
attributes were filtered so that the attributeshlmado distinguish accident cases were
excluded. Thereatfter, by learning from past acdidases, a minimum number of rules
was generated to represent all distinct accidetteqps. Each rule was represented by
three elementsvariable combination of condition attributestrengthand belonging
accidents Combination of variabledescribes the process of accident occurrence for a
specific accident patteristrengthrepresents the accident counts belonging to a rule
andbelonging accidenteefers to the accident cases under the rule.

® Step 2: Grouping accident cases based on rulggsitren
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3.6

Accident cases were then grouped according to $eeceated rule strength. In other
words, accident cases were grouped if their befangiles were of equivalent strength.
Consequently, two accident cases were put undesahe group if and only if their
belonging rule had equivalent strength. Acciderderring to distinct rules could
belong to the same group as long as their stremgshequivalent.

Step 3: Ranking the aforementioned groups by terasf rule strength
Rules and the corresponding accidents were thanged in the order of strength.

Step 4: Grouping the ordered accident groups
The next step was to group the ordered accidents. the convenience of
interpretations, the number of the groups was salls Meanwhile, the accident
characteristics among groups were expected to dnafisantly different from one
another where ay* test was adopted for large sample sizes and &ifg9skxact test
for small sample sizes in the significance test.

Step 5: Exploring accident characteristics withtmoimial logistic regression

Finally, multinomial logistic regression was apgdlieto explore the accident
characteristics for the whole dataset as well as dach accident group. The
characteristics of each accident group were thempaoed.

Examination of Accident Causality

The continuous expansion of accident databasesggrdvement of computing ability,

however, provide the opportunity to explore caigaBy controlling as many affecting
factors as possible, accidents could be classifie subsets with very similar conditions.
Therefore, comparing the features of these subsetdd reveal the differences between
what happened and what would have happened hadirthemstances in question been
different (Davis, 2004; Hauer, 1997), which migimpiy causal relationships. In addition,
since an accident database can never contain isuffi¢actors for characterizing the
occurrence of all types of accidents, it would beeasonable to regard all the accidents as
with complete information in a database. Therefdwe,those accidents with insufficient
information, instead of soft computing classifioatimethods, other methods could be
advantageous to analyze them.

3.6.1 Framework of Accident Causality Examination

The research framework consists of two stages@srsin Figure 3-2. The first stage

is to identify the circumstances contained in aoident database. To fully describe the
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circumstances, all available information shouldcbasidered such as driver characteristics,
trip characteristics, vehicle information, behasiorinformation, and road and
environmental factors. In order to accommodate ribenerous factors, soft computing
methods such as tree- or rule-based classificatiethods are preferred; in particular, rough
sets theory was adopted in this research. Intefesteders can refer to Pawlak (1982) and
Pawlak and Skowron (2007) for a thorough introdut&bout rough sets theory. In addition,
a nice tutorial about rough sets theory was presklny Walczak and Massart (1999).

Accident data i
| | |High-rule-support .
g | . >
o D w accidents Rule comparison
o Trip )
e Vehicle - »{ Classification | '
e Behavior
R o Low-rule- _ .
0 Lol g row-me SUPPOTLl  (Satistical analysis
e Environment | accidents
First stage Second stage

FIGURE 3-2 Framework of accident causality examindbn.

As a classification methodology, rough sets thegeyerates rules to identify the
differences among accidents. Since each rule ighplie indispensable circumstances under
which accidents with specific injury levels occutreéhe injury level would be different if
one or several indispensable circumstances weferalit. Therefore, comparing the rules
with high support offered the potential to undendtahe causes of accidents, and was the
focus in this study.

Based on the classification results, it is posdibleompare the rules and find potential
causal factors, especially for those accidents thequently appear. However, two
difficulties should be noticed. First, the availabhformation is unable to differentiate all
accidents. Some accidents under identical circumstamay lead to different results. This
mainly results from insufficient information. Sechreven if accidents could be clearly
distinguished, some rules may show extremely leguency of occurrence (the frequency
of occurrence is called support in rough sets §jedrhese low-support accidents may
occur by chance (bad luck), and causal relatiosstbptween factors and accident
consequences may not exist. Accordingly, thesedants and the corresponding rules
would be inappropriate for rule comparisons. Indtesatistical analysis such as regression
models would be more appropriate to catch the featof these low-support accidents. That
is, using error terms to represent the insufficieMiormation and the randomness. The
problem now is how accidents can be distinguishetdiden the accidents suitable for rule
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comparisons and those suitable for statisticalysrgl The choice of the threshold should
result in a satisfactory performance on post-vglidvaluations or predictions.

3.6.2 Procedure of Accident Causality Examination

The subset with accidents of high rule support adspted for rule comparisons. The
comparisons composed of two steps: the first wantbthe most similar rules for each
selected strong rule (i.e. a rule with supporttdeast six) from the remaining strong rules;
the second was to check if the accident sevente® different between the selected rule
and its most similar rules. In the following, araeple of rule comparison was provided.

Suppose a rule, denoted as the selected rule, heseie from the rule set. This rule
described a particular circumstance for SAV acdidmturrence: A female driver with a
valid driver license driving on a low-speed-limad (less than 50 kph) with seat belt
fastened but without specific trip purposes. Th&/3&cidents under such circumstances
were of the type — injury only. If the specifiedrétutes were changed (e.g. from female to
male), the result was different (i.e. from injurgly to death involved or to other). Other
represents the accident severity of approximatesrulvhich can be injury only or death
involved. It is noted that some condition attritsuteere specified, but others were not. The
severity does not alter even though those unspdcifittributes change. For instance,
whether a driver was young, middle-aged, or olé, saverity of the SAV accidents under
the circumstance described by the selected rulddyremain the same.

Based on the selected rule, its similar rules vee@ched. A similar rule is defined as
the rule which has the greatest number of identipatified attributes to the selected rule.
Two similar rules were found. Similar rule 1 debed the condition that a middle-aged
driver with a valid driver license, with seat b&stened, cell phone not-used but without
specific trip purposes driving on a low-speed-liffigss than 50 kph) road equipped with
roadside marking and illumination. Similar rule &dribed the condition that a young male
driver with a valid regular driver license, withasebelt fastened but without specific trip
purposes driving on a low-speed-limit (less tharkph) straight road with dry surface and
equipped with median marking but without signalsnatnight.

Both similar rules had only one indispensable faite value different from the
selected one. This could be verified by expandirgunspecified attributes of the selected
rule to match its similar rules. As shown in Fig®8, the attributes age, cell phone use,
road shape, roadside, and illumination of the $etkoule could be expanded to be identical
to those of the similar rule 1 without affectingthccident severity of the selected rule. By
comparing the expanded rule and similar rule 1 @byer right table in Figure 3-3), it could
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be observed that only the attribute gender wasrifft where the expanded rule specified it
as female but was unspecified in similar rule mitirly, the same expansion could be done
to compare the selected rule and similar rule 2: dttribute gender was also the only
distinct one between these two rules (the lowditrigble in Figure 3-3).

Rule 1 pointed out that a male driver’s accidentsty was greatly reduced if he was
mature (middle-aged and driving without using d pkRbne) and driving on a friendly road
environment (with roadside marker and illuminatioRule 2 pointed out that young male
drivers’ driving on an unfriendly environment (atnsafety-oriented designed road at
midnight) could be fatal. This result implied thhe combined attributes (age + gender +
road environment) might be critical factors divegtian injury only case to a death involved

case under a circumstance described by the seladeed

Expanded rule

Similar rule 1

Middle-aged Age Middle-aged
Female Gender -
-- License type --
Valid License con. Valid
-- Occupation --
Other Purpose Other
- Time -
Fastened Seat belt use Fastened
Not using Cell phone use Not using
Selected rule 50- Speed limit 50-
Age - Expanding the selected rule Segment Road shape Segment
Gender Female _ Surface status _
License type -- -- Signal type --
License con. Valid . Median .
Occupation - Yes Road side Yes
Purpose Other Yes Ilumination Yes
Time - - Alignment -
Seat belt use Fastened Injured Severity Injured
Cell phone use --
Speed limit 50- Expanded rule Similar rule 2
Road shape -- Young Age Young
Surface status - Female Gender Male
Signal type -- Regular License type Regular
Median - Expanding the selected rule Valid License con. Valid
Road side -- Working Occupation Working
Illumination -- Other Purpose Other
Alignment -- Midnight Time Midnight
Severity Injured Fastened Seat belt use Fastened
-- Cell phone use --
50- Speed limit 50-
-- Road shape --
Dry Surface status Dry
No Signal type No
Marking Median Marking
- Road side -
-~ refers to unspecified values ) - Illu.mination -
) circles the identical indispensable values between rules - Str‘alght Ahgn@ent Straight
Injured Severity Others

FIGURE 3-3 Framework of accident causality examindbn.
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3.7 Discussion

Analyzing accidents from the chain perspective @¢aapture the nature of the traffic
accidents; the generation of an accident is confingh a series or a combination of
activities. This study proposes to implement sutidaa starting from classifying accidents
from an accident database, and then infer the tgu$ar each classification. Although
methodologies and databases have been availablecaihuously improved, the factual
knowledge of accident causality is still not easycome by. Several issues are worthy of
consideration.

The first issue is the robustness of the classifioaesults. Each derived classification
represents one type of causal chains. Accidentanpelg to same causal chains suggest
their accident occurrences are similar. In otherdspprovided that most important risk
factors are considered for classifications, acdglenming from same causal chains should
be bound together almost surely. Yet, some teclesigsuch as CART, have relatively
unstable classification results; when differentam strategies, such as stratified random
sampling, are applied, the tree structure and thssification accuracy would alter
significantly (Chang and Wang, 2006). Thereforeg should be very careful to choose an
appropriate classification technique and the adbgtietegies.

The subsequent difficulty lies on how to define evhfactors are important. Analyzing
accidents from the chain perspective has the patdotovercome the confounding-factor
effects; yet, the researchers should consider mygsartant factors. However, defining the
so-called numbers of important factors containingan accident database is difficult;
moreover, factors are not always important fortyles of causal chains. A conventional
way to select contributing factors is the use afistical null hypothesis significance testing
(NHST for short). NHST has been regarded as a goeakure to define the importance of
factors. However, a non-significant factor in stal sense is not equivalent to an
unimportant or useless factor in traffic safety (eia 2004). Moreover, the relationships
verified in one place may not hold in another pldce to the differences of national or
regional culture. Consequently, it would be extrigmdifficult to correctly specify the
relationships between factors and accident consegsepurely based on literature and
professional knowledge. One possible way to religigeproblem is to examine the location
of factors in the proposed framework. When a fatdoates at earlier stages, such as driver
characteristics, it has more potential to be adbpteinterpret more types of causal chains.
Another way goes to the use of well-behaved datangitechniques such as rough sets
theory; however, the appropriateness should beadurterified.

Different from the issue to select important fastbbiom an existing database, the other
issue is to collect vital information which is absdrom on-hand databases, especially
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information of some important indirectly observablemeasurable factors. These types of
information are not considered in the proposed @ggr. However, it is possible to collect
this required information by experiments.

The next issue is the regression to mean (RTM) @memon. When classification is
done, each causal chain contains one or numbeascafents. One causal chain has more
accidents than the other should not be immediatklyned that one is a more dangerous
condition than the other. A causal chain with highamber of accidents may reveal by
chance. To eliminate the RTM phenomenon, sevefabaghes have been proposed such as
statistical quality control or the adoption of engal Bayes method (Elvik, 2006). However,
how to integrate these methods into the proposeddwork remains a problem.

