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The independent spanning trees (ISTs) problem attempts to construct a set of pairwise
independent spanning trees and it has numerous applications in networks such as data
broadcasting, scattering and reliable communication protocols. The well-known ISTs
conjecture, Vertex/Edge Conjecture, states that any n-connected/n-edge-connected graph
has n vertex-ISTs/edge-ISTs rooted at an arbitrary vertex r. It has been shown that the
Vertex Conjecture implies the Edge Conjecture. In this paper, we consider the independent
spanning trees problem on the n-dimensional locally twisted cube LTQ,. The very recent
algorithm proposed by Hsieh and Tu (2009) [ 12] is designed to construct n edge-ISTs rooted
at vertex 0 for LTQ,,. However, we find out that LTQ,, is not vertex-transitive when n > 4;
therefore Hsieh and Tu's result does not solve the Edge Conjecture for LTQ,. In this paper,
we propose an algorithm for constructing n vertex-ISTs for LTQ,; consequently, we confirm
the Vertex Conjecture (and hence also the Edge Conjecture) for LTQ,,.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Two spanning trees in a graph G are said to be vertex/edge independent if they are rooted at the same vertex r and for
each vertex v of G, v # r, the paths from r to v in two trees are vertex/edge disjoint except the two end vertices. A set of
spanning trees of G are said to be vertex/edge independent if they are pairwise vertex/edge independent. The vertex/edge
independent spanning trees (ISTs) problem attempts to construct a set of pairwise vertex/edge independent spanning trees
and it has has applications such as data broadcasting, scattering and reliable communication protocols. For example, a rooted
spanning tree in the underlying graph of a network can be viewed as a broadcasting scheme for data communication and
fault-tolerance can be achieved by sending n copies of the message along the n independent spanning trees rooted at the
source node [1]. For other applications, see [3] for the multi-node broadcasting problem, [21] for one-to-all broadcasting,
and [2] for n-channel graphs, reliable broadcasting and secure message distribution.

The independent spanning trees problem has been widely studied in the last two decades. Two well-known conjectures
on this problem are raised by Zehavi and Itai [27]: (refer to [4] or [23] for graph terminologies)

Conjecture 1.1 (Vertex Conjecture). Any n-connected graph has n vertex-ISTs rooted at an arbitrary vertex r.
Conjecture 1.2 (Edge Conjecture). Any n-edge-connected graph has n edge-ISTs rooted at an arbitrary vertex r.

Zehavi and Itai [27] also raised the question: It would be interesting to show that either the Vertex Conjecture implies the
Edge Conjecture, or vice versa. Later, Khuller and Schieber [16] successfully proved that the Vertex Conjecture implies the
Edge Conjecture, i.e., if any n-connected graph has n vertex-ISTs, then any n-edge-connected graph has n edge-ISTs. Khuller
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Table 1
The connectivity, edge-connectivity and diameters of Q, and its
variants.

Topology «(G) A(G)  Diameter

Qn n n n

[(n+1)/2] ifn<5

LTQ n n [(n+3)/2] ifn=5

TQ, n n [(n+1)/2]

MQ, " n [(n+2)/2] in0-MQ, forn >4

[(n+1)/2] in1-MQ, forn>1

and Schieber’s proof also works for the directed graphs. For the directed case, Edmonds [7] solved the Edge Conjecture.
Khuller and Schieber [16] pointed out that the Vertex Conjecture for directed graphs is the strongest conjecture since it
implies all the other conjectures.

The vertex and the edge conjectures have been confirmed only for n < 4. In particular, in [15], Itai and Rodeh proposed a
linear-time algorithm for constructing two edge-ISTs for a 2-edge-connected graph; they also solved the Vertex Conjecture
for n = 2.1In [27], Zehavi and Itai solved the Vertex Conjecture for n = 3, but they did not proposed an algorithm for
constructing three vertex-ISTs. In [6], Cheriyan and Maheshwari proposed an O(|V (G)|?)-time algorithm for constructing
three vertex-ISTs in a 3-connected graph. In [5], Curran et al. proposed an O(|V (G)|?)-time algorithm for constructing four
vertex-ISTs in a 4-connected graph. When n > 5, both the vertex and the edge conjectures are still open. It has been
proven that the Vertex/Edge Conjecture holds for several restricted classes of graphs or digraphs, such as planar graphs
[9,10,17,18], maximal planar graphs [19], product graphs [20], chordal rings [14,24], de Bruijn and Kautz digraphs [8,11],
and hypercubes [22,26]. Note that the development of algorithms for constructing vertex-ISTs tends toward pursuing
two research goals: One is to design efficient construction schemes (for example, [14,17,19,24] proposed linear-time
algorithms) and the other is to reduce the heights of vertex-ISTs (for example, [11,22,24] proposed the idea of height
improvements).

The hypercube (Q,) is one of the most popular interconnection network topologies due to its simple structure and ease
of implementation. Several commercial machines with hypercube topology have been built and a huge amount of research
work, both theoretical and practical, has been done on various aspects of the hypercube. However, it has been shown that
the hypercube does not achieve the smallest possible diameter for its resources. Therefore, many variants of the hypercube
have been proposed. The most well-known variants are locally twisted cubes (LTQ,), twisted cubes (TQ,), crossed cubes
(€CQy) and Mobius cubes (MQ,,). A concise comparison including the connectivity, edge-connectivity and diameters of Q, and
its variants is shown in Table 1. Clearly, one advantage of LTQ,, over Q, is that the diameter of LTQ, is only about half of that
of Q,.

Before going further, we now briefly review results of the vertex-ISTs problem for Q,. It is well known that Q, is n-
connected. Since Q,, is a product graph, the algorithm proposed by Obokata et al. [20] can be used to construct n vertex-ISTs
for Q. As to the construction of the height-reduced vertex-ISTs on Q,, Tang et al. [22] modified the algorithm in [20] and
proposed an O(n2")-time algorithm for constructing an optimal set (in the sense of smallest average path lengths) of n
vertex-ISTs for Q,. It was pointed out by Yang et al. [26] that the algorithms in [20,22] are designed by a recursive fashion
and such a construction forbids the possibility that the algorithm could be parallelized; Yang et al. [26] therefore proposed
a parallel construction for an optimal set of n vertex-ISTs for Q.

The purpose of this paper is to confirm the Vertex Conjecture for the n-dimensional locally twisted cube LTQ,. The very
recent algorithm proposed by Hsieh and Tu [12] is designed to construct n edge-ISTs rooted at vertex 0 for LTQ,,. However,
we find out that LTQ, is not vertex-transitive whenever n > 4 (see Section 2). Therefore, Hsieh and Tu did not solve the
Edge Conjecture for LTQ,. In this paper, we will propose an algorithm for constructing n vertex-ISTs rooted at an arbitrary
vertex of LTQ,. Therefore, we will confirm the Vertex Conjecture for LTQ,. Since vertex-ISTs are edge-ISTs, we also confirm
the Edge Conjecture for LTQ,,.

In the remaining discussion, we will simply use ISTs to denote vertex-ISTs unless otherwise specified. This paper is
organized as follows. In Section 2, we give definitions and notations used in the paper. In Section 3, we present an algorithm
to construct n ISTs rooted at an arbitrary vertex of LTQ,. In Section 4, we prove the correctness of our algorithm. Concluding
remarks are given in the last section.

2. Preliminaries

All graphs in this paper are simple undirected graphs. Let G be a graph with vertex set V(G) and the edge set E(G). Let
X,y € V(G). A path from x to y is denoted as x, y-path. The distance between two vertices x and y, denoted by d(x, y), is
the length of a shortest x, y-path. Two x, y-paths P and Q are edge-disjoint if E(P) N E(Q) = @. Two x, y-paths P and Q are
internally vertex-disjoint if V(P) N V(Q) = {x, y}. A subgraph T of G is a spanning tree if T is a tree and V(T) = V(G). Two
spanning trees T and T’ of G are vertex-independent/edge-independent if T and T’ are rooted at the same vertex, say r, and
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Fig. 1. (a) LTQs. (b) A symmetric drawing of LTQs.
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Fig. 2. LTQ4 and its perfect matchings {My, My, My, M3}.

for each v € V(G), v # r, ther, v-path in T and the r, v-path in T’ are (internally) vertex-disjoint/edge-disjoint. A set of
spanning trees of G are vertex-independent/edge-independent if they are pairwise vertex-independent/edge-independent.

2.1. The locally twisted cube

The n-dimensional locally twisted cube LTQ, (n > 2), proposed first by Yang et al. [25], has 2" vertices. Each vertex is an
n-string on {0, 1}, i.e., a binary string of length n. The LTQ, is defined recursively as follows.

