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中文摘要

所謂能力集合擴展問題是指，在已知能力間的
擴展成本下，找出一種有效的方法，如最低成
本，將已經獲得的能力集擴展到解決問題真正
所需的能力集。然而，在實際問題中，能力間
的擴展成本經常是一模糊量。本研究即探討在
以可能性分佈來表徵模糊擴展成本下，如何分
析能力集擴展的問題。首先，本研究提出模糊
最小成本擴展樹的概念，以及如何構建最小成
本擴展樹之可能性分佈的演算法。接著，應用
此演算法及MST方法來求解模糊環境下，不含
復合能力之最佳能力集擴展。最後，本研究以
運輸規劃專業人員之能力集擴展為例說明。

關鍵字：能力集分析、最佳擴展、模糊最小擴
展樹、可能性分佈、習慣領域

Abstract.  The problem of competence set
expansion refers to finding an effective way, say
with minimum cost, for expanding the already
acquired skills set to the truly needed
competence set with the given expansion cost
among skills.  However, in many practical
problems, the expansion costs are characterized
by fuzzy quantities.  This paper aims at how to
analyz the problem of competence set expansion
with the fuzzy expansion cost represtented by
possibility distribution.  First, the concept of
fuzzy minimum spanning tree is introduced, and
the algorithm to construct the possibility
distribution of minimum spanning tree is
proposed.  Next, we apply the algorithm and
MST method to solve the problem of optimal
competence set expansion without compound
skills in fuzzy environments.  Finally,
theoretical support is accompanied by an
illustrative example.

Keywords: competence set analysis, optimal
expansion, fuzzy minimum spanning tree,
possibility distribution, habitual domains

1. Introduction

Because of rapid change of our technology and
environment, many problems we are facing are
new, complex, and nontrivial.  The solutions to
these problems are usually outside our day-to-
day experience, competence, or our habitual
domains.  Thus, they are fuzzy and challenging.
In order to effectively solve this kind of fuzzy or
challenging problems, we need to continually
expand our competence or habitual domains so
that we can make a good decision with
confidence.

Competence set analysis was first introduced
by Yu (1988) as an application part of habitual
domains (Yu 1988, 1990).  Its analytical
applications and mathematical foundation was
reported in Yu and Zhang (1989, 1990).
Mathematical methods to attain more efficient
ways to acquire the needed competence sets
under various assumptions have been reported in
many research (Yu and Zhang 1990, 1992; Li
and Yu 1994; Shi and Yu 1996; Li et al. 2000).
These previous research have been focus on
finding the optimal expansion process of
competence sets in non-fuzzy environment, that
is the expansion cost among skills are crisp
values.

However,  in many practical problems, a
decision maker or planner only partly knows the
information about the expansion costs.  For
example, a veteran transportation planner may
not give the exactly time for learning
transportation demand forcasting for a green
planner, instead he may only estimate the
learnning time will be “long“ according to his
experience.  In such case, we must use fuzzy
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theory to deal with the fuzziness of lingustic
terms.

Wang and Wang (1998) reported the model of
optimal expansion of a fuzzy competence set,
which aimed at the fuzzy background strength
that can be represented by the product of fuzzy
proficiency of background competence and
fuzzy background relation.  For a given skill,
g, if someone’s background strength, gβ , is
larger than or equal to the critical level, gγ , then
the skill is called someone’s skill competence
with learnning cost being zero.  Otherwise, the
skill is called someone’s non-skill competence
with a certain learnning cost, which is a crisp
value.  Though Wang and Wang (1998) first
suggested the fuzzy set concept to the problem
of competence set expansion, they did not to
deal with the problem of expansion cost with
fuzzy quantities.

Since a competence set expansion process is
similar to the construction of minimum spanning
tree (Shi and Yu 1996, Feng and Yu 1998), thus
the concept of constructing fuzzy minimum
spanning tree can be applied to solve the
expansion problem with fuzzy cost.  Delgado et
al. (1985) gave the definition and some
properties of fuzzy tree based on the Rosenfeld’s
study.  On the basis of the initial Rosenfeld’s
definition, Delgado et al. tried to specify the
concept of connectedness by introducing the
representation by α-cut.  Moreover, the
connectedness was represented by the relation
taking value in [0,1]. Liu and Wang (1991)
analyzed the shortest path with fuzzy quantity,
represented by fuzzy number or possibility
distribution, on edges, and proposed the method
to construct the possibility distribution of
shortest path.