The last issue is the determination of the strecfar causal inference. In the study by
Davis and Swenson (2006), the structure can be@rermined since their target of interest
is rear-end accidents which mainly follow physitks. Not all causal chains have such
explicit sequential relationships. Although soméadaining techniques, such as Bayesian
networks or EM-algorithms, could help find possibktwork structure, the plausibility of
derived structure requires professional judgmeiitserefore, the determination of the
causal inference structure is still a problem.

Exploring accident causality is much more diffictiian apprehending the correlations
among its factors. This study proposes a framevmnknderstand accident causality from
the chain perspective. The becoming comprehensiseident databases, powerful
computational capabilities, and mature methodokgieovide the opportunities to learn
causal chains by doing classifications and applgagsal inferences. Moreover, the study
presents a conceptual chain framework of accidehish hopes to become the basis for
future implementation of such idea.

The derived causal chains have much potential actjwal applications. Since the
derived chains contain detailed information abagident occurrences, with such detailed
information on-hand, one can estimate the riskeddxy drivers by matching their current
driver characteristics, trip characteristics, véhicharacteristics, and road and environment
characteristics. The individualized, instead of egah) safety warning messages, for
example, can then be delivered to a certain davéne matched time and environment.

There are still some data and methodological issegsired to be resolved. However,
studying accident causality from chain perspecpvevides an approach to be closer to
accident causality.

39



Chapter 4 EMPIRICAL STUDY

The objective of this chapter is to demonstratenie¢hodologies presented in Chapter
3. Prior to these demonstrations, the databasetedlop these studies is introduced in
Section 4.1. Subsequently, the empirical study h&f approach for exploring accident
characteristics, of the approach for analyzing roggeneity of accident data, and of the
approach for examining accident causality are shawnSection 4.2, 4.3, and 4.4,
respectively.

4.1 Taiwan Traffic Crash Database

The Taiwan traffic crash database has been maguany National Police Agency,
Ministry of the Interior. The collected crash typee twofold: Al (death involved) and A2
(injury only)®. When the involved persons in a crash die withirhaurs due to the crash,
this crash is classified as an Al-type crash. @rother hand, when the involved persons in
a crash get injured only or died after 24 hourshef crash, this crash is classified as an
A2-type crash. By law, hospitals are obligatedeport to police departments if a patient is
died of or serious injured from a car accident.

The investigation format of a crash consists of tsheets: one for recording crash
characteristics and the other for recording pensoharacteristics. In the crash sheet, the
collected items include the number of death andrag persons, natural environmental
factors (e.g. weather and illumination), and roadrenmental factors (e.g. road type, road
shape, median type, signal type, and so on). Abdgoersonal sheet, the collected items
include all the involved persons’ socio-demograpthiaracteristics (e.g. age, occupation or
gender), behavior (e.g. protection equipment us#riaking condition), vehicle information
(e.g. vehicle type or plate number), and crashtedlacharacteristics (e.g. crash type,
police-judged causes).

Although it was understood that more data are megleome in safety research, the
accident database collected by police departmestoeasidered as the only data source in
this research. However, it should be noted thafrireework and approach proposed in this
study could be extended when more data were alailab

$ Although the A3 crash type (property damage omdy)lso collected by police departments, it is not
provided by National Police Agency. Moreover, sif®is a less serious crash type, problems suamder
reporting could damage the analysis. Thereforecia8hes were excluded in the study.
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4.2 Patterns of Taiwan Single Auto-Vehicle Accidest

4.2.1 Data

Taiwan 2003 single auto-vehicle (SAV) accident digta&hosen to demonstrate the
feasibility and usefulness of rough sets theory tre proposed framework in accident
chain analyses. Single auto-vehicle accidents hoset in which only one vehicle is
involved. Since no other vehicles or pedestriams,imvolved, the problem can be more
accurately defined. Meanwhile, far more informatisnrequired to explore the accident
patterns of multi-vehicle accidents. Consequestlydying SAV accidents is a good start for
the study.

The total number of SAV accidents, excluding indalases, was 2,316. The number of
invalid cases was 20, which accounted for 0.86%hef total cases. These cases were
invalid mainly due to the unknown attribute valuwéshe driver’'s characteristics. They were
directly ignored in the study based on their re&si small size. The collected attributes and
their corresponding categories are summarized loteT1. Accident type is chosen as the
decision attribute while the other attributes ammsidered as condition attributes. The
categories of the accident types herein were $jigtifferent from the original data
provided by the National Police Agency. While roto crashes, off-road crashes, crashes
with architectures, crashes with work zone androtheshes were directly adopted from the
original database, the crashes with road facilittedude crashes with guardrails, traffic
signals, toll collection booths, median islandsg$ and utility polls; and the crashes with
non-fixed objects include those bumping into angvad well as other non-fixed objects.

A popular rough sets software, ROSE2 (Rough seta Baplorer), was used in this
study where LEM2 (Grzymala-Busse, 1992; Grzymaladgduand Werbrouck, 1998) is
embedded to generate a minimum rule set coveringbgcts. The results of rough sets
analysis consist of five parts: rule generatiorglityr of approximation, rule validation, rule
description and significance of condition attrilsite
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TABLE 4-1 Attribute and Category

Dimension

Attribute

Category

Driver
characteristics
(Condition attribute)

Age

Gender

License type
License condition
Occupation

Under(<18), Young(18-35), Middle-aged(36-55), Oy
Male, Female

Regular, Occupational, Military, Other

Valid, Invalid, Unknown

Student, Working people, No job, Other, Unknown

Trip characteristics
(Condition attribute)

Trip purpose

Trip time

Work, School, Social, Shop, Sightseeing, Busin@siser,
Unknown

Morning peak (07:00-09:00 h), Day offpeak (09:00006
h), Afternoon peak (16:00-19:00 h), Night offpeak
(19:00-23:00 h), Midnight to daybreak (23:00-07H)0

Behavior and
environment factors
(Condition attribute)

Protect equipment use
Cell phone use

Drink condition

Road type

Speed limit

Road shape
Pavement material
Surface deficiency
Surface status
Obstruction

Sight distance

Signal type

Signal condition
Direction divided facility
Roadside marking
Climate

Light condition

Use, No use, Unknown

Use, No use, Unknown

Drink, No drink, Other

Highway, Other

50-, 51-79, 80+

Intersection, Segment, Ramp, Other
Asphalt, Other, No pavement

Normal, Other (e.g. holes, soft, and so on)
Dry, Wet, Other

Yes, No (within 15 meters)

Good, Bad (based on road design speed)
Regular, Flash, No signal

Normal, Abnormal, No signal

Island, Marking, None

Yes, No

Sunny or cloudy, Rainy, Other

With light, No light

Accident
(Decision attribute)

Accident type

Bump into bridge or architecture (198)
Bump into road facility (1 564)

Bump into non-fixed object (17)

Bump into work zone (21)

Off-road (297)

Rollover (93)

Other (126)

& sample size of the accident type

4.2.2 Rule Generation

As shown in Table 4-2, the number of rules gendratereases with the completeness
of the specified condition attributes. Since ale tbondition attributes are categorical
variables, the incorporation of any additional abod attribute withn categories would
expand the possible classificatiomsimes. However, while the quality of approximatisn
much enhanced, the number of rules does not irengaportionally but only with limited
growth. This implies that the condition attribuiesluded are valid enough to classify the
accident types and that some patterns do exigth®SAV accidents in Taiwan rather than
all SAV accidents being regarded as unique.

42



TABLE 4-2 Rough Sets Results

Approach Accident type Generated Accuracy Quql!ty O.f Hit rate Overall hit
rules classification rate

bridge 0.19% 4.55%
facility 2.26% 5.05%
D®* non-fixed obj. 0.00% 11.76%

1 ! work 104 0.00% 3.02% 23.81% 6.30%
A off-road 0.51% 4.04%
rollover 0.11% 12.90%
other 0.50% 21.43%
bridge 0.00% 0.00%
facility 0.26% 1.73%
T  non-fixed obj. 0.00% 23.53%

2 ! work 38 0.00% 0.26% 23.81% 4.62%
A off-road 0.00% 11.11%
rollover 0.00% 27.96%
other 0.00% 9.52%
bridge 7.52% 21.21%
facility 31.59% 27.88%
B  non-fixed obj. 1.59% 29.41%

3 ! work 508 9.66% 38.69% 23.81% 25.60%
A off-road 7.88% 21.21%
rollover 2.34% 24.73%
other 4.96% 15.08%
bridge 1.68% 20.20%
D facility 16.47% 21.93%
| non-fixed obj. 0.97% 0.00%

4 T work 474 0.76% 20.16% 23.81% 20.60%
l off-road 3.38% 19.53%
A rollover 1.77% 18.28%
other 1.31% 11.11%
bridge 39.89% 16.67%
D facility 67.78% 53.45%
| non-fixed obj. 19.64% 0.00%

5 B work 766 79.17% 74.65% 9.52% 42.01%
! off-road 41.39% 22.90%
A rollover 17.39% 21.51%
other 30.22% 11.11%
bridge 31.29% 19.19%
T facility 64.05% 49.36%
| non-fixed obj. 8.43% 0.00%

6 B work 787 45.95% 70.68% 14.29% 39.21%
! off-road 33.96% 21.55%
A rollover 18.38% 18.28%
other 21.11% 11.11%
D bridge 74.68% 12.63%
! facility 90.57% 69.69%
T  non-fixed obj. 41.94% 5.88%

7 ! work 808 100.00% 92.88% 23.81% 51.38%
B off-road 80.65% 17.51%
l rollover 66.39% 9.68%
A other 69.81% 6.35%

D: Driver characteristicsT: Trip characteristics8: Behavior and environment factors; Accidents
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4.2.3 Quality of Approximation

The accuracy of approximation for rollover and buimp-non-fixed object accidents
is extremely low, except when all condition atttésiare included. However, the accuracy
of approximation for the bump-into-bridge accidemt#-road accidents, and other accident
types can be increased to 30%~40% if B&E factores @mbined with either driver
characteristics or trip characteristics. This candised to 70% or even 80% if all condition
attributes are included. Roughly speaking, bump-fatility and work zone are the most
definable accident types, while bump-into-bridgé;road, and other accident types are
moderately definable accident types, and rolloved Bump-into-non-fixed object are the
least definable accident types.

The quality of classification is proportional tcetikompleteness of selected attributes.
Approach 7 shows the highest quality, while Appto&cshows the lowest. B&E factors
show the most important attributes for the quadtyclassification partly due to their wide
coverage of affecting factors, which are also pr@fi factors. Each dimension alone
(Approaches 1, 2, 3) does not yield a good quadtyclassification. If at least two
dimensions are combined, the quality of classiiicats much enhanced. For example, the
quality of classification for B&E alone is 38.69%lowever, it is raised to 70.68% by
merely combining it with trip characteristics in h only two more attributes are included.

These results suggest that accidents should noedmdved by single factor, but by a
chain of factors. Previous countermeasures focusestly on B&E proximal factors. It is
effective; however, to further improve road safet,factors associated in the factor chain
may need to be taken into serious consideratiorth€umore, neglecting factors in a chain
may result in rather different stories and blur ititeractions among accident features.

4.2.4 Rule Validation

The 10-fold cross-validation technique is used to condwetlidation test of
classification results. The hit rate, i.e. the patage of correct prediction, for the
bump-into-facility accidents can be improved by tgp 70 percent when all condition
attributes are considered. On the other hand, ithetes for the remaining accident types
all range from O to 20 or 30 percent. This suggestat the occurrence of a
bump-into-facility accident may follow similar patland is more predictable. But for other
accident types, the rules generated from thenitrgicases may not be representative since
their occurrences are mostly random.