Definition 1 (/25]). 1. LTQ, is the graph consisting of four vertices labeled with 00, 01, 10, and 11, respectively, and
connected by the four edges (00, 01) (00, 10), (01, 11), and (10, 11).

2. LTQ, (n > 3) is built from two disjoint copies of LTQ,_'s as follows: Let OLTQ,_; (respectively, 1LTQ,_1) denote the
graph obtained by prefixing the label of each vertex in one copy of LTQ,_; with 0 (respectively, 1). Connect each vertex
0X;,_2Xn_3 . . . Xo of OLTQ,,_1 to the vertex 1(x,_» @ Xo)Xn_3 . . . Xo of 1LTQ,,_; with an edge, where “@®" represents the XOR
operation, or equivalently, the modulo 2 addition.

Figs. 1 and 2 illustrate LTQ3 and LTQy, respectively. Yang et al. [25] also mentioned that the locally twisted cube can be
equivalently defined by the following non-recursive fashion.

Definition 2 ([25]). Letx = X,_1Xp_2...Xpandy = y,_1Yn_> ... Yo be two vertices of LTQ, (n > 2). Then vertices x and y
are adjacent if and only if one of the following conditions are satisfied.

1. There is an integer 2 < k < n — 1 such that
(a) xx = yk (¥k is the complement of y; in {0, 1})
(b) Xk—1 =Yyr—1 D X0
(c) all the remaining bits of x and y are identical.
2. There is an integer 0 < k < 1 such that x and y only differ in the kth bit.

From Definition 2, LTQ, is obviously an n-regular graph, and the labels of any two adjacent vertices of LTQ, differ in at
most two consecutive bits. Note that in the remaining part of this paper, the label of a vertex in LTQ, is presented in binary
representation and decimal representation interchangeably when there is no ambiguity.
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Fig. 3. The in-vertex-transitivity of LTQ,.

2.2. The neighbor information and the perfect matchings of the locally twisted cube

From Definition 2, the n neighbors of an arbitrary vertex x = x,_1X,_ . . . Xo of LTQ,, is given by
fo(®) = Xn_1Xn_2Xn_3 ... X2X1Xo,
fi(X) = Xn_1Xn_2Xn_3 ... X2X1Xo,

(X)) = Xn_1Xi—2Xn—3 ... X2 (X1 ® Xo) Xo,

(1)

Jo2(®) = Xn_1Xn—2 (Xn—3 ® X0)Xn_4 . ..X1Xo,
Jim1(®) = Xn—1 (Xn—2 @ Xo) Xn—3 . . . XoX1Xg,

where f,(x), 0 < k < n — 1, is called the kth dimensional neighbor of x; see also Lemma 4 in [13]. By (1), the n neighbors of
vertices 0 and 1 can be determined as follows.

Lemma 2.1. The n neighbors of vertex 0 in LTQ,, is given by
fi(0) = 2%,
fork =0,1,...,n— 1. The n neighbors of vertex 1 in LTQ,, is given by

0 ifk =0,
fi) =13 ifk=1,
242141 if2<k<n-—1

Given agraph G = (V, E), amatching M of G is a set of pairwise non-adjacent edges of G. A perfect matching is a matching
that saturates all the vertices; in other words, every vertex in the graph is incident to exactly one edge in the matching. From
Eq. (1), for all vertices x of LTQ,, and forall 0 < k < n — 1, we have

Sl (®)) = x. (2)

Therefore, for a fixed k, the set of edges connecting a vertex and its k-th dimensional neighbor forms a perfect matching of
LTQ,. More precisely,

My = {(x, fi(®) | x € V(LTQ,)}

is a perfect matching of LTQ,. See Fig. 2 for an illustration.

2.3. The even-odd-vertex-transitivity of the locally twisted cube

A graph is vertex-transitive if for every pair of vertices u and v, there is an automorphism that maps u to v. Intuitively,
a vertex-transitive network looks the same from every node. The vertex-transitive property is advantageous to the design
and simulation of some algorithms. It is not difficult to see that LTQ, and LTQ3 are vertex-transitive; see Fig. 1. However, in
the following, we will show that LTQ,, is not vertex-transitive whenn > 4.

Theorem 2.2. The locally twisted cube LTQ, is not vertex-transitive for n > 4.

Proof. For n = 4, let Ni(r) denote the set N, (r) = {x € V(LTQ,) | d(x,r) = k}. Consider the set 2(r) = {x € N, (1) |
N{(x) N N{(r) = 1and N;(x) N N3(r) = 1}. Then £2(0) = {7}, but £2(1) = {6, 12}; see Fig. 3 for an illustration. Therefore
LTQ4 is not vertex-transitive.

Now consider LTQ, with n > 5. It is well-known that vertices 0 and 2" — 2 are at the farthest distance of LTQ, and
d2"—2,0) = ["ziﬂ In the following, we prove that LTQ, is not vertex-transitive by showing the following claim.
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Claim 2.3. For an arbitrary vertex x € V(LTQ,), n > 5, the distance d(x, 1) < [*£1].

Proof of Claim 2.3. Before showing the claim, some notations are introduced first. Let x = X,_1X,_> ... Xo. Scanning the
bits of x from x,_; to x; (notice that we ignore the bit xy). Suppose there are a total of m bits equal to 1 and a total of k
disjoint pairs of consecutive bits equal to “11”, we denoted it by “11”-bits. Abitx;, 1 < i < n— 1, is said to be isolated if after
removing the k disjoint pairs of “11”-bits of x, we have x; = 1. For example, consider x = 111011in LTQg. Thenm = 4, k = 1
and x4, x5 are isolated. Clearly, 0 < k < | % | holds.

It should be noticed thatif m < [%1 , then there exists a trivial path from x to 1: (i) If x, = 0, then corrects all x; = 1 bits,
1 <i<n-—1,t00,and then corrects xo to 1; (ii) If X, = 1, then corrects X to 0. Then corrects all x; = 1bits,1 <i <n—1,to
0, and then correct xo to 1. Clearly, both paths have length at most m + 2 < [ %+1]. In the following, we assume m > [%1].
Therefore,

B

holds. There are two cases.
Case 1: xo = 0. A path from x to 1 can be found as follows: Step 1: Remove all the isolated bits of x. Step 2: Correct xq to
1. Step 3: Match all “11”-bits. Clearly, Steps 1, 2 and 3 take m — 2k, 1 and k steps, respectively. The total number of steps is

vz o ) =[]

For example, consider x = 11101010 in LTQg. We have m = 5, k = 1 and x4, X3, X5 are isolated bits. A path from x to 1 is

built as follows: 11101010 %' 11001010 %' 11000010 ' 11000000 %’ 11000001 25 00000001.

Case 2: xo = 1. We further divide this case into two subcases:

Subcase 2.1:m+1— ["51] <k < | 2 |. Then a path from x to 1 can be found as follows: Step 1: Correct x to 0. Step 2:
Remove all the isolated bits of x. Step 3: Correct xq to 1. Step 4: Match all “11”-bits. Clearly, Steps 1, 2, 3 and 4 take 1, m — 2k,
1 and k steps, respectively. Thus the total number of steps is

1
m—k+2< (%—‘

For example, consider x = 11011011 in LTQs. We have m = 5, k = 2 and x; is a isolated bit. A path from x to 1 is built as

follows: 11011011 =" 11011010 22 11011000 25’ 11011001 22 00011001 22" 00000001

Subcase 2.2: k = m — (”2;1] In this case, all bits x,_1, x,_3, ..., x; must equal to 1 if n is even; either all bits
Xn_2,Xn_3, ..., X1 orall bits x,_1, X,_3, ..., X, must equal to 1 if n is odd. Thus a path from x to 1 can be found by bitwise
correcting the bits to 0 (by scanning the bits from x,,_; to x). Since it takes one step to correct an isolated bit and one step
to correct a “11”-bits, the total step is

n—1
(m—2k)+k:[ —‘
2
isolated

For example, consider x = 10111011 in LTQg. We have m = 5, k = 1. A path from x to 1 is built as follows: 10111011 —

01111011 L1 50011011 1 60000011 25 00000001,

From the above discussion, we have d(x, 1) < [%1 As a result, LTQ, is not vertex-transitive forn > 4. 0O

Although LTQ, fails to be vertex-transitive for n > 4, it does satisfy the even-odd-vertex-transitive property: for every pair
of verticesx = x,_1Xy_2...X0,Y = Yn_1¥n—2 - . . Yo With the same parity, i.e., Xo = Yo, there is an automorphism v that maps
x to y. In other words, in LTQ,, all even-numbered vertices are symmetric and all odd-numbered vertices are symmetric. By
using this property, we may pay our attention of constructing ISTs to use vertex 0 and vertex 1 as the common root without
loss of generality.