Therefore, in this study, we shall analyze the
optimal expansion process with fuzzy expansion
cost represented by possibility distribution.
The rest of this paper is organized as follows.
Section 2 presents the basic concept of
possibility theory, and then we proposed an
algorithm to establish the possibility distribution
of minimum spanning tree.  Section 3 presents
the process of  solving competence set
expansion with fuzzy cost.  In section 4, a
numerical example will be given to illustrat how
to apply the proposed process.  Finally, we give
a conclusion.

2. Fuzzy Minimum Spanning Tree

In this section, we will first introduce some basic
concepts of possibility theory.  With the
possibility theory, the fuzzy minimum spanning

tree can be established from a graph with fuzzy
quantities on edges.  Then we propose an
algorithm to construct the fuzzy minimum
spanning tree.

2.1 Possibility Theory

Definition 1. [Zimmermann, 1991] Let F~ be a
fuzzy set of the universe U characterized by a
membership function )(~ u

F
µ .  F~ is a fuzzy

restriction on the variable X, denoted by )(
~ XR ,

if F~ acts as an elastic constraint on the values
that may be assigned to X.
Definition 2. [Zadeh, 1978] Let X be a variable
taking values in U and F~  act as a fuzzy
restriction, )(

~ XR , associated with X.  Then the
proposition “X is F~ ,” which translates into

)(
~ XR = F~  associates a possibility distribution,

XΠ , with X which is postulated to be equal to
)(

~ XR .
According to the definition 2, the possibility

distribution function, Xπ , characterizing the
possibility distribution XΠ , is defined to be
numerically equal to the membership function

)(~ u
F

µ  of F~ , that is ≡Xπ )(~ u
F

µ .
Definition 3.  Let A~ be a fuzzy set in the
universe U and XΠ a possibility distribution
associated with a variable X which takes values
in U.  The possibility measure, )

~
(Aπ , of A~  is

then defined by
)

~
()

~
is( AAXPoss π≡

)}(),(min{sup ~ uu xA
Uu

πµ
∈

≡ (1)

With the definition 2, we give the multi-
dimensional possibility distribution as follows:
Definition 4. Let ),,( 1 nXXX Κ= be a vector
variable taking values in cartesian product

nUUU ××= Λ1 , namely Xi takes value in Ui,
i=1, … , n.  Let F~  act as a fuzzy restriction
associated with X in U.  Then the proposition
“X is F~ ,” which translates into )(

~ XR = F~

associates an n dimensional possibility
distribution, ),,( 1 nXX ΚΠ , with X which is
postulated to be equal to )(

~ XR .  Therefore, an
n dimensional possibility distribution function is
denoted by

≡),,( 1),,( 1 nXX uu
n

ΚΚπ ),,( 1~ nF
uu Κµ (2)

If F~ is cartesian product of n one-dimension
fuzzy restriction, nFF ~

,,
~

1 Κ  then the above
equation can be write as follows:

≡),,( 1),,( 1 nXX uu
n

ΚΚπ )()( 11 nXX uu
n

ππ ∧∧Λ , (3)

where )()( ~ iFiX uu
ii

µπ = , ii Uu ∈ , ni ,,1 Κ= ,
and ∧ represents the min operator.
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2.2 Fuzzy Minimum Spanning Tree

Definition 5. [Katagiri and Ishii, 2000] Let
G=(N, E) denote undirected graph consisting of
vertex set N={v1, v2, … , vn} and edge set E={e1,
e2, … , em} ⊂ N×N.  Moreover cost cj is attached
to edge ej.  A spanning tree T=(N, S) of G is a
partial graph satisfying the following conditions:
(i) T has same vertex set as G; (ii) S =n-1,
where S  denotes the cardinality of set S; (iii) T
is connected.

According to Cayley’s theorem, the number of
spanning trees for n distinct vertices is nn-2.
Assume each cost of edge of graph G(N, S) is
positive.  The graph T ′ = ),( SNG ′′ whose total
cost, ∑

′∈

=
Sj

jcC , is minimum is called a
minimum spanning tree.