The higher the quality of approximation, the higttex overall hit rate and the hit rate
for the bump-into-facility accidents. Yet, the bwmpo-bridge and bump-into-non-fixed
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object accidents show the highest hit rate in Appho3, which consists of B&E proximal
factors only and reveals the unexpected and randbanacteristics of these kinds of
accidents. Its hit rate becomes lower if other @ attributes are included. These results
suggest that except for the bump-into-facility decits where more information is useful,
different accident types have their correspondisgful condition attributes. For example,
the condition attributes of driver characteris@aee useful for the bump-into-work zone and
the other accident types, and those of trip charetics are useful for rollover accidents.
All these results are helpful for devising adequatentermeasures.

The classification results show that most of thenptinto-bridge, bump-into-facility,
off-road and rollover accidents are assigned tdthmp-into-facility accident type and least
into the bump-into-non-fixed and bump-into-work eoaccident types. This suggests that,
while most accidents are associated with somealitondition attributes which lead to the
similar classification pattern, bump-into-non-fixadd bump-into-work zone accidents are
related to very distinctive characteristics. THsoamplies that some similarities may exist
in the occurrence of the bump-into-bridge, bumjpHiatcility, off-road and rollover types
since they are all related to road geometry andrdyienvironments. These similarities are
the reasons for the low hit rates for the bump-imtidge and off-road accident types, since
they can be easily assigned to the bump-into-fgcdccidents due to the fact that the
sample size for the bump-into-facility accidenteayputweighs theirs. As a consequence,
more rules associated with the occurrence of theapbinto-facility accident type are
generated and dominate the classification pat@nnthe other hand, the remaining accident
types, such as the bump-into-non-fixed object, arere closely related to driver
characteristics and are relatively unique.

4.2.5 Description of Significant Rules

Rules are generated from the accident databaseobghr sets theory, and the
significant rules for each accident type are showiTable 4-3. The rule strength — the
number of accident cases matching the rule — fatmocident types is small except for the
bump-into-facility type. The highest strength fooshtypes is about 3 or 4. This shows the
uniqueness of those accident types, especiallyinfrequent and stochastic occurrences of
the bump-into-non-fixed objects. Interestingly, tderived factor chain shows that a
drinking driver without regular license exhibits ralatively high possibility of being
involved in bump-into-non-fixed object accidents ansecondary road without roadside
marking and light.
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TABLE 4-3 Description of Significant Rules
Accident type Rule descriptioh

Bumpinto @ Driver: Working people;
facility ) Behavior: Not drinking;
(35)b [ Environment: Road segment ; Median island ; Wefaser; No obstruction within 15 meters;
Off-road [ Driver: Regular license; Student;
(7) ) Environment: Speed limit 50-79 ; Median markingithWoadside marking ; With light;
) Driver: Middle-aged; Working people;
) Behavior: Drinking;
° Environment: Speed limit less than 50; Collisiorsifion rather than intersection, segment and
ramp; With roadside marking;
° Behavior: Drinking; Cell phone use unknown;
. ) Environment: Flash signal ; No roadside markingy, furface;
Bump into ; -
. ) Driver: Young; Working people;
bridge or . - i
. ) Trip: Other trip purpose; Between midnight and daglx;
architecture . o
@ ) Behavior: Not drinking;
° Environment: No signal ; Median marking ; With real® marking ; With light ; Poor sight
distance;
) Behavior: Not drinking;
) Environment: Collision position rather than intertsen, segment and ramp ; Pavement rather
than asphalt ; No directional-divided facility ; Moadside marking ; No obstruction within 15
meters;
Bump into Dr.lver: Male; Regular license type; Unknown occiumpat
work zone Trip: During midnight to daybreak;
Environment: Speed limit less than 50; Asphalt paset; No signal ; Obstruction within 15
) meters;
) Driver: Young; Working people;
) Trip: Social trip; Night offpeak;
) Behavior: Not drinking;
Rollover . . .
3) ) Environment: Median marking
) Driver: Young; Male; Regular license type; Workipgople;
) Trip: Day offpeak;
) Environment: Speed limit less than 50 ; Regulanalig
Bumpinto @ Driver: Other license type;
non-fixed [ Behavior: Drinking; Cell phone use unknown;
object (2) ® Environment: Speed limit less than 50 ; No roadsideking ; No light;

& please refer to Table 4-1 for the details of ctindiattributes
®the value represents the rule strength

The most significant rule for the bump-into-workneo suggests that there is a
relatively high risk when a driver approaches wooke on a road with speed limit less than
50 (kph) around midnight. This information suggehbktt more effective and sufficient work
zone traffic controls should be installed, partely in the dark work zone on those
secondary roads. The rule reflects the fact tlasatre cost, it is often the case that safety
measures are not properly implemented, especiallyi@l secondary roads.

For rollover accidents, two significant rules dédseryoung working people who are
driving during off-peak period as being more likeiwolved in the rollover accidents,
probably due to the low traffic and high speed.

Four significant rules for the bump-into-bridge idents describe two conditions:
drinking driving under normal road environment auber drivers under abnormal road
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environment. Specific deficiencies exist on botmditions for this accident type. This
shows the necessity for the government to prevasttype of accident by improving the
road environment or raising the penalties for dngkdriving.

The derived factor chain for off-road accidentsvghidhat student drivers who are
young and less experienced exhibit a relativelyhhgpssibility of being involved in
off-road accidents. This result echoes the gradubtensing scheme currently existing in
many countries (Simpson, 2003). Moreover, the fachain shows that the corresponding
driving environment is normal, i.e. no particulatpfavorable factors such as drinking
driving or poor sight distance appear on the ch&ince other driving groups such as
working people do not show similar accident patdeas off-road accident type, the
government should seriously consider educatingestudrivers to enhance their situational
awareness of driving environment and reduce tisrdriving behavior on roads.

The rule with the highest strength goes to bump-fatility accidents. It describes 35
employed sober drivers rather than students driingan island-divided road segment
where the surface was wet and there were no obistnaavithin 15 meters. The wet surface
denotes lower friction on road surfaces that ineeethe difficulty of handling vehicles.
Meanwhile, drivers generally might slow down theiiving speed to maintain vehicles at
an “acceptable” speed. Therefore, the extremell Bigpporting evidence may imply that
those drivers overestimated their driving skillglamderestimated the risk of the decrease
in surface friction.

4.2.6 Significance of Condition Attributes

The significance of condition attributes is meadulg their presence on the derived
rules. When a condition attribute shows up morgueatly in the rules, it is more likely
being used to describe the occurrence of accidants hence is more significant in
distinguishing accident types. The presence of rdition attribute is represented with
presence percentage which is calculated by sumapnigs presence in each rule weighted
with cases of the associated rule divided by toésles. Here, only the rules derived from
Approach 7 are adopted in the calculation sincerdagh 7 shows the most satisfactory
performance. Moreover, since condition attributeth vinore categories tend to distinguish
accident types more effectively, comparisons areglanan those with same number of
categories. As shown in Figure 4-1, gender, roadsmrking and light condition; speed
limit, road shape and directional divided facilitgge, occupation, trip time and drinking
condition are those attributes with a relativelghar presence percentage among all
condition attributes with two, three and four orrmcategories, respectively.
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FIGURE 4-1 Presence percentage of condition attrilktes.

4.3 Heterogeneity of Taiwan Single Auto-Vehicle Addents

The data and software used in the previous segtene adopted to demonstrate the
feasibility and usefulness of the proposed framé&vaor analyzing heterogeneity of accident
data.

4.3.1 Strength of Accident Pattern

With 23 condition attributegp@vement materiak redundant and excluded), 808 rules
were generated as the minimum requirement to c2)&t6 accident cases; i.e., one rule
stood on average for three accident cases. As sihowable 4-4, the frequencies of some
rules were high while some were low. The maximurargjth was 35 for one rule while the
minimum strength was 1 for 285 rules. More thanf ludl the rules were of strength
equivalent to 1 or 2. This demonstrates the unigsgnof most accident patterns for
Taiwan’s SAV accidents in 2003; that is, most aentd occurred with different driver
characteristics, different trip characteristics /anddifferent behavior and environmental
factors. Nevertheless, for those rules with higlersith, they represent a large portion of
accidents occurring repeatedly with identical page

TABLE 4-4 Strength and the Corresponding Number ofRules

Strength 1 2 3 4 5 6 7 8 9 10
No. of rules 285 167 76 47 28 23 31 24 20 13
Rule percentage (%) 35.27 20.67 9.41 5.82 3.47 2.85 3.84 2.97 2.48 1.61
Strength 11 12 13 14 15 16 17 18 19 20
No. of rules 11 19 7 10 4 8 6 2 1 7
Rule percentage (%) 1.36 2.35 0.87 1.24 0.50 0.99 0.74 0.25 0.12 0.87
Strength 21 22 23 25 26 27 29 35
No. of rules 5 2 3 4 1 1 2 1
Rule percentage (%) 0.62 0.25 0.37 0.50 0.12 0.12 0.25 0.12
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The differences of accident characteristics betweges with high frequencies and
those of low frequencies are the primary concennthis research. This study adopted 23
condition attributes to describe the occurrencaaridents, which made the analysis at a
very microscopic level. As a consequence, eachldantimay follow its exclusive pattern
rather than identical patterns. Nevertheless, ditmch to the rules with low frequencies, the
rules with high frequencies were also derived. Bhisws that stereotype accidents do exist.

4.3.2 Accident Grouping

For the convenience of interpretations, two togixups were preferred, in which the
more significantly different condition attributegigted among groups, the more desired
they were. In this research, a bottom-up proceduss implemented to determine the
boundaries of accident groups. Statistical testsewemployed to determine the
appropriateness of cluster boundaries. THetest was adopted for large sample sizes
while the Fisher’s exact test for small sample siZéhe significance level was set at 0.10,
and three clusters were then determined after tigtranalysis. The corresponding rule
strength intervals for the clustered groups weig B-23 and 25-35 with the number of
accidents being 619, 1451 and 246, respectivelgn $e Table 4-5, théicense typeand
roadside markingattributes were the only two non-significant caiah attributes among
clusters. All other condition attributes were sfgmantly different among groups.

TABLE 4-5 Test Results of Condition Attributes forthe Final Partition

Driver characteristics Trip characteristics Behawnd environmental factors
Condition attribute  P-value | Condition attribute P-value Condition attribute P-value
Ages 0.0047** Trip purposes 0.0000** Protect equipment use 0.0044**
Genders 0.0001** Trip time 0.0000** Cell phone use 0.0074**
License types 0.6558 Drinking condition 0.0000**
License conditions 0.0009** Road type 0.0073**
Occupations 0.0000** Speed limit 0.0000**
Road shape 0.0000**
Pavement material 0.0118**
Surface deficiency 0.0022**
Surface status 0.0034**
Obstruction 0.0307**
Sight distance 0.0000**
Signal type 0.0000**
Signal condition 0.0000**
Median 0.0000**
Roadside marking 0.2621
Weather 0.0704*
Light condition 0.1000*

*: 0.10 significance level; **: 0.05 significanceuel

The characteristics of the accident groups as agethe whole data are shown in Table
4-6. This shows that the accident characteristithkewhole dataset were relatively close to
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those clustered in the weak and medium rule sthredpwever, the accident characteristics
of the high rule strength group appeared substpntdferent from the others and showed
relatively high percentages of the following atitiés: drivers weranale and young
drivers’ licenses wer@nvalid; trips occurred betweemidnight and dawn trip purposes
were not specified; speed limit wasiedium(51-79 KPH); median was asland crash
positions were antersections signals were unddtash operation road surfaces weneet,
roads hado obstructionssight distances wemgood and drivers were under the conditions
of wearing seatbeltsjot talking on their cell phonesdnot drinking

These results may suggest that the accidents wa@hgspatterns, i.e. high rule strength,
are most likely related to high-risk drivers. Yousmgd male drivers, compared with elderly
and female drivers, respectively, have been idedti&s high-risk drivers in many studies
(Massie et al., 1995; Massie et al.,, 1997; MurdE897; Kim et al., 1998; Laapotti and
Keskinen, 1998; Shinar and Compton, 2004). Drieersoad without a valid driver license
have explicitly exhibited risky behavior. The raaavironment between midnight and dawn
has been associated with a more risky driving emvrent compared with driving during
daytime (Lin and Fearn, 2003; Keall et al., 2008though drivers who drive between
midnight and dawn can not be automatically considexs high-risk drivers, there is a high
possibility that more high-risk drivers are amohgrh since a relatively high percentage of
these drivers are driving for no specific purpdseother words, they are probably enjoying
the night lifestyle and not driving for school, mess or other necessary purposes.