Theorem 2.4. The locally twisted cube LTQ, satisfies the even—odd-vertex-transitive property.

Proof. It suffices to prove that there exists an automorphism which maps v (£0) to 0 (resp., v (#1) to 1), whenever v is
an even-numbered (resp., odd-numbered) vertex. For two n-bits binary strings x and y, let x @& y denote the bitwise XOR
(modulo 2) of xand y. Let v = v,_1vp_3 ...V € V(LTQ,).

Suppose v is an even-numbered vertex. For x = x,,_1X,_» ...Xo € V(LTQ,), define a function v as follows:

Yox) = v D x.

It is not difficult to see that v is a bijection from V(LTQ,) to V(LTQ,). Now we verify that 1o preserves the adjacency.
Consider any edge (x, fr(x)) € E(LTQ,). Since vy = 0, we have

Yo(X) = (Vn—1DXn—1) (Vn—2@Xn—2) ... (Vks1DXky1) (VkDXk) (Vi—1DXk—1) ... (V1DX1) Xo.
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Algorithm 1 CONSTRUCT_IST

Input: All vertices of LTQ, and root r.
Output: niISTs Ty, Ty, ..., T,_q rooted at r.
1: fori = 0ton — 1do in parallel > construct T; simultaneously

2: child_of _the_root < fi(r)
3: V(T;) < {child_of _the_root}
4 fort = 1tondo > outer for-loop
5: S «— 0
6: for each vertex v € V(T;) do > inner for-loop
7 U< f(i+t) mod n(V)
8: E(T;)) < E(T) U {(v,u)} > set the parent of vertex u as v in T;
9: S <« SU{u}
10 end for
11: V(T;) < V(T;)) US
12: end for
13: end for
Also,
Volfux) = (Vn—1®X0—1) (V—2@BXn—2) ... (11 BUT) X ifk =0,

(Un—1@BXn—1) (Vn—2BXn—2) ... (12OU) (ViBX1) %0 ifk=1,
andfor2 <k <n-—1,
Yok (®)) = (Vn—1DXn—1) (Wn—2®Xn-2) ... (Vkt1DXks1) (VkDX) (Vk—1DXp—1DX0) (Vk—2DXk—2) ... (V1DX1) Xo.
Since vy D X = vy D X, No matter v, = X; OF v, # X, wWe have

Yo (fik(®) = fi(Yo (X))
and hence (Yo (x), Yo(i(x))) € E(LTQy).

Similar arguments can be applied to the case of v being an odd-numbered vertex, except that the bijection function from
V(LTQ,) to V(LTQ,) is replaced by

YviX)=védxdl. O
3. The algorithm

We now present an algorithm, called CoNsTRUCT_IST, for constructing n ISTs Ty, T4, ..., T,_1 rooted at an arbitrary vertex
r for the locally twisted cube LTQ, in Algorithm 1. For convenience, call the for-loop in lines 4-12 of this algorithm the “outer
for-loop” and call the for-loop in lines 6-10 the “inner for-loop”. This algorithm constructs Ty, Ty, . . ., T,—1 simultaneously
and it works as follows. Since LTQ, is n-regular, the n neighbors of the root r must be the unique child of the root r in
To, T1, . . ., Ty—1, respectively. In this algorithm, the unique child of the root r in T; is set as f; (r). Thus, initially V (T;) = {fi(r)}.
At the tth iteration of the outer for-loop, each vertex v in V(T;) is connected to a new vertex u = f{i+) mod n(v) by using the
edges in perfect matching M) mod n, and the edge (v, u) is added to T; (i.e., the parent of u is set as v in T;). After n iterations
of the outer for-loop, T; is constructed.

Example 1. We now demonstrate how Algorithm CoNSTRUCT_IST constructs T, rooted at vertex 1 in LTQq. In line 2 of the
algorithm, the unique child of the root 1 is set as f,(1) = 7. Thus V(T,) = {7}. Now consider the outer for-loop. Fort = 1,
eachvertex in V(T,) is connected to a new vertex by using the edges in M3; thus the edge (7, 11) is added to T; so S becomes
{11} and V (T;) becomes {7, 11}. For t = 2, each vertex in V(T;) is connected to a new vertex by using the edges in My; thus
the edges (7, 6) and (11, 10) are added to T5; so S becomes {6, 10} and V (T,) becomes {7, 11, 6, 10}. For t = 3, each vertex
in V(T5) is connected to a new vertex by using the edges in M;; thus the edges (7, 5), (11, 9), (6, 4) and (10, 8) are added to
T,; so S becomes {5, 9, 4, 8} and V (T,) becomes {7, 11, 6, 10, 5, 9, 4, 8}. Finally, for t = 4, each vertex in V (T3) is connected
to a new vertex by using the edges in M,; thus the edges (7, 1), (11, 13), (6, 2), (10, 14), (5, 3), (9, 15), (4, 0) and (8, 12) are
added to T,; so S becomes {1, 13, 2, 14, 3, 15, 0, 12} and V (T;) becomes {7, 11, 6, 10, 5,9, 4, 8, 1, 13, 2, 14, 3, 15, 0, 12}.
See Fig. 4 for an illustration.

4. Correctness

The purpose of this section is to prove that Ty, T1, ..., T,_1 generated by Algorithm Construct_IST are n ISTs rooted at an
arbitrary vertex r for LTQ,. To this end, some notations are first introduced in Section 4.1. We show that Ty, Ty, ..., T,_q are
n spanning trees of LTQ,, in Section 4.2. The vertex-independency of Ty, Ty, . . ., T,_1 is shown in Section 4.3.
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Fig. 4. Four ISTs rooted at vertex 1 in LTQ4 constructed by Algorithm CONSTRUCT_IST.
4.1. The notations

Definition 3. For V' C V(LTQ,), define f;(V’) to be

fitvh) =1{fiw) [ve V).
Definition 4. For a fixed integeri,0 < i < n — 1, define O} to be the ordered set

O!'={i,(i—1) modn,(i—2)modn,...,@{H—n+ 1) mod n}.

Notice that O} can be obtained by arranging 0, 1, ..., n — 1 around a circle, starting from the number i and picking up

these n numbers counterclockwise. For example, 05 = {0, 3,2, 1}, 01 = {1, 0, 3,2} and 0} = {3, 2, 1, 0}.
Definition 5. The Hamming distance between two vertices x, y € V(LTQ,), denoted by Ham(x, y), is the number of positions
at which the corresponding symbols are different. More precisely, Ham(x, y) = |{i | x; # ¥;, 0 < i < n — 1}|. For two fixed

vertices x,y € V(LTQ,), suppose Ham(x,y) = m. Define H;(x, y) to be an ordered set consisting of the indices of the m
different bits, listed according to the order given by O}.

Definition 6. For two fixed vertices x, y € V(LTQ,), suppose H;(x, ¥) = {€m—1, Cm—2, . . ., Co} Withm > 2 and H;(x, y) # O}.
We say that j is between ¢, and c,_ for some 0 < u < m — 1 with respect to O} if j & H;(x, y) and when 0, 1,...,n — 1are
arranged on a circle, the location of j on the circle is between ¢, and ¢,_1.

For example, consider LTQq4. Suppose v = 12. Then Hy(v, 0) = {3, 2}, H{(v, 3) = {1, 0, 3, 2}, H,(v,7) = {1, 0, 3} and
H3(v, 13) = {0}. Since 1 &€ Hy(v, 0), 1is betweenc, = 3, c,_1 = 2; 0 € Hg(v, 0), 0 is between c, = 2, ¢,_1 = 3.

Definition 7. For two vertices x,y € V(LTQ,), define IT;(x, y) to be the ordered set consisting of all the indices of perfect
matchings used in the x, y-pathin T;, 0 < i < n — 1, listed according to the order from x to y.

For example, consider T, rooted at vertex 1 of LTQ, in Fig. 4. Suppose v = 12. Then IT,(v, 7) = {2, 1, 0, 3}. Moreover,
the path from v to 7 is
My My Mo M3
1100 — 1000 — 1010 — 1011 — O0111.
Definition 8. Define I(a, b), where a > b, to be the sequence such that

Ia,b) = aa—1,...,.b+1 ffa>b,
a ifa =b.
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4.2. The spanning trees

Throughout this subsection, let Ty, T4, ..., T,_1 be the output of Algorithm Construct_IST. The purpose of this subsection
is to prove that Ty, Ty, ..., T,_1 are n spanning trees rooted at r. By Theorem 2.4, we assume r = O and r = 1 as the common
roots without loss of generality. To prove that T;, 0 < i < n — 1, is a spanning tree rooted at r, we prove the following loop
invariant:

Loop invariant: At the start of the tth iteration of the outer for-loop, T; is connected, |V (T;)| = 2!~ and

[E(TH| = [V(T)] — 1.

