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Abstract-An artificial quantum-mechanical filter using super- 
lattice structures is proposed in this paper. By gradually changing 
the barrier widths of a superlattice according to a Gaussian 
function, a broad-band and almost zero sidelobe transmission 
profile can be obtained. The WKB approximation is applied to 
demonstrate the phenomena of abrupt change of transmission 
profile. The proposed structure allows the incident electrons to be 
nearly totally transmitted when the impinging electron energy is 
in the passband. On the other hand, a complete reflection occurs 
when the impinging energy is in the stopband. By adjusting the 
structure parameters, the desired passband and stopband of such 
a filter can be obtained. Time evolution of an electron wavepacket 
moving through the structure is calculated by numerically solv- 
ing the time-dependent Schrodinger equation. Numerical results 
clearly demonstrate the characteristics of total transmission and 
reflection. By simulating the movement of a totally transmitted 
wavepacket, ambiguity results from the nature of the wavepacket 
in the determination of electron tunneling time can be avoided. 
The generalized concept of matched quantum-mechanical wave 
impedance (QMWI) analogous to transmission line theory is 
presented to explaine the occurrence of total transmission of the 
proposed structure. The tunneling time (QMWI) calculated based 
on the concept of QMWI is compared with the accurate tunneling 
time obtained by our simulation. 

I. INTRODUCTION 
ECENTLY, we have proposed a novel superlattice struc- R ture for energy bandpass filter (EBPF) , [l]. Such a 

structure with a Gaussian superlattice potential profile allows 
the incident electrons to be nearly totally transmitted when 
the impinging electron energy is in the passband. On the 
other hand, a complete reflection occurs when the impinging 
energy is in the stopband. The structure can be considered 
as a regular superlattice with the potential modulated by a 
Gaussian function. A similar technique has already been used 
to suppress the sidelobe for the optical grating filter [2]. With 
the advances in the technology of molecular beam expitaxy 
(MBE), it is possible to control the film growth in a monolayer 
scale. Investigation of the propagation of electron waves in 
such a layered medium is of particular interest because the 
transport property is governed by the minibands formed in the 
superlattices. Multiple quantum barriers that enhance carrier 
blocking [ 3 ] ,  [4] and resonant tunneling structures that enhance 
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carrier transmission [5] are good examples that demcnstrate 
the current manipulating capability of these structures. In this 
paper, another broad-band EBPF with similar transmission 
characteristics is presented. The bands are flat and their 
positions and bandwidths are adjustable. The new structure, 
unlike the previously proposed EBPF, has constant barrier 
heights but a variable barrier width, so it can be much more 
easily realized by epitaxial growth techniques. Details of the 
superlattice structure and transmission characteristics are given 
in Section 11. 

In Section 111, the WKB approximation, which takes ad- 
vantage of the fact that the local minibands formed in the 
graded structure are changing slowly, is applied to demonstrate 
the abrupt change of the transmission profile. In Section IV, 
we present results on numerical simulations of a wavepacket 
moving through such a structure to demonstrate the special 
band-passing characteristics of EBPF. At the same time, we 
also investigate the electron tunneling time. The physical 
meaning and difficulty of trying to extract the tunneling 
time from wavepacket simulation are discussed. The special 
transmission characteristics of EBPF make it possible for 
precise determination of the tunneling time. 

In Section V, the theory of quantum-mechanical wave 
impedance (QMWI) is used to compute the transmission 
spectrum and explain the occurrence of total transmission of 
the proposed structure. It also calculates the electron tunneling 
time using the equation derived from the concept of QMWI. 
Finally, a conclusion is given in Section VI. 

11. STRUCTURE OF EBPF AND TRANSMISSION SPECTRUM 

Fig. 1 shows the schematic conduction-band diagram of 
the proposed structure, where U and b are the widths of 
the potential barriers and the wells, respectively, and V, 
is the potential barrier height. The period, a + b ,  is kept 
constant throughout the structure but the ratio a l a  + b is 
varied according to a modulated Gaussian function. Consider 
one of the examples with the structure shown in Fig. 1. The 
superlattice is composed of 61 layer-pairs with a barrier height 
V, = 0.25 eV. The period a + b is equal to 50 A, and the 
total length of the structure L is 3050 A. The barrier width 
is varied gradually according to a Gaussian function a; = 
[(u+b)/2] e~p[ - ( i -31 )~ /~ : ] ,  where a, is the width of the ith 
barrier, and cz is chosen to be 10. The calculated transmission 
probability by the transfer-matrix method [6] is plotted as 
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Fig. 1. Schematic conduction band-edge diagram of the proposed superlat- 
tice structure which is used for numerical calculation of electron tunneling 
time later. @(x, 0) stands for the initial Gaussian wavepacket and @(z, t f )  
is the transmitted wavepacket. The dashed line represents the function VM(Z) 
of the first forbidden band-edge in the superlattices. 

