
1

行政院國家科學委員會補助專題研究計畫成果報告
※※※※※※※※※※※※※※※※※※※※※※※※
※ ※
※一支援 3-TIER PROGRAMS 測試的工具之研究與製作 ※
※　　　　　　　　　　　　　　　　　　　　　　　※
※※※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：V個別型計畫　　□整合型計畫

計畫編號：NSC 89 –2213 – E – 009 – 010

執行期間：　88　年　8　月　1　日至　89　年　7　月　31　日

計畫主持人： 王豐堅

共同主持人：

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位：國立交通大學資訊工程系

中　華　民　國　90年　2　月　26日

2

行政院國家科學委員會專題研究計畫成果報告
計畫編號：NSC 89 –2213 – E – 009 – 010
執行期限：88年 8月 1日至 89年 7月 31日
主持人：王豐堅 國立交通大學資訊工程系
計畫參與人員：楊基載等研究生

一、中文摘要
在程式發展階段利用軟體測試技術來確保應用程
式的品質，是開發高品質軟體的重要一環。目前大
量採用資料庫管理系統(DBMS)之商業應用環境，
幾乎都以 WWW 瀏覽器與跨平台的 Java 為基礎，
發展出新的應用程式架構。這種獲得 Oracle、IBM
DB2、Microsoft SQL server等主流資料庫系統支援
的「三層式應用程式架構」 (Three-Tier Application
Architecture)，係採用WWW瀏覽器或其他 GUI程
式作為客戶端(client)，連往前端處理伺服器(front-
end pre-process server) ，再透過開放式資料庫連線
(如 ODBC)連往後端的資料庫系統伺服器(back-end
DBMS server)。
我們在本計劃裏以 ANSI/IEEE 的軟體測試標準為
基礎，為測試者規劃一套適合三層式架構的軟體測
試流程與環境，製作出一套半自動產生測試資料
(test case)產生器以輔助測試者進行 GUI介面、主從
式架構、三層式架構整合，也製作一評估整個流程
的效能(effectiveness)及效率(performance)分析器。
關鍵詞：網際網路，軟體測試、軟體可重覆使用性、
三層式軟體架構

1. Abstract
Web model and its related improvement give Web
application designers flexibility at choosing proper
development products for their implementation.
Current developers of large Web application do not
have sufficient and powerful tools to debug or test
their Web applications. [1] addresses the necessity of
software testing support to handle the complexity of
Web applications. Existing Web testing tools on
Internet are usually made for verifying the syntax in
HTML documents, checking the hyperlink integrity in
a set of HTML documents, testing GUI components
embedded in browsers, and measuring the performance

of the Web application. Few products support overall
Web applications testing [2]. [3] and [4] test the
software components such as Java Applet and ActiveX
objects which are embedded in the Web pages. [5]
extends traditional GUI testing tools to test the GUI
events inside the Web browsers. [6] helps justify the
result shown on the Web browser's window by
matching text patterns or pixel-level comparison. [7]
checks the documents for syntax and compatibility to
popular Web browsers.

The article presents a software architecture that
integrates several conventional testing tools. The
architecture extends these traditional software testing
architectures and software patterns [8] [9] to ease the
description and design of Web-application testing
tasks. The integration of Web-testing components can
reduce the insufficiency of independent Web testing
tools mentioned above for complicated Web
application testing. We also constructed a testing
environment for Web applications to demonstrate the
reuse of the software architecture. With object-
oriented technique, the architecture itself provides a
clear picture of software components for reuse
including tool reuse, architecture reuse, etc.
Keywords: Web-application testing, software

architecture, framework reuse

2. Constituents of Web Applications
Web model provides application platforms or

application designers with several locations to place

code for Web computation and alternative mechanisms

to solve particular missions.

Figure 1 depicts the typical constituents of the Web
application.