The loop invariant is trivial true prior to the first loop iteration since in line 3, Algorithm Construct_IST sets V (T;) = {fi(r)}.
Hence T; is connected, |V(T;)| = 2° and |E(T;)| = |V(T;)| — 1. We now prove that if the loop invariant is true before
the tth iteration of the outer for-loop, then it remains true before the next iteration. Algorithm Construct_IST first resets
S to be empty in line 5. For each vertex v in V(T;), Algorithm Construct_IST adds the edge (v, u) to T; in line 8, where
U = f(i+t) mod n(v), by using the edges in M(i1+) mod n, and adds u to S in line 9. Since each newly generated edge is incident
to a vertex in V(T;), T; remains to be connected. Now we claim that
Claim4.1. V(T)) NS =¢.

If Claim 4.1 is true, then at the end of the inner for-loop, the newly generated edges between V (T;) and S clearly form a
matching that saturates V(T;) and S. Thus |V(T;)| = |S|. Consequently, after the tth iteration of the outer for-loop, T; is
connected, |V(T})| = 27! + 271 = 2% and |E(Ty)| = 271 — 1+ 201 = 2 — 1 = |V(T;)| — 1. When the outer for-loop
terminates, t = n + 1. Therefore, T; is connected, |V (T;)| = 2" and |E(T;)| = |V(T;)| — 1. Also, at the end of the (t = n)th
iteration of the outer for-loop, Algorithm Construct_IST adds the edge (r, fi(r)) to T;. Therefore T; is a spanning tree rooted
at r of LTQ,. In the following, we prove that Claim 4.1 is true for r = 0 and r = 1. We first consider the case of r = 0.

Lemma 4.2. Claim 4.1 is true forr = 0.

Proof. Consider the tth iteration of the outer for-loop. Set k = (i 4+ t) mod n for easy writing. Let v € V(T;) andu € S. If
te{1,2,...,n— 1}, then (v, uy) = (0, 1). If t = n, then we have (v;, u;) = (1, 0). Therefore V(T;) NS =@. O

Lemma 4.3. Claim 4.1 is true forr = 1.

Proof. Consider T;,0 <i <n — 1.Setk = (i + t) mod n for easy writing. Let v € V(T;) and u € S.
Case1:i=0.Ift € {1,2,...,n— 1}, then (v, ux) = (0, 1).If t = n, then (v;, u;) = (1, 0). Therefore V(T;) NS = ¢.

Case2:i=n—1.1Ift € {1,2,...,n — 2}, then (v, u) = (0, 1).Ift = n — 1, then we have (v,_», u,_») = (1,0).If
t = n, then we have (v;, u;) = (1, 0). Therefore V(T;) NS = @.

Case3:ie{1,2,...,n— 2}. We further divide this case into two subcases.

Subcase 3.1: t € {1, 2, ..., n — 2}. The proof of this case is the same as Case 2.
Subcase 3.2: t = n. By the loop invariant, T; induces a tree before the tth iteration of the outer for-loop. Partition V(T;) into
Vo and V; as follows:

Vo = {all the vertices in the subtree rooted at fi11(fi(1))} and V; =V(T) \ Vo.

See Fig. 5 for an illustration.
By (1) and by Lemma 4.6, we have: (i) the ith bit of all the vertices in V; is 0 and hence the ith bit of all the vertices in f;(Vj)
is 1, and (ii) the ith bit of all the vertices in V; is 1 and hence the ith bit of all the vertices in f;(V;) is 0. Notice that

S = fi(Vo) U fi(Vy).
Therefore, to prove Claim 4.1, it suffices to prove that
Vonfi(Vi) =@ and ViNfi(Vy) =0. (3)

Ifi = n — 2, then the (n — 1)-bit of all the vertices in Vy and f,_,(Vp) is 1; however, the (n — 1)-bit of all the vertices in
Vyand f,_(Vy) is 0. Thus wheni =n — 2, Vo N f,_2(V7) = @ and V; N f,_2(Vy) = @. Now supposei € {1,2,...,n — 3}
Partition Vj into Vp ¢ and Vj ; such that

Vo.0 = {all the vertices in the subtree rooted at fi1, (fit1(fi(1)))} and V1= Vo \ Voo.
Partition V; into V¢ and V4 ; such that
V1,0 = {all the vertices in the subtree rooted at fiy>(fi(1))} and Vi =V;\ Vip.

By (1) and Lemma 4.6, the pair of the (i + 1)th and the ith bit of all the vertices in V; o and f;(V4,1) is (0, 0); in f;(Vp ¢) and
V1,115 (0, 1);in Vo 1 and f;(Vq,0) is (1, 0) and in f;(Vp,1) and V4 ¢ is (1, 1). Thus to prove (3), it suffices to prove that

Vo,0 Nfi(V11) =9, Vi1 N fi(Vo,0) =9, VioNfilVo,1) =9 and Vo1 Nfi(Vie) =9. (4)

Forv = vp_1, Vn—1, ..., Vg € V(LTQ,) with v # 0, let q be the largest index of v such that v, = 1.If v = 0, thenletq = —1.
By (1) and Lemma 4.6, we have Table 2.
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(a0

Fig. 5. An illustration for the proof of Lemma 4.3.

Table 2

The value of q for every vertex in the given set.
Voo UfiVoo)  ViaUfi(Vi1) VioUfiVio) Vo1 Ufi(Vo1)
q>i+2 g<i+1lorg>i+3 q>i+3 g=i+lorqg>i+3

We first prove that Vy o N fi(V1,1) = @ and Vq1 N fi(Vo,0) = @. By Table 2, each vertex in Vq 1 N fi(Vy1) withq < i+ 1
does not belong to Vy o U fi(Vo,0) since every vertex in Voo U f;(Vp 0) has ¢ > i + 2. Also, each vertex in Vp o U fi(Vp o) with
q = i+ 2 does not belong to V; 1 N f;(V;,1) since each vertex in V; 1 N f;(V1,1) has q # i + 2. Thus, we may focus on vertices
withq = i+ 3 or q > i+ 3. Note that each vertex in Vy o U fi(Vp0) with ¢ = i + 3 has its (i + 2)th bit to be 0; however,
from Table 2, we know that each vertex in f;(V; 1) U Vq 1 with ¢ > i 4 3 has its (i 4 2)th bit to be 1. Therefore, each vertex in
V0,0 U fi(Vo,0) with ¢ = i + 3 does not belong to V; ; U f;(V; 7). It remains to consider the vertices with q¢ > i + 3. For each
x € Vo0 U fi(Vo,0), the bit string of x formed by x, to x; is in

q—i—20’s q—i—40’s q—i—50's q—i—60’s qg—i—50’s q—i—40’s

—— —— —— —— —— ——
Ly={100---0,100---011,100---0101,100---01001,...,10100---01,1100---01 }.

q—i—1 bits q—i—1 bits q—i—1 bits q—i—1 bits q—i—1 bits q—i—1 bits

However, for eachy € V41 U fj(V1,1), the bit string of y formed by y, to yi1, is in

q—i—30’s q—i—40's q—i—50’s q—i—60’s q—i—40’s q—i—30’s

—— —— —— —— —— ——
Ly={100---01,100---010,100---0100,100---01000,...,10100---0,1100---0}.

q—i—1 bits q—i—1 bits q—i—1 bits q—i—1 bits q—i—1 bits q—i—1 bits

It is not difficult to check that Ly N Ly = @. Hence we have Vo N fi(V1,1) = @ and V1 N fi(Vo0) = 9.
Similar arguments can show that Vo1 N fi(V10) = ¥ and Vi o N fi(Vo,1) = 9, except that Vg o U fi(Vo,0) is replaced by

V1o Ufi(Vio) and Vq 1 U fi(Vq,1) is replaced by V1 U fi(Vo,1). From the above discussion, we have (4) and hence have (3).
Therefore V(T;) NS =@. O

By Theorem 2.4 and Lemmas 4.2 and 4.3, we have the following result.