In addition, accidents associated with strong pasteccur under conditions that may
not appear for average or conservative driversoboous causes from the road or natural
environment were found in these patterns — nehstructions on the road nor poor sight
distance. Interestingly, these drivers were natgisell phones, had not drunk alcohol and
were wearing seatbelts. This shows that they watienal drivers and were following the
law. In particular, it might reflect the cultureffdrences in drinking — drinking is probably
not as common for the young males in Taiwan asethosWestern countries. As to the
accident location, the findings met our expectatiaingle vehicle accidents occur more
likely on road segments than at intersections. may result from the fact that traffic flows
at intersections are more complicated and subjectmbre conflicts; consequently,
multi-vehicle accidents are more likely to happénngersections. However, since most
SAV accidents with strong patterns at intersectiotmsed out to be collisions with road
facilities, this implies that facilities near insexctions may be the critical contributing factor
for high-risk drivers, especially during the nighken traffic is low, which encourages fast
driving for some. Moreover, a wet road surface e@ases the difficulty of maneuvering a
vehicle. The relatively high percentage of wet @cek as a factor in the occurrence of
accidents with strong accident patterns may imbpét the drivers have immature skills or
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that they are overconfident.

TABLE 4-6 Accident Characteristics for Whole and Patitioned Accident Groups

Condition attribute

Category

Whole dataset

Weak pattern
(Strength = 1-2)

Medium pattern
(Strength = 3-23) (Strength = 25-35)

Strong pattern

>0 (%) (%) (%)

Under 0.3 0.5 0.2 0.0

Young 60.3 59.9 60.9 67.4

Age Middle-aged 32.2 29.7 33.1 26.5
Elderly 6.5 8.8 5.4 5.7

Other 0.7 1.1 0.4 0.4

Gender Male 86.0 84.3 86.3 95.1
Female 14.0 15.7 13.7 4.9

Regular 81.6 80.8 80.6 80.8

License type Occupational 6.9 7.2 7.4 4.9
Military 0.4 0.7 0.3 0.4

Other 11.1 11.3 11.7 13.9

Valid 86.7 87.3 85.4 84.5

License condition Invalid 8.0 8.0 8.7 14.3
Unknown 5.3 4.7 5.9 1.2

Student 4.0 6.5 2.8 3.3

: Working people 69.1 51.1 55.7 67.3
Oceupation No job 8.1 8.2 7.9 5.7
Unknown 18.8 34.2 33.6 23.7

Work 7.3 6.0 8.7 6.1

School 0.4 1.3 0.0 0.0

Social 9.0 9.1 8.9 8.2

Trip purpose . Shop. 1.9 2.8 15 1.6
Sightseeing 4.8 4.7 4.8 2.4

Business 2.1 2.1 2.0 2.4

Other 52.5 50.8 51.6 67.9

Unknown 22.0 23.2 22.5 11.4

Morning peak 5.8 5.2 6.8 1.6

Day offpeak 21.5 22.3 19.0 18.0

Trip Time Afternoon peak 10.7 13.7 9.0 13.1
Night offpeak 15.8 15.9 16.0 12.2

Midnight to daybreak 46.2 42.9 49.2 55.1

Protect equipment Use 83.8 85.8 82.0 90.2
use No use 3.8 4.1 4.3 2.9
Unknown 12.4 10.1 13.7 6.9

Use 0.9 0.5 11 0.8

Cell phone use No use 87.1 88.7 86.1 93.5
Unknown 12.0 10.8 12.8 5.7

Drinking Drinking 28.2 26.8 27.3 26.1
condition Not drinking 61.5 62.6 60.5 72.2
Unknown 10.3 10.6 12.2 1.7

Highway 7.7 5.5 9.5 9.0

Road type Other 92.3 94.5 90.5 91.0
50- 55.4 59.9 55.2 29.8

Speed limit 51-79 37.0 34.1 35.8 60.4
80+ 7.6 6.0 9.0 9.8

Intersection 20.6 19.6 22.4 31.0

Road shape Segment 79.0 79.4 77.5 69.0
Ramp or other 0.4 1.0 0.1 0.0

Surface deficiency Normal 98.7 97.4 99.1 99.2
Other 1.3 2.6 0.9 0.8
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Table 4-6 Accident Characteristics for Whole and Partition&l Accident Groups (Contd.)

Whole dataset Weak pattern Medium pattern Strong pattern

Condition attribute Category (%) (Strength = 1-2)  (Strength = 3-23) (Strength = 25-35)
(%) (%) (%)
Dry 86.6 87.3 84.3 77.6
Surface status Wet 13.0 12.2 15.5 22.4
Other 0.4 0.5 0.2 0.0
Obstruction Yes 94.6 93.0 94.8 97.6
No 5.4 7.0 5.2 2.4
Good 89.6 87.9 89.7 93.9
Sight distance Bad 8.3 7.7 9.1 4.1
Unknown 2.1 4.4 1.2 2.0
Regular 9.8 6.9 12.0 14.3
Signal type Flash 7.0 6.9 7.5 25.3
No signal 83.2 86.2 80.5 60.4
Normal 15.9 12.1 18.6 39.6
Signal condition Abnormal 0.2 0.3 0.2 0.0
No signal 83.9 87.6 81.2 60.4
Island 34.0 27.2 38.0 59.2
Median Marking 45.9 49.9 42.2 15.1
None 20.1 22.9 19.8 25.7
Roadside marking Yes 57.3 54.6 58.1 56.3
No 42.7 45.4 41.9 43.7
Sunny or cloudy 88.8 88.7 86.9 84.1
Weather Rainy 10.3 10.1 11.9 15.9
Other 0.9 1.2 1.2 0.0
. " With light 86.8 85.6 86.5 81.6
Light condition No light 13.2 14.4 13.5 18.4

4.3.3 Results of Multinomial Logistic Regression

To further explore the characteristics for each-dataset, multinomial logistic
regressions are conducted for a variety of cludtaceidents. Five models were devised and
tested, including base model (whole dataset, 23%63), weak strength model (619 cases),
medium strength model (1451 cases), weak plus medmodel (2070 cases) and medium
plus strong model (1697 cases). For fair compasisafli models were estimated with an
identical specification which was developed basedhe whole dataset. Based on concerns
about sample size and the limitation of logistigression, only those attributes showing up
in over 35% of the rules were considered, whichuithed age, trip time, drinking condition,
speed limit, road shape, median and roadside nwarkitoreover, to avoid empty cells,
some small categories which represented uncleadittmms, such as unknown or other,
were excluded (413 cases were excluded). Thehiked ratio test at the significance level
of 0.10 was adopted to select the variables. ®salted in five variables being included in
the final specification. They were, age (young, dfedaged, elderly), trip time (peak,
off-peak, midnight), drinking (not drinking, drimkg), road shape (intersection, segment)
and median (island, marking, none). The estimat&sults for the proposed models are
shown in Table 4-7, where the reference accidgme tyas set to theollision with road
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facility. All models were shown to be well fitted basedtb@ ,° goodness of fit tests at
the significance level of 0.10. Overall, some digant differences were observed among
the models.

From the results of the base model in Table 4-Fersé¢ factors contributing

significantly to a variety of accident types coblel clearly identified. They were interpreted,
based on the comparison to collisions with roaditi@s, in detail as follows:

1.

Young drivers, compared to collisions with roadiliaes, were more likely to be
involved in rollover accidents. The odds of a maddbed driver involved in rollover
crashes was 0.547 times that of a young drives Bhtonsistent with past studies that
young drivers exhibit higher percentages of rolloaecidents (Farmer and Lund, 2002)
than other age groups.

The odds ratios show that midnight accidents wergenlikely to be related to
collisions with structures, and daytime accidenesevmore likely to be off-road and
rollover accidents. These findings can be relatedisibility of structures which are
not as easily identified during the night time camgal to regular road safety facilities.
On the other hand, since fixed facilities can bé&ebpespotted and avoided during
daytime, both off-road and rollover accidents aenikely to occur than collisions
with road facilities. This may suggest that duridaytime, drivers themselves, not road
facilities, play a key role in the occurrence aigde auto-vehicle accidents.

Drunk drivers tend to lose situational awarenessae much likely to lose control of
their vehicles and hit structures or generate @didraccidents compared with crashing
into road facilities. The odds of a drinking drivarolved in collisions with structures
and in off-road crashes compared to collisions wihd facilities were 1.785 and
1.395 times respectively the odds a not-drinkingedrwould.

Intersections, where more road facilities (suckraféic lights) are expected and where
vehicles tend to slow down, are more likely to haweé#lisions with road facilities. On
the other hand, off-road and rollover accidents e likely to occur on road
segments. These results were clearly shown in adisvalues.

Referring to collisions with road facilities, thew odds ratios (0.295, 0.177 and 0.259)
clearly suggest that roads with median islands caignificantly reduce collisions
with structures, work zones and off-road accideftss result reflects the fact that
higher road standards with better safety facilitie$p reduce some accidents, but will
also create pitfalls if the safety facilities a properly provided.
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TABLE 4-7 Estimating Results of Multinomial Logistic Regression Models