In the fuzzy minimal spanning tree (FMST)
problem, the cost, cj, between each pair of
vertexes are fuzzy quantities.  The fuzzy
quantity of cost can be represented in two ways:
possibility distribution or fuzzy number.

For the way of possibility distribution, the
cost of edges is regarded as a linguistic variable
X taking value in a universe U.  The value can
be expressed in terms of either “high”, “very
high”, etc, or “close to r”, where r is a crisp
number.  Therefore, the cost of edges can be
expressed as the proposition: “cj is jr~ ,” and the
corresponding possibility distribution function
is:

≡)( jc x
j

π )(~ jr u
j

µ .
The other way to represent the fuzzy quantity

of cost is using fuzzy number.  The key point of
this way is to give a membership function not
only satisfying the definition of fuzzy number,
but also suitably reflecting the features of the
problem.  In this paper we will use possibility
distribution function to express the fuzzy
quantity.

Now we can give the definition of fuzzy
graph.
Definition 6. Let G

~
=(N, E) denote undirected

graph consisting of vertex set N={v1, v2, … , vn}
and edge set E={e1, e2, … , em} ⊂ N×N, where
each edge, ej, is attached by fuzzy cost, jc~ ,
associated with possibility distribution 

jc~Π .
Definition 7. For a spanning tree T(N, S) , let the
possibility distribution of cost of edge j be 

jcΠ .
Let the linguistic variable of edge’s cost be
denoted by Xj, Sj ∈ .  When they take values
as x1, … , xj, Sj ∈ , the total cost of tree T is

∑
∈

=
Sj

jxC .  By the definition of multi-
dimensional possibility distribution, it is follows
that the possibility distribution of the tree T is

})(min{)( Sjxy jcC j
T ∈Π=Π . (4)

According to Cayley’s theorem, there exist nn-

2 spanning trees in a graph G
~

.  Let the set of
spanning trees and minimum spanning trees be
denoted by K={T1, … , Tk}, k= nn-2, and

}),min({ KTCCTQ i
T

q
iq ∈== , respectively.

Now we will give the definition of possibility
distribution of cost of minimum spanning tree.
Definition 8.  Let T ′ be a minimum spanning
tree associated with total cost TC ′ .  Then the
total cost of T ′ is constrained by the possibility
distribution TC ′Π .  This possibility distribution
can be determined by

))}.({min(sup       

}{sup

jc
QT

C
QT

C

xi
j

i

iT

i

T

Π=

Π=Π

∈

∈
′

(5)

Next we propose the algorithm for
constructing the possibility distribution of
minimum spanning tree.  The following are
steps of the algorithm.
Step 1.  Give the membership function, shown
as Fig. 1, of each edge’s cost as follows:
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Fig. 1.  Membership function

Step 2.  Take ∈α [0, 1], and calculate

jjjj aamL +−= αα )()( 1* , (7)

jjjj bbmU +−= αα )()( 2* . (8)

Step 3.  Construct the minimum spanning tree
and calculate the total cost with edge’s cost

)(* αjL and )(* αjU , respectively.  The results
are denoted by )(αLTC ′ and )(αuTC ′ .
Step 4.  Define the membership function as
follows:
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According to the definition 2, the possibility
distribution of total cost of minimum spanning
tree TC ′Π is equivalent to )(xTC ′µ .
Theorem 1. The membership function
established by the algorithm is the possibility
distribution of minimum spanning tree.
Proof:  Since the membership function of fuzzy
edge is shown as Fig. 1, there are five cases for
edges to take value for a given α∈[0, 1]
(i)  TC ′ < )0(LTC ′ ,
(ii) )1()0( LL TTT CCC ′′′ <≤
(iii) )1()1( UL TTT CCC ′′′ ≤≤
(iv) )0()1( UU TTT CCC ′′′ ≤<
(v) )0(LTC ′ < TC ′ .
Since case (i) and (v) are similar, and (ii) and
(iv) are similar, thus we need only to discuss the
cases (i), (ii), and (iii).  Suppose there exists a
minimum spanning tree ),( SNT ′′ whose total
cost is ∑