Lemma44. Ty, Ty, ..., T,_1 are n spanning trees rooted at r for LTQ,,.
4.3, The vertex-independency of the n spanning trees

In this subsection, we show that Ty, Ty, ..., T,_1 generated by Algorithm Construct_IST are vertex-independent trees
rooted at an arbitrary vertex r for LTQ,. By Theorem 2.4, without loss of generality, we may assume r = 0 and r = 1 as the
common roots. To this end, we need to show that for any i, j with 0 < i < j < n — 1 and for each v(#r) € V(LTQ,), the
r, v-path in T; and the r, v-path in T; are internally vertex-disjoint. Recall that the child of the root in T; and T; are f;(r) and
fj(r), respectively. In the following, we further assume v & {r, fi(r), f;(r)} since if v € {r, fi(r), f;(r)}, then the r, v-pathin T;
and the r, v-path in T; are clearly internally vertex-disjoint. Let parent;(v) (resp., parent;j(v)) be the parent of vertex v in T;
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(resp., Tj). Let Py (resp., P») be the parent;(v), fi(r)-path (resp., parent;(v), f;(r)-path) in T; (resp., T;). Since fi(r) # f;(r), the
r, v-path in T; and the r, v-path in Tj are internally vertex-disjoint if and only if V(P;) N V(P,) = #. We prove T; and T; are
vertex-independent by showing the following claim:
Claim 4.5. V(P;) NV (P,) = 0.

Before proving Claim 4.5, we need a lemma.

Lemma4.6. T;, 0 < i < n — 1, constructed by Algorithm Construct_IST has the property that for each v € V(LTQ,) \ {r, fi(r)},
the path from v to f;(r) in T; uses each perfect matching in {My, M1, ..., M,_1} at most once.

Proof. It follows from the fact that f(i;) mod n used in the for-loop between the inner for-loop are distinct when the outer
for-loop iterates fromt = 1tot =n. O

We first consider the case of r = 0.
Lemma4.7. Ty, Ty, ..., T,,_1 are n vertex-independent trees rooted at r = 0 for LTQ,,.

Proof. To prove Claim 4.5, we first describe the path from v to the child of the root in T; when r = 0. For any v €
V(T) \ {0, f;(0)}, the v, fi(0)-path in T; can be determined by IT;(v, f;(0)). In addition, I7;(v, f;(0)) can be determined by
H;(v, fi(0)) as follows. Suppose v = v,_1V,_3 ... v and H;(v, f;(0)) = {cm_1, Cm—2, ..., Co}. If vg = 0O, then IT;(v, f;(0)) can
be determined by

Hi(v, fi(0)) ifi £ 0,

ITi(v, fi(0)) = { {cm—1 = 0, I(Cm—2, Cm—3), - .., 1(c3, ¢3), I(cq, co)} ifi =0andm — 1iseven, (5)
{cme1 = 0,1(cm—2, Cm—3), ..., 1(c2, c1),I(cg, 0)} ifi =0and m — 1is odd.

If vo = 1andi # 0, then H;(v, f;(0)) must contain 0; in this case, we assume c, = 0 for some e. Thus if vg = 1, IT;(v, f;(0))
can be determined by

{I(cm—1,Cm—2), I(Cm—3,Cm—4), ..., 1(c1, Co)} ifi=0and m is even,

I(cm-1,Cm—2), I(Cm—3,Cm—4a), ..., 1(c2, C1), I(co, O ifi=0and mis odd,
Hz(U,fz(O))Z { (m 1:tm 2) (m 35tm 4) (2 1) (0 )} o ‘ (6)

{I(cm—1,Cm—2),I(Cm—3,Cm—4), .. . .I(Ceq2, Ce1), Ces Ce—1, . .-, Co}  ifi£0and m—eis odd,

{I(cm=1,Cm-2), [(cm—3,Cm—4), - . . , [(Ce1, 0), Ce, Co—1, - - ., Co} ifi£0 and m—e is even.

Now we show that Claim 4.5 is true for r = 0. Suppose not, then there exists a vertex a (£v) € V(P;) N V(P,). Suppose
Hi(v, £i(0)) = Hi(v,2) = {Cm—1, Cm—2, - - -, Co}. (7)
There are four cases.

Case 1: v; = 1and v; = 1. Then there must exist u such that ¢, = j. Thus

I-I](vnfj(o)) = I_Ij(va 21) = {Cu—la Cy—2,...,Co, ia Cm—15Cmn—2, -+« Cu+1}~ (8)

By (5)-(7), €1 is the first element in IT;(v, 2°). Let x € V(P;). Then the (c,,_1)th bit of x is V¢,,_, only when (i) (cp—1 + 1) €
IT;(v, 2", and (ii) ¢n_q + 1 > 2, and (iii) there exists ¢ = gn_1qn_2 . .. o € V(P;) such that x = fen1+1(@) and go = 1. We
now prove that (i)-(iii) will not occur simultaneously; hence for allx € V(P,), the (c,—1)th bitofxisv., ,.If [H;(v, 2 =1,
then (i) cannot occur. Suppose |H;(v, 2))| > 2 and both (i) and (iii) occur; that is, there exists § = qn_1qn—2 ... qo € V(P;)
such thatx = f;, ,+1(¢) and qo = 1. By (7), cm—1 + 1 is the last element in IT;(v, 29). Since qo = 1,1(co, 0) C IT;(v, 2)).
By Lemma 4.6 and by the fact that I(cp, 0) = {co,co — 1,..., 1}, we have ¢c;;_1 + 1 = 1; thus (ii) does not occur and
consequently the (c,—1)th bit of all the vertices in V(P;) is v,_,. Since v; = 1, the ith bit of all the vertices in V(P;) is 1.
By (5) and (6) and (8), the (c;n—1)th bit of those vertices in V (P,) with the ith bit being 1 is v, ,. Thus no such a exists and
Claim 4.5 is true.

Case2:v; = 0and v; = 0.Then ¢y = i.If |H;(v, 21| = 1,thenH;(v, 2') = {i}, which implies that v = 0; this contradicts
to the assumption that v # 0. Thus |H;(v, 2')| > 2 and there must exist u such that j is between ¢, and c,_; with respect to
O}. Thus

Jy {j» Cm727Cm737"'5Cu+13CU:0} lfJ:lJf_]v
{i, cu—1, Cu—2, - .., €0, Cm—25 Cm—3, - - ., Cur1}  if otherwise.

By (5)-(7), the ith bit of all vertices in V(Py) is 1. By (5) and (6) and (9), the jth bit of all the vertices in V(P,) is 1. The ith
bit and the jth bit of a are both 1. If I(cy, cy—1) ¢ IT;(v, 2'), each vertex in V (P;) has its jth bit to be 0. If (i) j # i + 1 and
I(co, tm—2) € ITi(v, 2, orif(ii)j = i + 1 and vg # 1, then each vertex in V (P,) has its ith bit to be 0. Thus the existence of
a implies that I(cy, ¢,—1) € Mi(v, 2") and I(co, tm—2) < ITj(v, 2). Note that I(cy, ¢,—1) < ITi(v, 2°) implies that i = 0 and
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hence vy = 0 (since case 2 requires v; = 0). However, I(co, cn—2) € IT;(v, 2)) implies vy = 1, which contradicts to vg = 0.
Thus no such a exists and Claim 4.5 is true.

Case 3: v; = 0 and v; = 1. Then ¢;,—; = i and there must exist u such that ¢, = j. If |H;(v, 29| = 1, then H;(v, 2 = 0.
This implies that v = 2/, which contradicts to the assumption that v # 2. Thus

Hi(v,2) = {Cu1, Cu—2s - - - » C0> Cn—25 Cm—35 - - - » Cu1}- (10)

By (5)-(7), the ith bit of all vertices in V(P;) is 1. The ith bit of a is 1. If I(c, cn—z) ¢ (v, 2)), each vertex in V(P,)
has its ith bit to be 0. Thus the existence of a implies that I(co, cm—2) < IT;(v, 2/), which further implies v, = 1. Since
I(co, Cm—2) < IT;(v, 2)), V(P,) has only one vertex X = X,_1Xn—2...%o such that x; = 1and x = f.{(q) for some q €
V(P,). The existence of a implies that x = a. Since vy = 1, IT;(v, 2') starts with I(i, cqm_>), i.e., IT;(v, 2') is of the form
{I(i, cm—2), ...}. By (6), C_3 is the first element after I(i, c;m_») in I7;(v, 2). Recall that IT;(v, 2!) is an ordered set of all
the indices of perfecting matchings used in the v, 2{-path in T; listed according to the order from v to 2'. Thus the first
vertex in V(P;) can be obtained by applying the first perfect matching obtained from the first element in I7;(v, 2) to v,
the second vertex in V(P;) can be obtained by applying the second perfect matching obtained from the second element in
IT;(v, 2%) to the first vertex in V(P;), and so on. Thus we can partition V(P;) into V; ; and V; 5 such that V; ; consists of those
vertices in V (Py) before f, . is applied and V;, = V(P;) — Vy,1.Lety = yn_1¥n—2 ... Yo be an arbitrary vertex in V; ;. Then
Ham(yiyi—1...Yep_y» ViVio1 - - Vg, _,) = 2. However, Ham(xX;_1 ... Xc,_,, ViVi—1 ... V,_,) = 0.Thus x ¢ V; ;. On the other
hand, x.,, , = v,_, but the (¢;,—3)th bit of all the vertices in V4 5 is v, ,; thusx & V;,.Sincex ¢ V; 1 andx & V; 5, we have
x & V(Py).Since x = q, it follows that a € V (Py). Thus no such a exists and Claim 4.5 is true.