a function of the electron energy and is shown in Fig. 2. 
This figure shows nearly total transmission when the electron 
energy is in the range between 0.5 V, to 0.8 V, and above 
1.8 V,, while the transmission probability is zero when the 
electron energy lies outside these ranges. Flat passbands and 
stopbands result. These characteristics are quite different from 
those of a conventional distributed Bragg reflector (DBR), 
in which the transmission bands are never totally flat. Since 
in our structure the barrier width is changed gradually, the 
minibands formed within the superlattice are expected to be 
changed in the same way. From the basic quantum theory 
[7],  we know that when electrons are moving in a region 
where the spatial variation of potential is small compared 
with the electron wavelength, the reflection is expected to be 
small. By combining a slowly varying potential with a periodic 
superlattice which exhibits miniband structures, we thereby 
obtain a broad-band transmission profile. This superlattice 
structure behaves like an energy band-pass filter, which is 
similar to the frequency band-pass filter in an electronic circuit. 
This is quite different from the transmission characteristics 
of the conventional superlattice structures. If the structure 
parameters are changed to V, = 0.15 eV and a + b = 60& 
the calculated transmission profile is shown in Fig. 3, both the 
band position and bandwidth change. One can get the desired 
transmission probability spectrum by adjusting the parameters 
such as Vo,a + b ,  etc. 

111. THE WKB APPROXIMATION 

The novel feature of the present structure is that its layer 
thickness ratio r (= a l a  + b )  gradually changes along the 
stacking direction. It is convenient to treat such inhomoge- 
neous material system in terms of the graded minibands which 
are associated with the ratio r and the barrier height V,. The 
graded minibands can be constructed by continuously joining 
the local minibands formed in each individual section. It was 
shown in [8] that the height of the graded barrier of the first 
forbidden band varies linearly with the layer thickness ratio 
r and reaches its maximum about &/2 when r is 0.5, or 
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Fig 2 Plot of the transmission probability as a funchon of normalized 
incident electron energy for the structure shown in Fig 1, where a + b = 
50 &V, = 025 eV, and periods = 61 
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Fig. 3. Plot of the transmission probability as a function of the normalized 
incident electron energy for the structure shown in Fig. 1, where a + b = 60 
A,V, = 0.15 eV, and periods = 61. 

when the thicknesses of a and b are equal. In the present case, 
the calculated barrier edge VM(z)  also varies according to 
the modulated Gaussian function and is shown in Fig. 1. For 
the convenience of calculation, we approximate VM (x) by a 
truncated parabolic function 

, - L / 2 < x < L / 2  

otherwise. 

The WKB approximation is then used to calculate the trans- 
mission probability for electron incident energies E less than 
Vola. The transmission probability T is calculated by the 
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Fig. 4. Plot of the transmission probability T ( E )  with the application of the 
WKB approximation for the structure shown in Fig. 1. The structure parameter 
is the same as that used in Fig. 2. 

formula [9] 
4 

T =  
( 2 0  + 

where 

Substituting VM (z) into the above equation and evaluating 
the integral, we get 

Using the structure parameters in Fig. 2, the calculated T ( E )  
is shown in Fig. 4. As we can see, the transmission probability 
increases rapidly with E and is very sensitive to E when the 
incident energy is near Vo/2. Ninety percent of the change 
in the transmission coefficient takes place when the incident 
energy is between 0.49 to 0.5 of V,. The derived analytic 
expression for T ( E )  gives a reasonable explanation why the 
EBPF has an abrupt transition region between the stopband 
and passband. 