Whole (Base) Weak strength Medium strength W+M M+S
Accident type Coeff. ?ﬁ[i(is Coeff. (r)a(:i(j)s Coeff. ?ﬁ[i(is Coeff. (r)a(:i(j)s Coeff. ?ﬁ[i(is
Structuré Intercept  -2.456** 0.952* -3.433** -2.304** -3.574**
Age Middle-aged 0.060 1.061 0.292 1.339 0.376 1.457 0.021 1.021 0.420 1.521
Elderly -0.236 0.790 -0.840 0.432 -0.159 0.853 -0.263 0.769 -0.140 0.869
Trip time Peak period -0.430* 0.651 -0.429 0.651 -1.449** 0.235 -0.454* 0.635 -1.443** 0.236
Off-peak period -0.063 0.939 -0.031 0.969 -0.431 0.650 -0.096 0.909 -0.408 0.665
Drinking Drinking 0.579** 1.785 0.292 1.340 0.766** 2.151 0.549* 1.732 0.801** 2.228
Road shape Intersection -0.204 0.815 0.889** 2.433 -0.758* 0.469 -0.151 0.860 -0.825* 0.438
Median Island -1.222** 0.295 -1.120** 0.326 -2.005** 0.135 -1.194** 0.303 -2.061** 0.127
Marking 0.316 1.372 -0.769* 0.463 0.559 1.749 0.238 1.269 0.630* 1.877
Non-fixed object Intercept -4.724** -1.654* -22.207** -4.614** -22.256**
Age Middle-aged 0.168 1.182 0.935 2.548 3 - 0.151 1.163 - -
Elderly 0.925 2.523 0.770 2.160 - - 0.949 2.583 - -
Trip time Peak period -0.951 0.387 -0.802 0.448 - - -0.974 0.378 - -
Off-peak period 0.391 1.479 0.545 1.724 -0.411 0.663 0.374 1.454 -0.408 0.665
Drinking Drinking -0.452 0.636 -0.254 0.776 - - -0.477 0.621 - -
Road shape Intersection -0.858 0.424 0.231 1.260 - - -0.827 0.437 - -
Median Island -0.804 0.448 -0.848 0.428 16.728** 1.8E+07 -0.726 0.484 16.650** 1.7E+07
Marking 0.031 1.032 -0.922 0.398 17.507**4.0E+07 -0.021 0.979 17.490 3.9E+07
Work zone Intercept  -4.091** -0.913 -4.984** -3.941** -5.156**
Age Middle-aged 0.784 2.191 1.139* 3.123 0.892 2.441 0.723 2.061 0.977 2.657
Elderly 0.973 2.646 0.761 2.140 - - 0.927 2.526 - -
Trip time Peak period -0.327 0.721 -0.376 0.686 -0.802 0.449 -0.379 0.685 -0.771 0.463
Off-peak period -0.209 0.811 -0.036 0.964 -1.382 0.251 -0.250 0.779 -1.358 0.257
Drinking Drinking -0.889 0.411 -0.427 0.653 - - -0.913 0.401 - -
Road shape Intersection -0.174 0.840 0.713 2.041 0.225 1.253 -0.125 0.882 0.157 1.170
Median Island -1.729** 0.177 -2.537** 0.079 -0.485 0.616 -1.670** 0.188 -0.482 0.617
Marking -0.619 0.538 -1.550** 0.212 -0.416 0.660 -0.673 0.510 -0.340 0.712
Off-road Intercept  -1.770** 1.468** -2.596** -1.654** -2.703**
Age Middle-aged -0.121 0.886 0.144 1.155 0.071 1.074 -0.147 0.863 0.095 1.099
Elderly 0.214 1.239-0.336 0.714 0.233 1.263 0.203 1.225 0.237 1.267
Trip time Peak period 0.391**1.479 0.005 1.005 0.360 1.4330.377* 1.458 0.363 1.438
Off-peak period0.464* 1.590 0.105 1.110 0.587** 1.799 0.443** 1.558 0.603** 1.827
Drinking Drinking 0.333** 1.395 -0.293 0.746 0.655** 1.926 0.303** 1.354 0.687** 1.988
Road shape Intersection -1.1249.325 0.166 1.180 -1.587** 0.204 -1.075** 0.341 -1.634** 0.195
Median Island -1.350**0.259 -1.148** 0.317 -1.471** 0.230 -1.284* 0.277 -1.561** 0.210
Marking -0.167 0.847 -1.125** 0.325 0.011 1.011 -0.216 0.806 0.054 1.056

' The reference category for accident type is coltiswith road facility, for age is young, for triprie is

midnight, for drinking is not drinking, for road ape is segment, and for median is no median.

2 * significance level for Wald y* statistic at 0.10; ** significance level for Walg® statistic at 0.05

3 . zero accident count for that accident type aorthidion attribute category
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Table 4-7 Estimating Results of Multinomial Logistic Regresion Models (Contd.)

Whole (Base) Weak strength Medium strength W+M M+S
Accident type Coeff. ?ﬁ[i(is Coeff. ?ﬁ[i(is Coeff. (r)a(:i(j)s Coeff. ?ﬁ[i(is Coeff. ?ﬁ[i(is
Rollover Intercept -3.198** 0.337 -6.386** -3.088** -6.529**
Age Middle-aged -0.604** 0.547 -0.077 0.926 -0.751 0.472 -0.615** 0.541 -0.719 0.487
Elderly -0.235 0.791 -0.758 0.469 -0.400 0.670 -0.198 0.821 -0.468 0.626
Trip time Peak period 0.352 1.422 -0.038 0.963 0.872 2.393 0.355 1.427 0.851 2.343
Off-peak periodl.078** 2.937 0.874* 2.396 1.853** 6.378 1.067* 2.908 1.870** 6.490
Drinking Drinking  -0.574* 0.563 -0.508 0.602 -19.701 0.000 -0.606* 0.546 -19.670 0.000
Road shape Intersection -0.889** 0.411 -0.131 0.878 -0.213 0.808 -0.875** 0.417 -0.155 0.856
Median Island -0.289 0.749 -0.293 0.746 0.832 2.298 -0.228 0.796 0.779 2.180
Marking -0.121 0.886 -0.948* 0.387 1.158 3.185 -0.177 0.837 1.237 3.447
Other Intercept -3.373** 0.253 -5.367** -3.218** -5.523**

Age Middle-aged 0.237 1.267 0.602* 1.825 0.941* 2.563 0.205 1.227 0.991* 2.693

Elderly 0.924* 2520 0.562 1.754 - - 0.902* 2.464 - -
Trip time Peak period 0.272 1.313 0.036 1.036 -0.508 0.602 0.236 1.266 -0.484 0.617
Off-peak period-0.122 0.886 -0.285 0.752 -0.105 0.900 -0.147 0.863 -0.077 0.926
Drinking Drinking 0.162 1.176 -0.037 0.963 -0.066 0.936 0.134 1.143 -0.043 0.958
Road shape Intersection 0.170 1.185 1.104* 3.016 0.170 1.186 0.188 1.207 0.144 1.155
Median Island -0.233 0.792 -0.216 0.806 -0.920 0.398 -0.202 0.817 -0.968 0.380
Marking 0.363 1.437 -0.655 0.519 0.870 2.386 0.286 1.331 0.945 2.574

Additionally, results from models with different leu strengths show some very
interesting characteristics of accidents and wks®@ @bserved and are worth noting.

1. The results from the weak strength model showedyndgferences. This may imply
that the characteristics of accidents occurringquelly are highly different from
accidents with medium or strong rule strength. Hge, trip time and drinking
attributes played insignificant roles in differexting the accident types, except work
zone accidents, under the weak strength modelh®other hand, road-facility-related
attributes (including road shape, median island ametlian marking) contributed
significantly in differentiating the accident typesder weak strength accidents. This is
consistent with the fact that the occurrence ofkwede strength accidents is rather
stochastic on poorly constructed roads.

2. In comparing the medium plus strong model with thedium strength one, the
differences were slight. It may be because of #ut that the sample size of accidents
with strong strength was relatively small (7.86%tbé total accidents). The only
difference was the occurrence of collisions wittustiures on the roads with median
marking. The significantly high possibility of dexs associated with the strong rule
strength being involved in collisions with struasrsuggests that there is a small
portion of high-risk drivers who may easily igndahe unfavorable road attributes.
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3. The median island attribute showed very consisestimation results among all
models. Almost all coefficients under this categesre negative and significant. This
may suggest that the relatively higher safety steasl of roads with median islands
reduce the occurrence of facility-irrelevant acoide

4. Except for the weak strength model, the interseciicea which is equipped with more
facilities than road segments is consistently primnthe occurrence of facility-related
accidents.

5. Except for the weak strength model, the drinkingilaite showed positive signs
towards the structure and off-road types undemaliiels. This may result from the fact
that drunk drivers usually drive faster, have lowapability of handling their vehicles
and are in lower awareness of traffic and road itiomd.

6. As for the trip time attributes, the coefficients aff-road and rollover types were
consistently and positively significant among mastdels during off-peak periods.
This may suggest that drivers themselves, ratlaar the road environment (structure,
work zone, facility, etc.), play the key role inetloccurrence of single auto-vehicle
accidents.

In summary, the findings from multinomial logistiegression analyses indicate that
drivers involved in accidents with strong rule sg#h are at somewhat high-risk, although
the sample size compared to general drivers igddnand only part of their associated
attributes can be specifically identified. Therefocorresponding countermeasures may be
focused on enhancing drivers’ awareness of pofettigeats on roads and on their
dangerous driving behaviors. On the other handag found that rather than the driver and
trip characteristics, road facilities — such as @ednd roadside marking — play the key
role in accidents associated with weak rules. Thugrovement in the quality of road
maintenance may prevent such accidents. It is thedrcountermeasures designed to target
accidents with strong and with weak rules shoutifoon different preventive aspects.

4.4 Causality of Taiwan Single Auto-Vehicle Accidets

4.4.1 Data

The 2005 Taiwan single auto-vehicle (SAV) acciddaiia was adopted to demonstrate
the feasibility of the proposed approach for aagideausality analysis. In particular,
accident severity was considered as the targedhblarior this study. The primary reason of
replacing the dataset used in the previous twaosectvith another dataset is that the rule
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support is extremely low except the bump-into-facicrash type. It demonstrates the
uniqueness of those accident types and might rigsthie void of rules with relationships.

The 2005 Taiwan single auto-vehicle (SAV) acciddatia was also collected by police
departments including all the death involved andrinonly accidents. The total number of
SAV accidents, excluding invalid cases, was 3,138 number of invalid cases was 27,
which accounted for 0.86% of the total cases. Thases were invalid mainly due to the
unknown attribute values of the driver’s charast&rs. They were directly ignored in the
study based on their relatively small size. Thdectéd attributes and their corresponding
categories are summarized in Table 4-8.

TABLE 4-8 Attribute and Category

Attribute

Category

Age

Under (<18), Young (18-35), Middle-aged (36;3=derly (>55)

Gender

Male, Female

License type

Regular, Occupational, Other

License condition

Valid, Invalid, Unknown

Occupations

Student, Working people, No job, Unkmow

Trip purpose

Necessary (Working, school, businé€dsjer

Trip time

MP (07-09), DOP (09-16), AP (16-19), NQI®-23), Midnight (23-07)

Seat belt use

Fastening, Not fastening, Unknown

Cell phone use

Using, Not using, Unknown

Drinking condition

Drinking, Not drinking, Other

Road type Highway, Urban, Rural
Speed limit 50-, 51-79, 80+
Road shape Intersection, Segment, Ramp or other

Pavement material

Asphalt, Other, No pavement

Surface deficiency

Normal, Other (e.g. holes, sof so on)

Surface condition

Dry, Wet or other

Obstruction

Yes, No (within 15 meters)

Sight distance

Good, Poor (based on road desigrd$pe

Signal type

Regular, Flash, No signal

Signal condition

Normal, Abnormal, No signal

Median

Island, Marker, Marking, None

Roadside marking

Yes, No

\Weather

Sunny or cloudy, Rainy, Other

Illumination

With light, No light

Alignment

Straight, Curved, Other

Accident severity

Death involved, Injury only

4.4.2 Classification with Rough sets

The Taiwan 2005 SAV accident data was first analymgth rough sets theory to
generate a minimum rule set covering all objectsis Tanalysis consisted of two steps:
variable selection and rule induction. The forntepsvas to identify the variables that were
unable to differentiate the accident severity. Ha ainalysis, four out of 25 variables were
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identified as redundant, includiqgavement materialsurface deficiengysignal condition
andweather conditionwhich may arise from the following two reasonsst: their effects
could be replaced by other variables. For exantpke effect of theveathervariable could
be substituted by that of treurface conditiorvariable since raining would result in wet
surface. It is understood that the weather conditieould affect not merely surface
conditions; for example, strong wind or large srfalvwould raise the difficulty on drivers’
control of their vehicles. However, these weathenditions rarely appear in Taiwan. The
second reason was that these redundant variabtesidhaignificant impact on accident
severity. For example, 98.6% and 98.5% of the actgl were reported on roads with an
asphalt pavement and on roads without surface idefig respectively. Therefore, the
pavement materiabnd surface deficiencyariables were reported as redundant. After
excluding the four redundant variables, the remgin2l variables were considered in
generating rules.