Case 4: v; = 1and v; = 0. Then there must exist u such that j is between ¢, and ¢,_; with respect to O}. Thus

Hi(v 2y = {,1, cm_1, Cm_2, . . ., Cu—o} if i is between ¢g and ¢,,—; with respect to O, (11)
jV,2) =1 . ) . .
{j, cu_1, Cu—2, ..., Co, 1, Cm—1, Cu—2, ..., Cy} if otherwise.

By (5), (6) and (11), the jth bit of all vertices in V(P,) is 1. Since v; = 1, the ith bit of all the vertices in V(P;) is 1. The ith bit
and the jth bit of a are both 1. By (11), we have two subcases.

Subcase 4.1: i is between ¢y and c,,—; with respect to O. Then V (P,) has only one vertex fj(v) with its ith bit and jth bit
both being 1. By (5)-(7), ¢u—1 is the first element in I7;(v, 2'). Thus the (c,_1)th bit of those vertices in V (P;) with the jth bit
being 1is v, ,.However, by (5), (6) and (11), the (c;—1)th bit of fj(v) is v.,,_,. Thus no such a exists and Claim 4.5 is true.

Subcase 4.2: i is not between ¢y and ¢, with respect to Of. By (5), (6) and (11), the ith bit of all the vertices in V (P;)
is 1. If |H;(v, 2))] = 1, then H;(v,2") = {co}; since v;j = 0, we have ¢y # j, which implies that each vertex in V(P;)
has its jth bit to be 0 and consequently no such a exists and Claim 4.5 is true. Now suppose |H;(v, 25| > 2.Then when
I(cy, cy—1) ¢ M;(v, 2"), each vertex in V (P;) has its jth bit to be 0. Thus the existence of a implies that I(c,, c,—1) < [T;(v, 2').
Since I(cy, cu—1) < I;(v, 2Y), V(P;) has only one vertex x = Xp_1Xn_2 . ..Xo such that Xj = land x = fi;1(q) for some
q € V(P;). The existence of a implies that x = a. By (5), (6) and (11), the (c¢;;,—1)th bit of those vertices in V (P,) with the
ith bit being 1is v,_,. However, the x., , = v,_,. S0 ifx € V(Py), then x ¢ V(P,). Thus no such a exists and Claim 4.5 is
true. O

From the above discussion, Claim 4.5 is true and therefore Ty, Ty, ..., T,_1 are vertex-independent rooted at r = 0 of
LTQ,. O

1

Now we consider the case of r = 1.
Lemmad4.8. Ty, Ty, ..., T,_q are n vertex-independent trees rooted at r = 1 for LTQ,.

Proof. To prove Claim 4.5, we first describe the path from v to the child of the root in T; when r = 1. For any v € V(Tj) \
{1, fi(1)}, the v, f;(1)-path in T; can be determined by IT;(v, f;(1)). Furthermore, IT;(v, f;(1)) can be determined by the

ordered set H;(v, fi(1)) as follows. Suppose v = v,_1vy_>...v9 and H;(v, fi(1)) = {cm-1, Cm—2, ..., Co}. Let c._1 be the
first (from bit cp,_1 to ¢g) member in H;(v, f;(1)) that is larger than i. If i = 0, IT;(v, f;(1)) can be determined by
Iy (v, fo(1)) = Ho(v, fo(1)). (12)
Ifi # 0 and vy = 0, we have c, = 0 for some e. Thus IT;(v, fi(1)) can be determined by
{cm—1, Cm—2, ..., Ce, [(Ce—1,Ce—2), I(Ce—3,Ce—4), . .., I(c1, Cp)}  ifeis even,
ITi(v, fi(1)) =3 {Cm—2, Cm—3, - - -, Ces [(Ce—1,Ce—2), I(Ce—3,Co—s), ..., 1(co, 1)}  ifeisoddand c,_1=i, (13)

{i, Cu—1, Cm—2, - - -, Ce, I(Ce—1,Ce—2), I(Ce—3,Ce—4), - .., I(co, D)} ifeisodd and ¢y #i.
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Wheni # 0 and vg = 1, in order to obtain I7;(v, f;(1)) from H;(v, f;(1)), the following notations are introduced. Define Hil
to be the sequence

Cm—1s Cm—2, - -+ Ce  if [H?|is even,
1 ) . . )
Hi = {i, cm1, Cme2, ..., Ce if [H?|isodd and cp_y # i
Cm—2, Cm—3, -+ Ce  if [H?|isodd and cy—y = i,

and define H? to be the sequence
2
H,‘ = Ce—1, Ce—2, - - -, Cop-

Define ¢;(v, f;(1)) to be the sequence

H}, H? if |H}'| is even and |H?| is even,
G, fi(1)) = Hii, HZ, 12 if|Hi1| ?s even and |I-£1.2|- is odd, (14)
H;, 0, H; if |H;'| is odd and |H{| is even,
H!,0,H?, i if|H}|isodd and |[H?|is odd.
Suppose
Gi(v, fi(1) = Gus Gu—15 -, So-
Thus if i # 0 and vg = 1, IT;(v, fi(1)) can be determined by
ITi(v, fi(1) = {I(Sus Su-1)- 1(Su-2, Gu-3), ..., 1(1, S0 }. (15)
Now we show that Claim 4.5 is true for r = 1. Suppose not, then there exists a vertex a (#v) € V(P;) N V(P,). Suppose
Hi(v, fi(1)) = {¢m-1, Cm—2, - - -, Co}- (16)

There are four cases.

Case 1: 0 = i < j < n — 1. The proof of this case is divided into two parts, depending on vyo = 1 or vy = 0. Suppose
vo = 1. Then 0 ¢ H;(v, fj(1)). Thus the Oth bit of all the vertices in V(P,) is 1. By (12) and (16), 0 is the first element in
Hy (v, fo(1)); this implies that the Oth bit of all the vertices in V(P;) is 0. Thus no such a exists. In the following, we assume
vo = 0.Then 0 ¢ Hy(v, fo(1)). The Oth bit of all the vertices in V (P;) is 0; this implies that the Oth bit of a is 0. There are two
possibilities: j = 1orj > 1.

Subcase 1.1: j = 1. Note that either 1 € ITy(v, fi(1)) or 1 & IT1(v, f1(1)).If 1 & IT;(v, fi(1)), then O is the first element
in IT; (v, f1(1)). This implies that the Oth bit of all the vertices in V(P,) is 1. Thus no such a exists. If 1 € IT;(v, f;(1)), then
1 and 0 are the first element and the second element in I7; (v, f1(1)), respectively. Thus the Oth bit of all the vertices in
V(Py) \ {fi(v)} is 1. The existence of a implies that f; (v) = a.

Ifv; = 0,then 1 & Hy(v, fo(1)). This implies that the 1st bit of all the vertices in V (P;) is 0. However, it is obvious that the
1st bit of f1(v) is 1. Therefore f1(v) & V(P;). Thus no such a exists. Now suppose v; = 1. Since 1 € IT;(v, f1(1)), there must
exist some k > 1 such that v, = 1; this implies that c,,_; > 1. By (12) and (16), the (c¢;;—1)th bit of all the vertices in V (P;)
is v,,_,. However, the (cy,—1)th bit of f;(v) is v,,_,. Therefore f;(v) ¢ V(P;). Thus no such a exists and V(P;) NV (P,) = @.

Subcase 1.2:j > 1.By(12),(13)and (16), we have: ¢y, is the first element in H;(v, fi(1)), cm—1 € H;(v, fj(1)),0 € H;(v, fj(1)),
and ¢, appears after 0 in the ordered set H;(v, f;j(1)). Thus the (c,—1)th bit of all the vertices in V(P;) is v,_,. However,
the (¢,—1)th bit of those vertices with the Oth bit being 0 in V (P,) is v, _,. Thus no such a exists.

From the above discussion, Claim 4.5 is true for Case 1.