Iv. TIME EVOLUTION OF WAVEPACKET THROUGH 
EBPF AND TUNNELING TIME CALCULATIONS 

A. Wavepacket Simulations 

Time evolution of an electron wavepacket propagating 
through the proposed structure is calculated by numerically 
solving the Schrodinger equation. Our work follows closely 
that of Goldberg et al. [lo]. The one-dimensional time- 
dependent wave equation is transformed into a set of difference 
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Fig 5 Time evolution of a Gaussian wavepacket scattering from the pro- 
posed structure with the layer parameters used in Fig 2 The average incident 
energy is 1 25 V, Numbers in each configurahon denote the time in the unit 
of 2 316 x s The region enclosed by rectangle is the superlattices 
as shown in Fig 1 

equations, which are solved with the initial condition 
9(z,O) = exp(ikoz) exp[-(z - z 0 ) ~ / 2 a $  (see Fig. 1). We 
see that this packet is centered at z = z g  with a spread 
in z governed by 00. The factor exp(ik0e) indicates our 
initial wavepacket move to the positive direction with an 
average momentum hko, and ko is equal to -I??,, where 
E is the average energy of the electron wavepacket. The 
electron effective mass is assumed to be 0.067mo throughout 
the structure. Fig. 5 shows the time evolution of a Gaussian 
wavepacket impinging upon a structure, which is the same 
as that used for Fig. 2. The average incident energy of the 
wavepacket is chosen to be 1.25 V, and the spread 00 of the 
packet is 400 A, which corresponds to an energy uncertainty of 
about 0.03 eV. From Fig. 2, we h o w  that the incident energy 
of the wavepacket lies within the stopband of the transmission 
spectrum. Fig. 5 shows clearly that the wavepacket is totally 
reflected although the average incident energy is greater than 
the potential barrier height. If the initial wavepacket moves 
to the right with an incident energy E = 0.65 V, and a same 
width of 400 A (this corresponds to an energy uncertainty 
about 0.02 eV), i.e., when the incident energy lies in the 
passband of the transmission spectrum, the time evolution of 
the wavepacket, shown in Fig. 6 (the solid line), is totally 
different. Complete transmission happens and no noticeable 
reflection is detected. From the numerical results presented 
here, it is clear that the proposed structure can really serve as 
energy bandpass filters for electrons. 

B. Tunneling Time Calculations 

The question of “how long does it take for an electron to 
tunnel through the classically forbidden region?” has been a 
long-standing controversy in quantum mechanics. It is funda- 
mental and important to quantify the electron traversal time 
since it limits the maximum operating speed of many modern 
electronic devices. Several approaches have been proposed 
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Fig. 6. Time evolution of a Gaussian wavepacket scattering from the pro- 
posed structure with the layer parameters used in Fig. 2. The average incident 
energy is 0.65 V,. The free wavepacket is presented by the dotted line. 

[ 111-[ 171. Different approaches lead to different results and 
the debates still exist. 

The attempts to extract electron tunneling time by following 
the transmitted wavepacket is, however, not so successful. 
Generally, there are two ways to determine the tunneling time 
of an electron from wavepacket simulation. 

1) Follow the peak of the transmitted wavepacket (i.e., the 
maximum of the square of the wavepacket) to determine 
the location z of the packet at time t. Actually, this is 
the same as the original idea of phase time calculation 
[ 111, but the transmitted packet may be considerably 
deformed and defining its peak may become ambiguous. 

2) Evaluating the expectation value of the position from 
the transmitted packet (i.e., the center of mass) [18], 
[19]. This seems to give a more reliable result, but the 
transmission spectrum usually shows an asymmetrical 
profile and the mean energy of the transmitted packet 
may be shifted toward higher energies (the reflected 
packet is shifted to lower energies because of energy 
conservation), which makes the derivation of tunneling 
time somewhat ambiguous. 

So, using either method, it is difficult to obtain the mean 
transmission time from the wavepacket simulation. 

The difficulties mentioned above can be overcome if we use 
the EBPF to study the electron tunneling time. The special 
transmission characteristics of this structure make it possible 
for precise determination of the tunneling time. Since the 
wavepacket with a finite space spread Ax and a wave vector 
spread Ak can be 100% transmitted even when the incident 
energy is smaller than the barrier height, there would be 
no uncertainty in the evaluation of electron tunneling time. 
We again use the EBPF with the transmission characteristics 
shown in Fig. 2 in our calculation. The intrinsic tunneling time 
is obtained by substrating the time of free motion outside the 
energy filter from the total propagation time. As shown in 
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Fig. 7. Time evolution of a Gaussian wavepacket scattering from the pro- 
posed structure with the layer parameters used in Fig. 2. The average incident 
energy is 2.25V0. The free wavepacket is presented by the dotted line. 