With 21 non-redundant explanatory variables, 31&srwere generated with rough
sets theory to represent the 3,138 accident cases.study applied the most frequently
used algorithm — minimum covering — to generategults aim was to generate the
minimum number as well as the shortest length @&srto cover all accidents. Of which,
295 rules were exact rules and 20 were approxindgs. An exact rule refers to a situation
that the severity of an accident could be iderdifimder a particular circumstance. On the
other hand, an approximate rule represents a rart@umstance under which the accident
severity could not be uniquely determined.

The rule support histogram was shown in Figure ¥A&re the number of rules in the
vertical axis is shown against the number of suppbe horizontal axis. The right-skewed
shape showed that most rules were of low suppdastiggests that most SAV accidents hold
relatively unique patterns. On the other hand, sartes showed high support even though
21 factors were considered.

no. of rules
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° Median=6.00
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FIGURE 4-2 Rule support.
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4.4.3 Determination of Rule Support Threshold for Différating Accidents

For the purpose of analysis, the accident cases s&parated into two subsets: one
subset includes accidents of support high enougin shat their relationship could be
claimed; the other subset consists of the remaiagc@dents whose relationship may not
exist. The choice of threshold of rule support watermined by examining the average hit
rate of accidents related to different levels opmut. The whole data were first tested.
Second, accidents related to rule support of orre excluded, and the remaining accidents
were tested. Then, accidents related to rule stipgss than or equal to two were excluded,
and the remaining accidents were tested. The tegincied until the accidents related to
rule support less than or equal to nine were excudn each test, decision trees were
employed to obtain the average hit rate with MdDé&elo simulations of 2000 times; 75%
of cases were selected for training and the remgifb% of cases were adopted for testing
for each simulation. Moreover, a reference average hit rate was atdatecomparing the
improvement. A reference hit rate was obtaineddsying data randomly selected from the
original dataset with specified sample size andryifleath case ratio. The sample size and
injury/death ratio was determined by the aforenwemail dataset selected by rough sets rules
as shown in Table 4-9.

TABLE 4-9 Dissimilar Strong Rules Leading to Deathor Other

Data Included cases Sample size Injury/Death
Total Injury | Death ratio
Whole Whole 3138 2834 304 9.32
Gl Support > 1| 3010 2776 234 11.86
G2 Support > 2| 2940 2772 168 16.50
G3 Support > 3| 2907 2771 136 20.38
G4 Support > 4| 2867 2767 100 27.67
G5 Support > 5| 2837 2755 82 33.60
G6 Support > 6] 2800 2741 59 46.46
G7 Support > 7| 2773 2736 37 73.95
G8 Support > 8| 2757 2720 37 73.51
G9 Support > 9] 2725 2715 10 271.50

The average hit rate was shown in Figure 4-3. Tiheate for data selected by rough
sets rules was illustrated with solid lines; thizrence hit rate was drawn with dotted lines.
It could be observed that the average hit rates wecreasing with the exclusion of
accidents related to low support rules, especialtythe minority class — fatal accidents.
Especially, when accidents related to rules graater five (G5) or seven (G7), the average

" Stratified random sampling was employed to pariitiata into training and testing groups. Thaf ¥ of
injury only cases were randomly chosen for trainengd so for 75% of death only cases.
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hit rate of death involved cases significantly eased as labeled with solid circles in the
graph. Although the G7 point showed relatively digant increase, the G7 data consisted
only 37 death involved cases. On the other harelGh data contained 82 death involved
cases and raised the hit rate from 0.2 to arouBd Therefore, the support of six was
considered as the threshold to differentiate betwakes. That is, accidents related to rules
with support greater or equal to six were conside® high-support-rule accidents.
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FIGURE 4-3 Average hit rate with respect to accidets related to rules with different
support.
* RS_Death, RS_Injury, and RS_Overall refer to #werage hit rate for death involved, injury onlpda
overall cases selected by rough sets rules, reégplgctRef_Death, Ref_Injury, and Ref_Overall referthe

average hit rate of reference for death involvejliry only, and overall cases, respectively.

4.4.4 Rule Comparison for High-Rule-Support Accidents

Among all the 315 rules, 164 of them were strodgs;ul9 of those strong rules led to
death involvedor other accidents, and the remaining 145 strong rulestdeishjury only
accidents. The following comparisons focused ondifferences betweetleath involvecr
other accidents andnjury only accidents. In other words, the possible causdaiofac
diverting aninjury only accident to a@eath involvear otheraccident were examined

The rules having no similarity tmjury only rules and the remaining 16 strong rules
were demonstrated in the following two paragrapéspectively.
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1. Dissimilar death involved or other rules

There were thredeath involvedr otherrules having no similarity tmjury only rules
as listed in Table 4-10. The first dissimilar rul2]l, describes the young working drivers
who were drinking and might be using cell phoneasily on a curved road with poor sight
distance but with lighting. While normal drivers wd lower their speeds to safely pass a
curve, the leading-to-death rule suggests thatdneesponding driving speeds would not be
low. Moreover, the curved road with poor sight alste raised the difficulty of driving.
Although there were another 10 strong rules redgatoncurved roads and leadingitgury
only cases, none of them were specified as young dgn#trivers. This might suggest that
these drivers can easily misjudge the safe drigipged and can not properly maneuver the
vehicle while passing a curve with a poor sightafise.

Seen in Table 4-10, the D2 and D3 rules descrieectirespondingleath involved
accidents occurring under the condition that tinreeds were not wearing seatbelts and were
possibly drinking driving. Fastening the seatbeld arinking driving have long been
critical policy issues for the government of Taiwaiolating either one, especially the latter,
leads to a substantial fine. Therefore, it is ekpe@dhat these two unlawful behaviors
occurring at the same time, as described in D2R®&dwill be rare. However, committing
both these violations, whether combined with arnrianélly road environment or not, a
death involveatase would likely occur.

TABLE 4-10 Dissimilar Strong Rules Leading to Deathor Other

Rule
Attribute' D1 D2 D3
Age Young -- --
Occupation Working -- --
Seat belt use -- Not using Not using
Cell Unknown Unknown --
Drink Drinking Unknown Unknown
Road type -- -- Rural
Sight distance Poor -- --
lllumination Yes - Yes
Alignment Curved -- --
Severity Death Death Death

! The attributes where all the three rules were eciipd were not represented to reduce the space.
2. Similar death involved or other rules

There were l@leath involvedor other rules similar toinjury only rules as listed in
Table 4-11. The S1 and S2 rules were the rules siwwglar toinjury only rules; these two
rules had been cited as similar rules by injuryyanles for 47 and 46 times, respectively.
The rule S1 illustrated the condition that regwalid-licensed young male working drivers
driving with unspecified purposes and wearing selggthad been drinking alcohol and were
driving around midnight on straight rural roadsl@awv speed limits, dry surface, median
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marking, and no signals. Although this describaskilig and driving behaviors, drinking
itself can not fully represent the cause shiftihng accident to a fatal one. By looking into
the strong rules, some of them also related tokihgnand driving behavior; however, as
long as the drivers were not young people, it was midnight, the quality of the
corresponding road environment was not poor (tevas a urban road, a road with a
median island, or a road at a higher speed limit}he surface was not dry, the accident
severity was shown to bejury only. When the driver is young, the corresponding b&mav
could be somewhat risky and a more risky drivingiremment is usually associated with
midnight driving (Lin and Fearn, 2003). Moreoverr@ad with poor quality could not
mitigate the bumping impact of an accident; andmine surface is dry, it might encourage
fast driving especially under low traffic (midnigbh rural roads). Therefore, the combined
unfavorable factors led weath involvedccidents.

As stated, the rule S2 illustrated a condition v&rygilar to S1. These two rules were
almost identical except that the rule S2 did natcdy the drinking behavior, but specified
that the corresponding road environment may engeufast driving — low traffic and good
sight distance (around midnight driving along aaigint rural road with illumination and
roadside marking). Though the corresponding drivas not specified as drinking, the
possibly more speedy driving behavior also ledeath involvedccidents.

In contrast to the first two rules, the rules S8 &4 illustrate the accidents occurring
on high-quality roads (highways or urban roads wigdian islands). The driving speeds on
these roads are usually high especially on highwatfs a minimum speed of 80 kph. The
high driving speeds combined with the impaired mapeing skills, as well as lower
situational awareness due to drinking, once andaatioccurs, a@eath involvedcase is
expected. When compared to their similar rulessedeath involvedases could be merely
injury only if the driver was not a young male (middle-agddely or female), if the road
was narrower (an urban road without roadside mgjkior if the road did not mislead
drivers to drive at an inappropriately high speldving either one of the factors could
reduce the driving speeds or make the drivers dngee carefully.

The rules S5, S6 and S7 describe the conditiont ttiea accidents occurred on
low-speed-limit rural roads or in a low traffic eronment (midnight) except that the trip
purposes were unspecified, the drinking conditimese unknown, and the seatbelt usages
were unknown. By looking into their similar ruleall else equal, the S5, S6 and S7
accidents becamejury only if the driver did wear a seatbelt or if the driveas certainly
not drinking. This addresses the effect of injumgvention by wearing a seatbelt and
avoiding the deteriorated maneuvering skills ad agllower situational awareness due to
drinking.
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TABLE 4-11 Strong Rules Leading to Death or Other

Rule
m\ s1 ) s3 sS4

S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S1516
Age Young Young Young Young Young Young Young Young - - - - Young Middle Young --
Gender Male Male -- Male Male Male - - Male Male Male - Male - - -
License typeRegular Regular Regular Regular Regular -- Regular - - Regular Regular - -- -- -- --
License con. Valid -- -- -- -- -- - - - - - Valid - - Valid -
Occupation Working Working -- Working -- Working Working Working Working - Working Working Working -- -- --
Purpose Other Other  Other -- -- -- -- - - Other - - -- -- -- --
Time  Midnight Midnight Midnight Midnight -- Midnight -- DOP Midnight - - NOP -- -- Midnight Midnight
Protection Using  Using -- Using Unknown Unknown Unknown Using - - Unknown - -- -- -- Unknown
Cell -- - Not usingNot using - Unknown -- - Unknown Unknown - Unknown Unknown Unknown Unknown --
Drink  Drinking - Drinking Drinking Unknown -- Unknown  -- - - Unknown Drinking Unknown Unknown Unknown --
Road type Rural Rural Urban Highway Rural -- Rural Highway Highway - - - -- Rural -- --
Speed -50 -50 - - -50 - - 80+ -- - 51-79 -50 - -50 51-79  51-79
Road shape -- Segment Segment Segment Segment Segment Segment Segment - - Segment - -- Segment  -- Other
Surf. status Dry Dry -- Dry -- -- -- Dry -- -- -- -- -- -- -- --
Obstruction - - No -- -- No -- - - No - - - - - -
Sight dist. -- - -- -- Good Good Good - - Poor Good - Good -- -- --
Signaltype No No -- -- No -- No - - - - - - - - -
Median Marking Marking Island -- -- Marking -- Island  Island - - - -- -- Island  Island
Rd. side - Yes Yes - - Yes Yes -- - - - - No - - -
lllumination  -- Yes Yes -- Yes - - - - No - - Yes - - -
Alignment Straight Straight Straight -- -- -- -- - - - - - -- -- -- --
Severity Other Other Other Other Death Death Death  Other  Death Death Death  Death  Death Death  Death  Death
Similarity 47 46 18 16 11 7 7 7 3 3 3 2 1 1 1 1

!Similarity referred to the number of rules whichrevsimilar to this rule but led to injury only ches.