Case 2: 1 =i < j < n — 1. The proof of this case is divided into two parts, depending on vy = 0 or vy = 1.

Subcase 2.1: vo = 0. Then it is not difficult to see (by comparing the jth and the Oth bits of f;(v) and all the vertices in V(P;))
that f;(v) & V(P1).Thus a can not be f;(v). It remains to consider those vertices in V(P,) \ f;(v). The remaining proof is further
divided into two parts, depending on vj_; = 0orvj_; = 1.

Subcase 2.1.1: vj_; = 0. Since vp = 0and vj_; = 0,j — 1 € I1;(v, fj(v)). Since vo = 0and j — 1 € IT;(v, f;j(v)), the (j — 1)th
bit of all the vertices in V(P,) \ f;(v) is 1. However, the (j — 1)th bit of all the vertices in V (P;) is 0. Thus no such a exists and
Claim 4.5 is true.

Subcase 2.1.2: vi_; = 1. We claim that: the bits from vj_, to v, are all 0, i.e., vj_» = vj_3 = - -+ = v, = 0. Suppose this claim
is not true and let k be the largest number between j — 2 and 2 (inclusive) such that vy = 1. By (13) and (16), the (j — 1)th
and the kth bits of all the vertices in V(P,) \ fj(v) is 1 and 0, respectively. However, the (j — 1)th bit of those vertices in V (P;)
with kth bit being 0 is 0. Thus vj_, = vj_3 = - - - = v, = 0. So the 1st bit of all the vertices in V(P;) is 1 and the 1st bit of all
the vertices in V(P,) \ f;(v) is 0. Thus no such a exists and Claim 4.5 is true.
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Subcase 2.2: vg = 1. The proof of this part is further divided into six parts as follows.
Subcase 2.2.1:j = 2,v; = land v, = 1.Since vy = 1Tand vy = lTand v, = 1,
Hi(v, f;(1)) = (cm-1, Cm—2, ..., C1).
Suppose m is even. Then by (14) and (15),
ITi(v, fi()) ={I(cm-1, Cm—2), ..., I(c1, 0 =2)}
and
(v, f;(1)) ={1(2, 0), I(cpn—1, Cm—2), .. ., 1(c1, 2)}.

Thus, the 2nd bit of all the vertices in V(P;) are 1. However, the 2nd bit of all the vertices in V(P,) are 0. Thus no such a
exists. Suppose m is odd. Then by (14) and (15),

ITi(v, fi(1) = {1, I(cm-1, Cm—-2), . .., [(co, D}
and
(v, fi(1) = {I(cm—1, Cm—2), . .., I(c2, 1)}
Hence the 1st bit of all the vertices in V (P;) is 0. However, the 1st bit of all the vertices in V (P,) is 1. Thus no such a exists.
Subcase 2.2.2:j = 2,v; = 0and v, = 1.Since vy = 1and vy = 0and v, = 1,we havec;; 1 = 1,co = 2 and
Hi(v, f;(1)) = {cm-1, Cm—2, ..., C1}.
Suppose m — 1 is odd. Then by (14) and (15),
ITi(v, fi(1) = {I(tm—2, Cm—3), ..., [(co, 1)}
and
IT(v, fi(1) = {1, 1(cn-2, tm-3), . . ., 1(c2, c1)}.

Thus, the 1st bit of all vertices in V (P;) are 0. However, the 1st bit of all vertices in V (P,) is 1. Thus no such a exists. Suppose
m — 1is even. Then by (14) and (15),

(v, fi(1)) = {1, I(cn-2, tm-3), - - ., [(c1, Co)}
and

IIi(v, f;(1)) = {2, I(cm—2, Cm—3), ..., I(c1, 2)}.
Thus, the 2nd bit of all vertices in V (P;) are 1. However, the 2nd bit of all vertices in V (P,) is 0. Thus no such a exists.
Subcase 2.2.3:j = 2, vy = 1and v, = 0 (resp., v; = 0 and v, = 0). Then

Hj(v,jj-(l)) = {2, Cmn—1sCm—2, -+, Co}.

Suppose m (resp., m — 1) is even. Then by (14) and (15), the 2nd bit of all vertices in V (P;) is 0. However, the 2nd bit of all
vertices in V(P,) is 1. Suppose m (resp., m — 1) is odd. Then by (14) and (15), the 1st bit of all vertices in V (P;) is 0. However,
the 1st bit of all vertices in V (P,) is 1. Thus no such a exists.

Subcase 2.2.4: j # 2 and vj_; = 0. Then the (j — 1)th bit of all the vertices in V(P;) are 0. However, the (j — 1)th bit of all
the vertices in V(P,) are 1. Thus no such a exists.

Subcase 2.2.5: j # 2, vi_; = 1 and at least one of the bits in v;_,vj_3 ... v, is 1. Then there exists q such that vy, = 1and q is
the largest number between j — 2 and 2 (inclusive).

Subcase 2.2.5.1: Suppose I(j, q) ¢ ITj(v, fi(1)). Then the gth and the (j — 1)th bit of all the vertices in V(P;) are 0 and 1,
respectively; however, the (j — 1)th bit of those vertices in V (P;) with the gth bit being 0 is 0. Thus no such a exists.

Subcase 2.2.5.2: Suppose I(j, q) < IT;(v, f;(1)). Then we partition V (P,) into V; 1 and V, , such that
V, 1 = {all the vertices in V (P,) before the perfect matching M, is applied} and V, , = V(P,) \ V2 1.

Consider the vertices in V5 1. Suppose v; = 0. Since j € I(j, ), we can compare the jth bit of all vertices in V(P;) and in V5 ;
to see that no such a exists. Suppose v; = 1. Then the number of bits in v,_1v,—3 ... vj;+1 that are 1is odd, i.e,, |I-Ij2| is odd.
This implies that c,,—1 # j. Since c,—1 # j, by comparing the ¢, th bit of all the vertices in V(P;) and in V, 1, we know
that V(P;) N V,,; = 0. Consider the vertices in V5 ;. Then the gth and the (j — 1)th bit of all the vertices in V, ; are 0 and 1,
respectively. However, the (j — 1)th bit of those vertices in V (P;) with the gth bit being 0 is 0. Hence V (P;) NV, , = . Since
V(P1) NV, 1 =@and V(P;) NV, = @, no such a exists.
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Subcase 2.2.6: j # 2, vji_y = 1 and all the bits in v;_v;_3...v; are 0 (i.e,, vj_ = vj_3 = - - - = v, = 0). For convenience, let
t(wy, wy) denote the number of bits in vy, vy, -1 . . . Uy, that are 1. There are three possibilities.

Subcase 2.2.6.1: Suppose t(n — 1,i 4 1) is even. Then t(n — 1,j) is odd. Thus the ith bit of all the vertices in V(P,) is 0.
However, the ith bit of all the vertices in V (P;) is 1. Thus no such a exists.

Subcase 2.2.6.2: Suppose t(n — 1,i+ 1) is odd and v; = 0. Then t(n — 1, j 4 1) is even. Thus the jth bit of all the vertices in
V(P,) is 1. However, the jth bit of all the vertices in V (Py) is 0. Thus no such a exists.

Subcase 2.2.6.3: Suppose t(n — 1,i+ 1) isodd and v; = 1. Then t(n — 1, j + 1) is odd. Thus the ith bit of all the vertices in
V(Py) is 0 and the jth bit of all the vertices in V (P,) is 0. Then the. ith and the jth bit of a are 0. By (15), the (j — 1)th bit of all
the vertices in V (P,) with the ith and the jth bit be 0 is 1. However, only the vertex 22~ 4+ 1in V(P;) with the (j — 1)th bit is
1, and the ith and the jth bit are 0. The existence of a implies a = 2~ + 1. Since t(n — 1, j + 1) is odd, there exists v, = 1,
where k > j. Then it is easy to find that a & V(P,) by comparing the kthBthe jth and the ith bit of a and all vertices in V (P,).
Thus no such a exists.

From the above discussion, Claim 4.5 is true for Case 2.

Case3:3 <i+1=j < n—1.By(12)-(16), we have the following results. Suppose t(n — 1, i + 1) is odd. Then the ith bit
of all vertices in V(Py) is O andj ¢ IT;(v, f;(1)); however, the ith bit of all the vertices in V(P,) is 1. Suppose t(n — 1,i4- 1) is
even and v; = 0. Then the jth bit of all the vertices in V(P,) is 1; however, the jth bit of all the vertices in V(P;) is 0. Suppose
t(n —1,i+ 1) iseven and v; = 1. Then the jth bit of all the vertices in V (P,) is 0; however, the jth bit of all the vertices in
V(Py) is 1. Thus no such a exists and Claim 4.5 is true.