Augmented
HTML

Document

Database
Server

Socket/
RMI/

CORBA

Image, Sound, Animation

Plain HTML Document

Java Applet

Server
Side

Intepreter

Web
Browser

Web
Server

Database
Server

Java
VM

Java
Script

Intepreter

Plug-In
Processor

HTML
Render

CGI
Programs

Network
Application

Server

F
r
o
n
t

E
n
d

Tier

Protocol /
Interface

Information
Flow

Information
Processor

Web
Document

LegendCommon
Gateway
Interface

(CGI)

HTTP

Database Access
Protocol

Database Access
Protocol

Database Access
Protocol

Figure 1. Constituents of typical Web applications
Contents of Web applications are usually stored on the Web server or database server. They can be static

3

HTML documents, image files, video files, or even
kinds of programs run on Web servers or Web clients.
Information processor in Web application model
accepts incoming requests and returns contents. The
request is either processed and returned directly, or
translated and delegated to another information
processor prior to return.
The Web browser is capable of retrieving hyper-text
documents, as requested by the application users,
from the Web server via HTTP protocol. It renders
the hyper-text document in HTML (Hyper-Text
Markup Language) format on the screen.
Contemporary Web browsers also embed Java virtual
machine and Java Script interpreter to execute the
Java Applets or Java Scripts specified in the
documents. Additional information processor such as
Netscape Communicator’s plug-in modules and
Microsoft Explorer’s ActiveX objects, which are
browser-loadable software modules, can extend
browser’s functionality.
HTTP daemon is placed at the Web server to accept
the HTTP requests from the browsers. According to
Web server’s configuration, it may forward the
request to (1) document retriever for serving stored
HTML documents, Java Applets, or multimedia files,
or (2) to other information processor on the Web
server, such as CGI programs for dynamically
generated HTML documents and contents. Web
servers are sometimes equipped with information
processor, e.g. Apache Module, or Active Server Page
Engine to perform the computation defined in
augmented HTML documents before sending them to
browsers.
HTTP-cookie is an entity issued by the information
processor on the Web server and sent to Web browser
via HTTP protocol. HTTP-cookie is stored at Web
browser side, and is sent back to the Web browser
conditionally to inform the information processor on
the Web server. Cookie is mainly used to make
stateless HTTP transactions stateful. Temporary
information which need to be kept during consecutive
HTTP transactions can also be stored in the HTTP-
cookie. Protocols convey command, document or
executable between information processor. Hyper-
Text Transfer Protocol, or HTTP, is used for
communication between Web browsers and Web
servers. The Common Gateway Interface, or CGI, is a
standard for external gateway programs to interface
with information servers such as HTTP servers.
The placement of constituents in Web model can
divide Web application constituents into three major
tiers: Web browser tier, Web server tier, and database
server tier. The information process in the application
is passed through each tier. The user interaction is
performed at the Web-browser tier. The program logic
computation is performed at the Web server tier. The
database operation is done at the database-server tier.
Hence, the Web application model is also known as a
three-tier application architecture. When the database

server tier is omitted, it is known as a two-tier
application model.
3. Domain Components for Web Application

Testing
Although Java applets are very popular in Web
application, currently the domain components for
Web application testing are not concerned much. One
reason to the omission is that testing tasks of Java
applets performed in present Web application testing
products are mainly related to its Window application
testing aspects, instead of less explored Web
application testing aspects. Java applets can be
viewed as a platform-independent Window
application running on Web browsers with special
restriction on network connection destination and
local file system access.
To perform Web application testing with respect to
above application scenarios, domain components
might be included to testing environment as the
primitives, to help describe testing tasks. Tools
perform Web application testing tasks can be
composed by selecting proper domain components
from Web-enhanced software testing architecture. For
example, a tool which tests Web application written in
ASP scripts may choose to use Script-Side Script
Analyzer to fetch script source and analyze the control
flow and data flow within the scripts. The information
can be passed to traditional domain components to
generate test cases. The test cases are then
transformed into the format known by Test Case
Executor to describe the execution steps of Web
applications (i.e. Mouse click on Web link, image
map; data values filled in HTML form) and stored in
Test Suite/Case Repository. During the test case
running time, with the help of the testing execution
component such as Form Filler and GUI Event
Generator, tester can run test cases by confirming
each operation predefined in the test script without
performing the operation personally. The fail or pass
of a test case can be manually judged by the testing
staffs or automatically judged by the Test Oracle. Test
Coverage Analyzer and related reporting components
in section 4 then give the testing report on the
percentage of tested part and outcome of each test
case.
4. Architecture of Web Testing Environment
[10] proposed an architecture for traditional software
testing environments, and it is well evaluated in [11].
We extend this architecture for testing of Web
applications testing as described in this section.
4.1 The Architecture
According to the architecture in [10], a software
testing environment consists of five subsystems. With
the growth of Web application techniques, more and
more Web programming styles (e.g. ASP, JavaScript)
have been proposed. These programming styles
introduce several new techniques which were not used
in conventional software. For example, one document
may contain several code fragments written in

4

different programming languages, and these
fragments may be interpreted in different tiers such as
browser, server, database, … etc. Therefore, one Web
application should be analyzed at browser, server,
even database tire, and the corresponding analysis
services for different programming languages are also

needed. We add a new subsystem named Source
Document Analysis into above architecture to handle
the testing problems introduced by these new
programming styles. Figure 2 shows an overview of
this architecture, where solid lines indicate data flow.