The rule S8 describes young working people drivinghighway segments with a dry
surface during day off-peak periods and wearingbsdta. When compared to the similar
rules, all else equal, the accidents becamey only cases if the driver was certainly not
drinking, if the driver owned an occupational oditary driving license, or if the trip time
was during the afternoon peak hours. Only soldiergharge of driving can obtain a
military driving license, therefore, under a higtesd-driving environment, drivers with
occupational or military licenses are expecteddonmre capable to avoid fatal accidents
than normal drivers once an accident occurs. Maedke traffic flow during peak hours is
denser than that during off-peak hours; conseqyettité corresponding driving speed is
expected to be lower. Once an accident occurssekerity should be less severe.The rule
S9, similar to S8, describes the accidents thatiroed on highways, but the drivers were
specified as male drivers instead of young drivensyeover, the trip time was around
midnight rather than off-peak periods during thg. d&hen compared to its similar rules,
the S9 accidents could become less severe ififhértre was during afternoon peak periods.
The denser traffic during peak hours might resttiet driving speed. Even though the
drivers could be of high risk (young or male drs)erthe environment might limit their
driving speeds and the corresponding accidentstmigfrbe fatal.

The rule S10 describes the regularly-licensed rdalers driving on poorly-sighted
roads without any obstructions on the roads. Whampared to its similar rules, all else
equal, the accidents could be less severe if tlvere obstructions on the roads. According
to the definition, obstructions are defined as abgtacles within 15 meters of the crash.
This distance is much shorter than the defined sigfe distance which is 45 meters under a
normal 40-kph driving speed, and a driver mighttsii® obstacles and lower his/her
driving speed. On the other hand, the male dridensng at relatively high speeds, even
though the road has poor sight distance, resutfatal accident.

The rule S11 describes regularly-licensed workingogte driving on a
medium-speed-limit road with good sight distanas. dimilar rules suggest that these
accidents could be less severe if the drivers veer¢ainly not drinking. Similarly, the
accidents under the rules S12 and S13 would beséagse if the drivers were certainly not
using cell phones or not drinking driving. The desits under the same driving
environment described by S15 were less severeeifdtivers were the elderly, who are
usually considered to be of lower risk than youngeis. Even under a road encouraging
fast driving (medium speed limit with median islandhe elderly drivers might drive
carefully and maintain a reasonable driving spebiievithe young drivers might not.

The information provided by the remaining rules4Sihd S16, is relatively vague
since most attributes were unspecified and all bledhavioral attributes were either
unspecified or unknown. Moreover, the associatetlai rules were different in behavioral
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attributes. Therefore, it is relatively difficulp ttell the differences between the selected
rules and their associated similar rules.

4.4.5 Logistic Regression Analysis for the Remaining deitis

Different from the accident cases with strong chusiationships, the 363 accidents
associated with the weak support rules or the aqupaie rules were analyzed with
regression methods to investigate the possiblecedsms between factors and extract the
variations due to insufficient information. In paular, binary logistic regression models
were adopted. The model structure was revised fhenone proposed by Kiet al (1995)
where the accident severity was affected by drislearacteristics, trip characteristics,
behavioral factors, environmental factors, andratgons between driver and behavioral
factors. Backward elimination was applied to selectables.

The reference severity wagury only and the estimation results were summarized in
Table 4-12. The estimated Hosmer-Lemesipovalue was 0.293 (> 0.100) which indicated
the goodness of fit was acceptable. The final egmincluded age, trip time, signal type,
surface status, median, roadside marking, andhtbeaction between age and drinking. The
results showed that accidents with rarely occurqiagterns and those with frequently
occurring patterns were different. Young drivergevkess likely to be involved in @death
involvedcase provided that they were not drinking. Yetarthe condition that the young
drivers were drinking, they would be more likelyle involved in adeath involvedcase.
Moreover, the accidents occurred around midnigbifzared to other time periods) were
less likely to be involved in death involvedaccident. These two results contradicted the
results of the previous section that young drivaerd midnight accidents were death-prone,
which may imply distinct features between these types of drivers.

Furthermore, accidents occurring on roads havimyyasurface (compared to wet or
other surface conditions) and with roadside marKomgmpared to roads without roadside
marking) were less likely to b#eath involvedaccidents. On the other hand, those accidents
that occurred on roads with warning flash signed¢si{pared to no signals) and with median
markers (compared to no medians) were more likelyatdeath involvedaccidents. A road
with warning flash signals indicates possible tcafonflicts within the area and the signals
warn the drivers to pay attention. In additionpad with median markers implies that this
section of the road is rather dangerous, and th&erawarn the drivers not to drive across
the centerline. These results suggested that erlvetid environment seems to help prevent
such death involved accidents.
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TABLE 4-12 Logistic Regression Estimation Resutt

Odds
Parameter Estimate P-value . 95% Wald
Odds ratio ) .
confidence interval
Intercept 2.841 <.0001%| 17.124 6.426 49.844
Age (Young vs. Middle or OId) -1.099 0.002** 0.333 0.164 0.662
Trip time (Midnight vs. Other) -0.786 0.004* 0.456 0.267 0.777
Signal type (Regular vs. None) -0.544 0.216| 0.578 0.243 1.377
Signal type (Flash vs. None) 1.583 0.0407* 4.871 072. 22.137
Surface status (Dry vs. Other) -0.942 0.009f* 0.390 0.193 0.787
Median (Island vs. None) 0.448 0.32 1.565 0.628 3.899
Median (Marker vs. None) 1.452 0.015*7 4.271 1.320 13.821
Median (Marking vs. None) 0.186 0.€20 1.204 0.484 2.997
Roadside marking (Yes vs. No) -1.19] 0.000t1* 0.304 0.157 0.589
Age*Drink (Drinking vs. Not drinking) 0.716 0.036** 2.047 1.047 4.002
Age*Drink (Unknown vs. Not drinking)] 1.196 0.015** 3.308 1.267 8.635

! Goodness-of-fit test: Hosmer-Lemeshpwalue = 0.2933

2%+ 0,05 significance level

3 The latter term in brackets refers to the refeeenc
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Chapter 5 ISSUES

The purpose of this chapter is to discuss the sssetated to the methodologies
presented in Chapter 3 and the empirical findinggn@hstrated in Chapter 4. The
connection between rough sets rules and accidem<lare discussed in Section 5.1. The
heterogeneity of accident data are shown in Se&i@nand the issue of aggregation bias is
presented in Section 5.3. Finally, the confoundtffgcts are discussed in Section 5.4.

5.1 Connection between Rough Sets Rules and Accid€rhains

Taking advantages of rough sets, this researchemmphted the idea that the
occurrence of an accident is a series of erromnishandling. The illustrated case shows
that it is feasible to apply rough sets theorynalgze the links among affecting factors and
accident types. The proposed factor structure eagalsily transformed and extended based
on an analyst’s knowledge and his/her on-hand acotidatabases. Any factor structures can
be tested by similar steps proposed in this rebeéincaddition, a large number of condition
attributes were included without any prior judgnseeixcept when being grouped with
respect to the temporal and logical sequence obtlearrence of an accident. A condition
attribute was dropped only when the removal didhate any impact on defining accident
types. In our empirical study, only one redundamdition attribute (pavement material)
was found when all the attributes were includeds Fnocedure differs from conventional
statistical approaches where non-significant aitab are usually immediately dropped and
are sometimes claimed to have no impact on thergaoee of an accident.

Rules generated from rough sets provide fruitfdbrimation describing conditions
under which certain type of accidents may occur.es@mple, as mentioned in the previous
section, the most significant rule for the bummimtork zone suggests that there is a
relatively high risk when a driver approaches wooke on a road with speed limit less than
50 (kph) around midnight. When it comes to emplogtma the modern ITS technologies
(FHWA, 2006), specific warning messages could beisgde and sent to the drivers
conforming to this particular scenario; consequenthe potential accidents could be
prevented. In short, the derived rules have them@t to distribute the right information to
the right drivers at the right time for them todi®e to act properly.

On the other hand, hundreds of rules were genenatdte end, which makes it
difficult for analysts to conclude which rules arcalent patterns are the most significant.
This result may partly come from the fact that soamrident types, such as the
bump-into-non-fixed object accidents or rollovercidents, are so stochastic and unique,
and partly from the lack of detailed informatioroabdrivers’ characteristics in the database

67



that hinder the possibility of more effectively ogmizing accident characteristics. Despite
the fact that these accident types are the ledstatide and the least classifiable, some
protective measures still can be implemented taaedhe accident possibility and severity
such as preventing animals crossing roads or istrgdhe strength of the vehicle roof. On
the other hand, the most definable and recognizad@ent type — the bump-into-facility

accidents — is regarded as being preventable.diti@a, the bump-into-bridge and off-road

accidents showing similar classification pattersstlae bump-into-facility accidents, are
also expected to be preventable.

In order to find representative rules for occureent those avoidable accident types,
more advanced rough sets models, such as the hagpichach combining rough sets with
genetic programming (Mckee and Lensberg, 2002), lmaradopted in future research.
However, for the low-performing (unpredictable) idemt types which are highly related to
driver characteristics and unpredictable environmaonditions (i.e. non-fixed objects),
more related data need to be collected for furshedy. Meanwhile, instead of preventing
accidents, measures for reducing the negativetsftefcdthose unpredictable accidents may
be more effective and are worth investigating.

The estimation results showed that the accuracapproximation, the quality of
approximation and the hit rates could be dramdyieaihanced by considering at least two
sets of condition attributes while the inclusionoetrall condition attributes generally gave
the most satisfactory quality of classification.isTBuggests that collecting more detailed
data on some specialties rather than aimlessheasong survey items is more effective.
Nonetheless, additional attributes are welcomed andd be collected and examined by
testing their redundancy and their effect on theueacy of approximation, quality of
approximation as well as hit rates to determinetivrethey are worthwhile.

5.2 Heterogeneity of Accident Data

The heterogeneity discussed in this manuscripiffereint from past studies. It is based
neither on driver characteristics (such as agesnder) nor on environmental characteristics
(such as urban or rural roads). Instead, the hgemeity in the study originates from a
hypothesis in which the features for frequentlyeped processes of accident occurrence
and for sparsely unique processes of accident paote may be essentially different. The
distinct features of accident groups uncoveredim ¢émpirical study did show the possible
existence of such heterogeneity. The accidentscased with weak rules occur rather
uniquely. Since they occur by chance and tend md¢dd to similar consequences under
similar processes and conditions, it is intuitivedypected that it would be relatively
inefficient to devise the corresponding counterraeas for them. Surprisingly, it is
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observed that those accidents are heavily relatedad environment and could be possibly
improved by carefully providing adequate road ftes.

Countermeasures for traffic accidents have beeviqugly either focused on drivers
who break laws such as drunk driving or speedy \ael& or are concentrated on road
design to build a smooth road. Although these measare generally known and effective,
less attention is put on identifying the risky bational drivers associated with the strong
pattern accidents. That means more research aodmation from studies is required to
identify this type of drivers and specific measudesised for them to prevent accidents. It
is noted that preventing accidents associated wak patterns is as crucial as preventing
those with strong patterns. However, the efficienof specifically designed
countermeasures to prevent accidents related tettbeg patterns will be prominent since
accidents associated with the weak patterns arblyhidiverse. Thus, when detailed
heterogeneous accident information is taken intooaet, countermeasures, such as
on-board warning messages and smart roadside da@lies which try to provide right
safety information to right drivers at right statgss are expected to be effective for the
occurrence of strong pattern accidents and arewibaing studied.