Fig. 1, it is calculated as 

where xf is the final position of the transmitted wavepacket, 
t f  is the total simulation time, and v = d m  is the 
free-electron velocity. We first consider the situation that the 
impinging electron energy E = 0.65V,, which is smaller than 
the barrier height. The time evolution of the wavepacket is 
shown in Fig. 6. Notice the number in each frame denotes the 
time in the unit of 2.316 x s. The calculated wavepacket 
tunneling time rWp is 0.4072 ps. In Fig. 6, we also show the 
time evolution of the wavepacket in the absence of the filter 
(dashed line). The calculated free traveling wavepacket time 
qree (= L / v )  is 0.3277 ps, which is smaller than the tunneling 
time in the presence of the EBPF. Although the scattering 
strength is strong when the wavepacket is moving within 
the superlattices, there is no distortion for the transmitted 
wave except the spreading of the wavepacket. This is of 
great advantage since the peak, stationary-phase point, and the 
center of mass of the transmitted packet all correspond to the 
same position. The ambiguity and the difficulty in determining 
the location of the transmitted packet are avoided. In the case 
of E > V, with E = 2.25V0, the time series of the moving 
wavepacket is shown in Fig. 7. The calculated T~~ is 0.1891 
ps, which is again greater than TfPf,,, (= 0.1762 ps). It is noticed 
from Figs. 6 and 7 that not only is the tunneling time longer, 
but the wavepacket emerged from the EBPF is also wider than 
the free traveling wavepacket. From the time delay and the 
broadening of the transmitted wavepacket compared with the 
free moving wavepacket, we can see that tunneling through an 
EBPF is like a free particle moving across a region with an 
effective length longer than the barrier region, and the extra 
length is due to the electron bouncing back and forth within 
the energy filter. 
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V. QUANTUM-MECHANICAL WAVE 
IMPEDANCE (QMWI) AND TQMWI 

A. Quantum-Mechanical Wave Impedance Matching 
The occurrence of broad-band transmission can be also 

explained using the generalized concept of matched quantum- 
mechanical wave impedance (QMWI) [20]. This concept is 
analogous to the impedance in the well-developed transmission 
line theory. The QMWI at any plane x can be defined as 

2h, W ( x )  Z ( x )  = - ~ 

Ilm W X )  

where Z ( x )  is the wave impedance looking into the positive 
z direction, j = fl, and Q(z) and Q'(x) are the electron 
wave function and its spatial derivative, respectively, for the 
problem interested. For an arbitrary-shaped potential, we can 
approximate the potential and effective mass by multistep 
functions with a sequence of N segments. Thus, if x, and 
x,+1 are the boundaries of segment i, the QMWI at x, can 
be calculated by 

Z(x,+l) cosh(y,l,) - 20, sinh(y,l,) 
Z ( x 2 )  = 2 0 %  

20% cosh(~tL)  - z ( ~ + i )  sinh(yz4) 
where 

7% = g J G F E q  
1, =&+l - x, 

and 

is the characteristic impedance of the medium. The above 
equations express the QMWI at x, in terms of the QMWI 
at %,+I, and y,, I , ,  and 20,. Once the Z ( x z )  is calculated, we 
can repeat the process for segment i - 1 to calculate Z(z,-,) 
using ~ ~ - 1 ,  Z t - l ,  and Zot-l. Repeatedly using these equaitons, 
we can evaluate the total input impedance of the proposed 
structure and treat the whole superlattices as an equivalent 
load impedance 2s. Thus, the reflection coefficient p(E) for 
the wave amplitude can be calculated as 

where 20 is the characteristic QMWI of the uniform semicon- 
ductor, and the transmission probability is given by 

We have used the above equation to calculate the transmission 
probability for an EBPF with the identical structure parameters 
used in Fig. 2. The result is the same as that calculated by the 
transfer-matrix method, so we will not show it here. 