Source
Documents

Source Document
Analysis
Subsystem

Test Management Subsystem

Test Development
Subsystem

Test Measurement
Subsystem

Test Failure
Analysis
Subsystem

Test Execution
Subsystem

Data Flow

Original Subsystem

New Subsystem

Legend

Figure 2. Architecture of Web Application Testing Environment
In this architecture, Source Document Analysis
Subsystem (SDAS) is used to analyze the source
documents, and extract some useful information such
as control flow model. Test Management Subsystem
(TMS) serves as a warehouse which stores all
extracted information, and provides the access
interfaces for other subsystems to manipulate stored
information. Test Development Subsystem (TDS)
provides the maintenance functions for testers to
create, modify, and delete test cases, which are stored
in TMS. Test Execution Subsystem (TES) is used to
execute test cases, activate Web application with
designated paths, fill corresponding test data, and
capture the execution results. Test Failure Analysis
Subsystem (TFAS) verifies test cases by analyzing the
captured execution results to determine whether these
test cases match the specification of Web applications,
and sends the result of verification to TMS. TFAS
also summarize all verification result of all test cases
to show how many test cases are executed,
verified, … etc. Test Measurement Subsystem (TMS)
measures whether and how much of a test criterion is
adequately satisfied.
4.2 Source Document Analysis Subsystem, SDAS
Different programming approaches applied for Web
application developments have different
characteristics. For example, server side programming
is focused on database accesses and able to generate
documents to Web browser according to the result of
database queries. Client side programming is focused
on GUI representation and manipulation in Web
browser. A programming approach may need a
distinct programming language, which is associated
with a set of tools, such as Server-Side Script
Interpreter, Client-Side Script Interpreter, HTML
Analyzer, and so forth.
All of these tools designed to analyze the source
documents and extract some information (e.g.
hyperlink) are called Analyzer. There are two
categories of Analyzers for Internet software
developed, HTML Analyzer and Script Analyzer.

HTML Analyzer processes HTML fragments in
source documents to extract information such as CGI
From. Script Analyzer is used to process the
embedded script fragments and extract information
such as control flow of these script fragments. Script
Analyzer is divided into two categories, Client-Side
Script Analyzer and Server-Side Script Analyzer,
according to the location which the script fragments
are interpreted. Client-Side Script Analyzer handles
the script fragments which are interpreted in Web
browser, and Server-Side Script Analyzer handles the
script fragments which interpreted in Web server.

SDAS extracts information such as control flow from
source documents, and sends them to TMS. Control
flow is useful in software testing. [12] and [13]
proposed methods to construct control flow of Web
applications based on the hyperlink relations between
source documents. A source document may contain
HTML, server-side script, and client-side script at the
same time. Analyzers are designed to extract
hyperlinks in three parts respectively. Figure 3 shows
an architecture of SDAS to construct the control flow
of Web applications. The analysis process contains
following steps:
1. Source documents are sent to Server-Side Script

Analyzer to analyze the server-side script (i.e.
ASP) fragments, and are sent to Server-Side
Script Interpreter to interpret the server-side
script fragments.

2. The interpreted source documents are sent to
Client-Side Script Analyzer to analyze the
client-side script (i.e. JavaScript) fragments, and
are sent to Client-Side Script Interpreter to
interpret the client-side script fragments.

3. The interpreted source documents from step 2
are sent to HTML Analyzer to analyze the
HTML fragments.

All extracted hyperlinks from step 1,2,and 3 are sent
to Control Flow Builder to construct the control flow
of the Web application, which is then stored in TMS.