5.3 Aggregation Bias

The issue of aggregation biases has been notickdtadied by many studies (Dauvis,
2004; Hewson, 2005; Vlahogianni et al., 2004; Walked Catrambone, 1993), of which
Davis (2004) presented a thorough discussion usimgllated data. He argued that since
accident data have no independent status, thet&tatiregularities are simply the result of
aggregating particular types and frequencies of hameisms. The aggregation step
implemented in this study could raise similar issueespite of the difficulty, aggregation
does lay a concrete basis for understanding adcgtEmarios and further studying those
associated with strong pattern with detailed deskperiments.

Analyzing each rule instead of accident groups ples/a possible way to alleviate
such problems. Each rule is herein treated as dividnal mechanism since rules are
derived under the condition that many critical tasthave been controlled. By examining
the characteristics of each rule classified amgtqmtterns, most rules are found to support
the findings from crosstab analysis and multinonm@gistic regression models where
accidents with strong patterns indicate that theeds involved are somewhat high-risk.
This suggests that the proposed approach can &etied in processing the heterogeneous
accident data, although the aggregation bias isaist be faced.

It is unfortunately far more difficult to interprandividual rules with weak and
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medium strength since the number of rules runstimohundreds. An alternative way is to
loosen up a little on the pattern requirements afte most (and least) important attributes
have been identified. This can be achieved by usingindex called significance of
attributes (Pawlak, 1991). This index evaluates rihenber of objects which can not be
distinguished with the elementary sets while onedé®mn attribute is dropped from the
model. In doing so, the number of rules is expetbediecrease. However, the thoroughness
of the process of accident occurrence describethdyules will also decrease at the same
time. The issue of overwhelming number of rulesveer from rough sets theory has also
been noticed by researchers (Loken and Komoro®6Kil) and requires further studies.

5.4 Confounding Effects in Causality Analysis

Finding causal factors on safety in observatiomtatlies, especially in cross-section
studies, is an unresolved issue (Hauer, 2006). maa difficulty lies in the numerous
confounding effects while doing comparisons. Couosetly, if the majority of these
attributes is not well controlled, the analysisutesswould be biased.

As an attempt to resolve this issue, this resemtehtified the possible causal factors
by comparing the differences between entire actigatierns instead of estimating the
marginal effects of each attribute. Based on rosgts analysis, the accident data was
separated into two subsets: one contained the exdsidvhich could be fully described by
the on-hand information and consisted of a cenaimber of accidents representing the
possible existence of causality; the other conthittee remaining accidents. The rules,
derived from the rough sets analysis, were thenpewed with each other. The comparison
design was used to find the most similar rulesefach rule and to examine the differences.
This allowed the control of many confounding fastas possible, and partially revealed the
differences between what happened and what wowld happened had the circumstances
in question been different.

Since the causal factors were found by compariagctimplete rules, it is obvious that
the comprehensiveness of on-hand data determinetab extent the confounding effects
are controlled. In our empirical study, 23 attrémitvere considered. These attributes were
presumed to have impact on accident occurrenceegachined with rough sets theory to
determine whether some of them were redundantc8isimore information is welcome
in such research provided that it is relevant ® dlecision attribute. Moreover, there is
theoretically no limitation in the attributes thatugh sets theory can adopt as long as the
computational time is tolerant. Yet, it should lad that including attributes with similar
meanings could produce unnecessary rules and imipedenterpretations. For example,
two rules with all other things are equal exceptt thne rule specifies the road type as a
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freeway and the other rule specifies a high spaed Which could only show up on
freeways. There is no difference between thesectwulitions in the real world. A careful
selection of the entry attributes could avoid stexfundancy.
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Chapter 6 CONCLUSION AND RECOMMENDATION

The objectives of this research were to proposeporoach for identifying accident

patterns and exploring their characteristics andprimpose an approach for examining
accident causality. The summary of the work per&dnn this research was described in
Section 6.1. Recommendations for further resease wrawn in Section 6.2.

6.1 Conclusion

In this study, accident characteristics and catysaliere examined by analyzing

accident chains derived from cross-sectional daesbaThe contributions and findings
related to methodologies in this study were sunmedrin the following points:

1.

Taking advantage of rough sets theory, this studhypgsed a research framework
which could effectively examine the characteristiob cross-sectional accident

databases from chain perspective. In particular, vdriations of rough set indicator

values with respect to different sets of conditadtmibutes indicate the similarities and

differences of the underlying accident generatimgcess among accident types or
severities. They also provide the information abth# usefulness of considered
attributes in identifying accident chains as weallthe randomness of accident chains
embedded in a database. These indicators includer land upper approximation,

accuracy of approximation, quality of approximatiommber of generated rules, and
hit rates.

Rules generated from rough sets theory providetf@ituinformation describing
conditions under which certain type of accidenty mecur. The illustrated case shows
that it is feasible to analyze the links among difeg factors and accident
consequences by interpreting the derived rules. é¥ew it should be noted that the
qguality of derived rules depends on the comprekenssss of on-hand data, and the
accuracy of rule interpretations depends on arslysdfessional knowledge.

It is a fundamental belief in all statistics thainrsignificant factors, do not bias
estimation results. However, some studies haveusedf “non-significant factors in
statistical sense with unimportant in common sérnbke rough sets theory provides
an alternative way to account for the importancé@otors.

From the perspective of accident investigation, #mtire causal chain for each
accident is the primary focus. But from the persipeof applications, some effective
measures to reduce accident occurrences are eagerdevised. Although the features
of individual rules do not completely agree witle ttesults from multinomial logistic
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regression models, most rules did support therigslifrom the cross-tab analysis and
the multinomial logistic regression models. Undamsling contributing factors for
those large member rules, therefore, can be adyeoiis.

Comparing the features of rules would reveal thfem@inces between what happened
and what would have happened had the circumstaincesiestion been different.
These differences might imply causal relationshiffse proposed approach provides
an alternative to examine causality from crossiseat databases, which have been
considered an unresolved issue in pass studies.

This study mainly examined the characteristics afvan’s single auto-vehicle crashes.

The findings were summed up in the following paints

1.

The occurrence of crashes with facility may follosimilar paths and is more
predictable. But for other accident types, theggenerated from their training cases
may not be representative since their occurreneerastly random. Moreover, except
for the crashes with facility where more informatis useful, different accident types
have their corresponding useful condition attrisute addition, some similarities may
exist in the occurrence of the crashes with bridgéh facility, off-road and rollover
types since they are all related to road geometdydaiving environments.

Student drivers who are young and less experieexbitit a relatively high possibility
of being involved in off-road accidents under nolrrdaving environment, i.e. no
particularly unfavorable factors such as drinkimgyidg or poor sight distance show
on the chain. Since other driving groups such askwg people do not show similar
accident patterns, the government should sericc@hgider educating student drivers
to enhance their situational awareness of drivimyirenment and reduce their
risk-driving behavior on roads. The result echoes gjraduated licensing scheme
currently implemented in many countries.

Most Taiwan’s single auto-vehicle accidents ocalirreith different driver, trip
characteristics and/or different behavior and emmental factors. Nevertheless, there
is still a large portion of accidents occurring eapedly with identical patterns. The
large member rules justify considerable effortsimérvention and that behavioral
interventions could be applied to a large numbetcadlision types with similar causal
patterns.

Accidents should not be resolved by single fadbat, by a chain of factors. Previous
countermeasures focused mostly on behavioral andoeamental proximal factors. It

is effective; however, to further improve road $gafall factors associated in the factor
chain may need to be taken into serious considerafiurthermore, neglecting factors
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in a chain may result in rather different storied alur the interactions among accident
features.

Significantly different features were shown betwdmguently repeated and unique
rules for Taiwan’s single auto-vehicle accidentse @rivers involved in accidents with

frequently repeated rules reflected the charatiesisf high-risk drivers shown in past

studies. These characteristics were not limitedrizer characteristics and included all
critical factors related to accident occurrences.tli® other hand, it is road conditions
that played the key role in accidents associateth wnique rules. That is to say,

certain road conditions are safe under averageurnstances. However, when

combined with other risk factors, though it rarbegppened, the safe road conditions
may still become dangerous. This suggests that desmign, road furniture, road

maintenance, traffic control and work zone setupugh be considered in a more

comprehensive perspective; and as a consequerae thay be fewer accidents
corresponding to unexpected circumstances.

Although not shown significantly in causal patterdgghway interventions are

suggested via the rules of low frequencies. Itossaying that these interventions are
unimportant. Instead, the improvement of road nesmiahce quality may prevent such
accidents. Highway interventions should be considdein a more comprehensive
perspective; and as a consequence, accidents pomsg to unexpected

circumstances could be reduced.

There are some culture differences in drinking leetwvEastern and Western countries.
The young Taiwanese do not drink as much as tleeinterparts in Western countries.
Due to business and social activities, howeverdiaidged Taiwanese are more likely
to drink. Therefore, although young drivers invalvea single auto-vehicle accidents
numbered twice the middle-aged drivers, only 30.@fcthe young drivers were
drinking driving compared to 37.1% of the middleeddlhe majority of male drinking
driving accidents appeared in the medium strenglsy not in strong strength rules.
This suggests that the accident patterns relatedin&ing driving are associated with
various diverse circumstances. A possible explanatould be situational awareness
and maneuvering skills deterioration due to drigkin

Instead of one single factor, the combinations wfauorable factors would be the
causes leading to fatal accidents including youmgle or less experienced, their
behaviors of drinking, wandering on roads aroundmght, and overestimating their
own driving capabilities and underestimating thesgiole dangers hidden in the
environment. Furthermore, the distinct featuresewsinown between the accidents
related to rules with high support and those wibhw Isupport. A better road
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environment would be helpful to prevent fatal aecis for the latter kind of drivers,
but not necessarily for the former kind of drivers.

6.2 Recommendation

Although this study has taken a step forward in ditection of examining accident

characteristics and causality from chain perspecgeme limitations should be noticed and
some findings are worth further studies.

1.

This study is a new attempt to apply rough seta asmplementary tool for accident
analyses. A lot of information is still embeddedhe derived rules that might provide
useful knowledge for researchers and analysts apiires further exploration.
Advanced models, however, should be consideredenfature to improve and to
address the issues related to performance of sdfaction and case validation. For
example, besides th&ND operator, one could consider other logic operasoh as
ORorNOT into rule generations.

The proposed approaches can be adopted in othasetiator be used to analyze
different accident outcomes. These approaches weadyzed in analyzing single
auto-vehicle accidents. Such accidents involve anlgingle vehicle and thus the
underlying process of accident occurrence wouldnbeh simpler than other accident
types such as multi-vehicle accidents. One shoandfally examine her or his on-hand
data to determine which subjects to examine.

Comparisons between rough sets and other methadslaguld be very interesting.
However, it is necessary to have a very carefuigthe® conduct these comparisons;
particularly, the nature of rough sets theory igegdifferent from other methodologies.

Possible aggregation biases and the overwhelmingbats of rules have limited this
research. The derived rules could help reveal wegation bias in the process of
retrieving contributing factors. To resolve theusof aggregation bias and shed light
on the whole features of accidents by using the balsed approach, however, needs
further research.

Although this approach allows the control of alexant factors, it does not mean that
the findings under this approach must be the tawsal factors. The primary reason is
the limited information provided by accident datsdm Accidents are observable only
after they have occurred. Some information is théfgcult to obtain especially for the
fatal accidents. For example, vehicle features aitical to accident severity, and
exposure data are critical to claim the relativeilyh frequency of a rule. But it is a
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pity that such information is not provided in thetabase. Consequently, the
uncontrolled confounding factors should be cargftdken into account in ascertaining
the findings and require further studies.

Experimental designs for exploring driving behasiaould be helpful to complement
the aforementioned shortcoming. In particular, ¢hdssigns could be based on the
interested rules; for example, the most significarte leads to fatal accidents. Since a
rule contains rich information, the correspondingpeximental design would be
specific and effective.
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