Fig. 8 shows the QMWI, ZS, and 20 as functions of energy 
for the structure used in Fig. 2. From the transmission line 
theory [21], we know that matched condition occurs when 
the load impedance is equal to the characteristic impedance 
of the transmission line. Under the matched condition, the 
reflection coefficient is zero and the transmission coefficient is 
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Fig. 8. 
ized incident electron energy with the structure parameters used in Fig 2. 

The absolute values of QMWI 2s and 20 as a functlon of normal- 

equal to 1. Fig. 8 clearly demonstrates that when the incident 
energy lies in the passband, 2s matches 2 0  completely, while 
outside the passband, large impedance mismatch exists. The 
result is in good agreement with that calculated in Fig. 2. This 
explains why the proposed structure has the property of total 
transmission for a Gaussian wavepacket. 

B. Tunneling Time Calculated by QMWI 

in an integral form [22]: 
The tunneling time based on the QMWI can be expressed 

TQMwI = 2 iL 6 
where R(x )  is the real part of the QMWI, Z ( x ) ,  and L 
is the total tunneling length. The R(x )  can be obtained 
using the method described in Section V-A. Thanikasalam 
et al. [17] have used this method and derived the analytical 
expressions for tunneling time through single and double 
barrier structures. The QMWI approach is unique and it 
can be easily implemented with a numerical method for 
arbitrary-shaped potential barriers [22]. Since this approach 
does not involve the nature of the wavepacket, ambiguity 
results from the wavepacket can be avoided. The EBPF 
proposed in this paper provides us a chance to examine the 
accuracy of the tunneling time calculated by this method and 
compare it with the accurate rwwp presented above. We use the 
Simpson's rule to evaluate the integral for TQMWI. Comparison 
of rwp, TQMWI, and qre, (the EBPF is the same as that used 
in Fig. 2) is shown in Table I. When the incident energy E is 
0.65V0 (i.e., E < Vo), we find that TQMWI is 0.4485 ps, which 
is greater than real tunneling time, rwp (= 0.4072 ps). It is 
interesting to note [17] that the calculated TQMWI is always 
greater than those obtained from other theoretical approaches. 
Although TQMWI is not equal to rwp, they are all greater than 
the free-particle transit time qree (= 0.3277 ps). The tunneling 
time obtained from some approaches may be below qree for 
a range of incident energies [17], which lead us to question 
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TWP 

TOMWI 

%ee 

E = 0.65 Vo E = 2.25 Vo 
0.4072 ps 0.1891 ps 
0.4485 ps 0.1982 ps 
0.3277 ps 0.1762 ps 

the physical content of these approaches. When the incident 
energy E is 2.25V0, (i.e., E > Vo), the calculated TQMWI is 
0.1982 ps, which is greater than rwp (= 0.1891 ps), but the 
difference is small. Both TQMWI and rwp are also greater 
than qree (= 0.1762 ps). It is reasonable since the electron 
is moving in a classically allowed region. It was shown that 
TQMWI,  which is based on the concept of group velocity, gives 
physically meaningful results in the limits of zero and infinite 
incident electron energy [17]. From our numerical results, we 
believe the free particle time qree is always less than the 
traversal time with the presence of potential barriers for all 
incident energies. 

VI. CONCLUSION 
An artificial quantum-mechanical energy bandpass filter 

using a superlattice structure with a gradually changing barrier 
and well width has been proposed. Adjustable flat transmission 
bands and reflection bands are obtained by properly choosing 
the layer parameters. When an electron impinges upon the 
proposed structure, it is completely reflected or transmitted 
depending on whether the incident energy lies in the stopband 
or passband of the transmission spectrum. Application of the 
WKE3 approximation gives a reasonable explanation of the 
abrupt change of the transmission profile. We have performed 
the numerical simulations of wavepacket propagating through 
an energy bandpass filter to obtain the electron tunneling time 
under the condition of total transmission, and the ambiguity 
results from the nature of the wavepacket can be totally 
avoided in this way. The phenomenon of total transmission 
can be successfully explained by using the concept of wave 
impedance analogous to that in the transmission line the- 
ory. A comparison of the tunneling time rwp with the free 
wavepacket traveling time rfree and the tunneling time TQTQMwI 
based on the QMWI method has been presented. rwp is found 
to be always greater than pree. The extra time is due to the 
electron bouncing back and forth within the barrier system. 
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