5

ASP
Analyzer

JSP
Analyzer

JavaScript
Analyzer

VBScript
Analyzer

HTML
Analyzer

Server Side
Script
Interpreter

Client Side
Script
Interpreter

Control Flow Builfer

Source
Documents

Test
Management
Subsystem

Document Analysis Subsystem

Client Side
Script Analyzer

Server Side
Script Analyzer

Figure 3. Source Document Analysis Subsystem
4.3 Test Management Subsystem, TMS
Testing (and validation) deals with many artifacts
which may be created during earlier development
phase(s) or even validation phase [10]. Compared
with traditional software, Web applications involve
additional roles for Web such as Web server and
browser, and additional control mechanisms such as
cookie and session. Therefore, testing on Web
applications is different (and might be more
complicated than) on traditional software, and the test
artifact management (e.g. manipulation of test cases)
is more important. TMS works as the warehouse of
other subsystem to provide testing artifact
management. It contains Application Information
Repository and Test Suite/Case Repository, where
each repository has its own manager to handle
repository manipulation.
A testing model ([13]) is used to describe some
behavior of Web applications and the corresponding
information such as control flow and data flow is
stored in Application Information Repository. Test
Suite/Case Repository stores test suites (and cases)
which include test data, execution path, execution
result, test report, and so forth. TMS provides a set of
repository access interfaces and separates the
interfaces from their implementations. With these
access interfaces, other subsystems can create,
manipulate, delete and query Repositories without
concerning their implementations.
In TMS, Manager pattern [9] is applied to achieve
this goal. To manipulate test suites or cases, the client
subsystem sends request messages to Test Suite/Case
Manager, which then loads or creates the Test Case
objects correspondingly. After manipulation, client
subsystem can use the Test Case object directly. Since
the client subsystem is not related to the
implementation of Test Suite/Case Repository, the
former does not need modification when testers
change the implementation of the latter. The
implementation of Application Information Manager
is similar to that of Test Suite/Case Manager.

5. Conclusion and Future Work
In this article, we designed and constructed a

reusable Web application testing environments by
extending a well-evaluated architecture and applying
some design patterns. The architecture contains six
subsystems, and the testing processes (e.g. test case
generation) can be achieved with the cooperation of
these subsystems. To demonstrate the usability of this
architecture, a prototyped Web-application testing
environment was built. The corresponding classes
implmented are put in our labrotary and introduced in
[13].

Although many facets in Web applications are
discussed, there are several popular ones not
mentioned. For example, many Web applications such
as online ordering system are associated with a
database, and many users’ behaviors will cause the
database accesses. We are now focusing on these
issues and propose a set of components to handle the
interactions between Web server and database.
Reference:
[1] Fromme B., “Web Software Testing –

Challenges and Solutions”, InterWork’98
Conference, 1998.

[2] “Testing and Testing Management Tools”, in
http://www.methods-
tools.com/tools/testing.html.

[3] Sun Microsystems, “SunTest Suite”, in
http://www.sun.com/suntest.

[4] Softbridge Inc., “Web Analyst”, in
http://www.softbridge.com.

[5] Mercury Interactive Corp., “Powerful Test
Automation for Enterprise – Mecury
Interactive’s WinRunner”, in
http://secure.merc-
int.com/products/winrunner5/.

[6] Mercury Interactive Corp., “Visual Web Site
Management – Mecury Interactives’s Astra
SiteManager”, in http://www.merc-
int.com/products/astrasmguide.html.

[7] Rational Software, “Visual Test 4.0 White
Paper”, in
http://www.rational.com/products/visual_test/p
rodinfo/whitepapers/dynamic.jtmpl?doc_key=
100464

[8] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented
Software”, Addison-Wesley, 1994.

[9] Reboert Martin, Dirk Riehle, and Frank
Buschmann, Pattern Languages of Program
Design 3, Addison-Wesley, 1998.

[10] Debra J. Richardson, “TAOS: Testing with
Analysis and Oracle Support”, International
Symposium on Software Testing and Analysis,
page 138-153, March 1994.

[11] Nancy S. Eickelmann and Debra J. Richardson,
“An Evaluation of Software Test Environment
Architectures”, International Conference on

6

Software Engineering, page 353-364, March
1996.

[12] Chia-Lin Hsu, “A Web Database Application
Model for Software Maintenance”, National
Chiao-Tung Univertisy, Master Thesie, 1998.

[13] Ji-Tzay Yang, Jiun-Long Huang, and Feng-
JianWang, “An Object-Oriented Architecture
Supporting Web Application Testing,”
accepted by J. Info.Sci.& Eng.

	page1
	page2
	page3
	page4
	page5
	page6