Case4:3 <i+ 1 <j < n— 1.We divide the proof into three parts, depending on the values of v;_; and v;_.

Subcase 4.1: vj_1 = 0.Thenifj € IT;(v, f;(1)), then V(P;) has only one vertex (say, vertex x) with its (j — 1)th bit being 1. By
comparing from the jth to the (i — 1)th bits of x with the jth to the (i — 1)th bits of each vertex in V(P,), we have x & V (P5).
Ifj € IT;(v, fi(1)), then f;(v) is the unique vertex in V(P,) with its (j — 1)th bit being 0. By comparing from the jth to the
(i — Dth bits of f;(v) with the jth to the (i — 1)th bits of each vertex in V(P;), we have f;(v) ¢ V(P1). Then by (12)-(16), the
(j — Dth bit of all the vertices in V(P;) \ {x} is 0; however, the (j — 1)th bit of all the vertices in V(P;) \ fj(v) is 1. Thus no
such a exists.

Subcase 4.2: v;_1 = 0. Then we can use similar arguments to prove that no such a exists.

Subcase 4.3: vi_1 = 1and vj_; = 1. By (12)-(15), we have following the results. When i € H;(v, fi(1)) and vg = 1, V(Py)
has only one vertex f;(v) with the (i — 1)th bit being 0. It is easy to find f;(v) & V(P;) by comparing those bits from the
(j — Dth to the (i — 1)th of f;(v) with each vertex in V(P,). And since the (i — 1)th bit of all the vertices in V(P;) \ fi(v) is 1,
the existence of a implies that the (i — 1)th bit of a must be 1.

Partition V (P,) into two V5 ; and V5, such that

V5,1 = {all the vertices in V (P,) before the perfect matching M; is applied} and V, ; = V(Py) \ V2 1.
Thus the (i — 1)th bit of all the vertices in V5 ; is 1, and if a exists, then a € V5 ;. We now claim that:
Claim 4.9. If a exists, then vj_, = vj_3 = --- = vi;1 = 0.

Proof of Claim 4.9. Suppose this claim is not true. Then let q be the largest index between j — 2 and i + 1 (inclusive) such
that vy = 1.Lety = yn_1¥n—2 ... Yo be an arbitrary vertex in V, ; \ {fj(v)}. Note that f;(v) € V, ; only whenj € IT;(v, f;(1)).
Also note that q € IT;(v, fj(1)). Moreover, if j € H;(v, f;(1)), then q is the first element after j in H; (v, f;(1)); if j & H;(v, f;(1)),
then q is the first element in H;(v, fj(1)). Since q exists, by (13)-(15), the bits y;_»y;_3 . . . yit-1 will be different from the bits
Vj—2Vj_3 ... Viy1. However, let x = X,_1X,_2 . . . Xo be an arbitrary vertex in V (P;). Then the bits x;_»X;_3 . . . X;;1 are identical
to the bits vj_vj_3 . .. viy1. Thus every vertex in V, 1 \ {f;j(v)} is notin V(P;). Although f;(v) € V, 1, fj(v) is notin V (P;) (this
can be observed by comparing the jth bit and from the (j — 2)th to the (i 4+ 1)th bits of all the vertices in V (P;) with jth bit
and the bits from the (j — 2)th to the (i + 1)th bits of fj(v)). Thus V(P;) N V,; = . Since if a exists, thena € V, ;. Thus a
does not exists and we have this claim. O

By Claim 4.9, in the remaining proof, we assume v;_; = 1, vj_; = 1and vj_; = vj_3 = - - - = v;41 = 0. For convenience, let
t denote the number of bits in v,_jvn—; . .. vj41 that are 1. We further divided the proof into four subcases.

Subcase 4.3.1: v; = 1and v; = 1. Suppose t is even. Then the first member in /7;(v, fj(1)) is i. However, i € IT;(v, f;(1)). Thus
no such a exists and V(P;) N V(P,) = @. Suppose t is odd. Then j € IT;(v, (1)) and I(j — 1, i) C IT;(v, f;(1)). Thus the jth
bit of all the vertices in V (P,) is 0. Partition V (P;) into V4 ; and V; ; such that

V1,1 = {all the vertices in V (P;) before the perfect matching Mj;1) mod n is applied} and V; 5, = V/(Pq) \ V1 1.

Thus the jth bit of all vertices in V4 7 is 1 and the jth bit of all vertices in V; ; is 0. By the fact that the jth bit of all the vertices
in V(P,) is 0, to prove V(Py) N V(P,) = #, it suffices to prove Vi, N V(P,) = #.If vy = 1, then the (j — 1)th bit of all the
vertices in V(P,) \ fj(v) is 1; however, the (j — 1)th bit of all the vertices in V; ; is 0. Since the ith bit of is 1, but the ith bit of
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all the vertices in V;  is 0, fj(v) & V1. If vg = 0, then the (j — 1)th bit of all the vertices in V(P,) is 1, and the (j — 1)th bit
of all the vertices in V; 5 \ {z = 27~' + 2"=! 4 1} is 0. Since t is odd, there exists v, = 1 for some k > j. Thus z ¢ V(P,) by
comparing the kth bit of them. Therefore, no such a exists in this case.

Subcase 4.3.2: v; = 0 and v; = 0. Suppose t is even. Then the jth bit of all the vertices in V (P,) is 1. However, the jth bit of all
the vertices in V(Py) is 0. Suppose t is odd. Then the number of bits in v,_1v,_7 ... vi;1 that are 1 is even; this implies that
iis the first member in IT;(v, f;(1)). Thus the ith bit of all the vertices in V (P,) is 0. However, the ith bit of all the vertices in
V(Py) is 1. Thus no such a exists.

Subcase 4.3.3: v; = 0 and v; = 1. Suppose t is even. Then the first member in /7;(v, f;(1)) is i — 1 and the first member in
IT;(v, fi(1)) is i. So the ith bit of all the vertices in V (P,) is 0; however, the ith bit of all the vertices in V(P;) is 1. Suppose
t is odd. Define q to be the index of the leftmost nonzero bit of v. Then g > j. Thus the (i — 1)th bit of all the vertices in
V(Py) \ {f;(v)} is O; however, the (i — 1)th bit of all the vertices in V (P;) is 1. By comparing the jth and the gth bits of f;(v)
with the jth and the gth bits of every vertex in V(P;), we have fj(v) ¢ V(P1). Thus no such a exists.

Subcase 4.3.4: v; = 1and v; = 0.If the number of those bits from v,_1 to vy being 1is even, then the jth bit of all the vertices
in V(P,) is 1; however the jth bit of all the vertices in V (P,) is 0. If the number of those bits from v,_; to vj;; being 1 is odd,
then the number of bits in v,_1vp_ . . . vi1 that are 1is even. Thus i is the first member of IT;(v, f;(1)); buti & IT;(v, fi(1)),
which implies that the ith bit of all the vertices in V(P,) is 0 but the ith bit of all the vertices in V(P;) is 1. So Claim 4.5 is
true for this case.

As a result, Claim 4.5 is true for Case 4. From the above discussion, Claim 4.5 is true for all the cases, and therefore
To, Ty, ..., Tp_1 are vertex-independent rooted at r = 0 of LTQ,. O

By Theorem 2.4 and Lemmas 4.7 and 4.8, we have the following result.

Theorem 4.10. Ty, Ty, ..., T,_ are n vertex-ISTs rooted at r for LTQ,,.

5. Concluding remarks

The independent spanning trees (ISTs) problem attempts to construct a set of pairwise independent spanning trees and
it has numerous applications in networks such as data broadcasting, scattering and reliable communication protocols. The
well-known ISTs conjecture, Vertex/Edge Conjecture, states that any n-connected/n-edge-connected graph has n vertex-
ISTs/edge-ISTs rooted at an arbitrary vertex r. Both the Vertex and Edge Conjectures are still open on general graphs for
n>>5.

In this paper, we consider the ISTs problem on the n-dimensional locally twisted cube LTQ,. The very recent algorithm
proposed by Hsieh and Tu [12] is designed to construct n edge-ISTs rooted at vertex 0 for LTQ,.. However, we find that LTQ,
is not vertex-transitive when n > 4 and therefore Hsieh and Tu'’s result does not solve the Edge Conjecture for LTQ,. In this
paper, we present an algorithm to construct n vertex-independent spanning trees rooted at an arbitrary vertex for LTQ,. To
the best of our knowledge, this is the first result to confirm the Vertex Conjecture for the locally twisted cubes. In addition,
it is also interesting to confirm whether the Vertex Conjecture is true for other hypercube variants.
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