′∈

=
Sj

jxC .
Case (i) Suppose )(yTC ′Π = )( TC ′µ >0.  By the
definition 7 and 8,

})(min{)( Sjxy jcC j
T ′∈Π=Π ′′ >0, thus

)( jc x
j′

Π >0 for all j.  It follows that )( jc x
j′

µ >0
for all j.  That is the value of µ  is somewhere
between [a, b].  But the value of )0(LTC ′  is
calculated by condition α =0, in which

)(* αjL locates on the left side of a j, i.e.
)( jc x

j′
Π =0.  Contradiction.  Therefore,

)(yTC ′Π =0, if TC ′ < )0(LTC ′ .
Case (ii)  Given a *α ∈[0, 1], then there exists
the corresponding TC ′ = )( *1 αe .  Let the left-
end point of *α -cut of each edge be denoted by

)( *αjL .  Moreover, calculate the minimum
spanning tree by )( *αjL .  Thus according to
definition 7, it follows that )(yTC ′Π = *α .
Suppose the above equation is not hold, say

)(yTC ′Π > *α , then there must exist an edge k,
whose length is larger than )( *αjL , such that
the other edges are all larger than edge k.  If so,
then the TC ′ = ∑ jx must be larger than
∑ )( *αjL  , which leads contradiction.
Suppose )(yTC ′Π < *α .  This is impossible
because of the definition 8.
Case (iii)  If TC ′ ∈[ )1(LTC ′ , )1(UTC ′ ], then for
each edge, there must exist jc ∈[ 1

jm , 2
jm ],

j∈ S′ .  If there is a minimum spanning tree
qT ′ ∈Q such that ],[ 21

kqq jjj mmc ∉ , then by the
definition 8, )(yqTC ′Π will be ignored.  Thus
there is only one situation will hold, i.e.

)(yqTC ′Π =1.                        €

3. Competence Set Expansion
with Fuzzy Cost

The problem of competence set expansion is
referred to finding an effective way, say with
minimum cost, for expanding the already
acquired skills set, Sk, to the truly needed
competence set, Tr, with the given expansion
cost among skills (Yu and Zhang, 1990).  If the
expansion costs among skills are fuzzy
quantities, then this kind of expansion problem
is called a competence set expansion with fuzzy
cost.

A competence set expansion can be regarded
as a tree construction process if there are not
compound skills (Shi and Yu, 1996). In other
words, to find the effective way to expanding
competence set  from Sk to Tr is similar to find
the minimum spanning tree for given nodes and
edges in a digraph.  Thus, we can use the
techniques for solving minimum spanning tree,
such as integer mathematical programming or
minimum spanning table method, MST, (Feng
and Yu, 1998), to deal with the problem of
competence set expansion.

Since MST method enjoies many advantges
compared to integer mathematical programming,
we will use the MST method to construct the
minimum spanning tree, i.e. optimal expansion
process for competence set.  Let us first briefly
describe some terminology in the MST method.
An expansion table, as shown in table 1, is a
matrix representation of a digraph, in which the
component of row i and column j stands for the
cost function denoted by cij=c(i, j) of acquiring
from skill xi to skill xj.

Table 1 Expansion table
x1 … xj … xm

x1

:
xi c(i, j)
:
xm

Except for complete graphs, an expansion
table may have empty cells indicating that the
corresponding edge, say < xi, xj >, does not exist
in the digraph.  When the expansion cost cij is
well defined, it is called a connecting element, or
simply conn-element.   Note, a conn-element
cij is connecting xj  from xi.    Thus in the
problem of competence set expansion with fuzzy
cost, the conn-element will be represented by
fuzzy number or possibility distriburion, denoted
by ijc~ .
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The MST method has seven procedures
consisting of initializing condition, selecting and
marking procedure, cycle detecting procedure,
crossing out procedure, stopping rule,
compressing procedure, and unfolding
procedure.  For a detailed description of the
MST method and the correspounding computer
program, MINST, refer to Feng and Yu (1998)
and Chiang et al. (2000).

As mentioned before, the expansion process
of competence set is a kind of construction of
minimum spanning tree, so we can use the
results of section 2 to solve the problem of
competence set expansion with fuzzy cost.
Next we introduce the algorithm for constructing
the possibility distribution of expansion process.
The following are steps of the algorithm.
Algor ithm.
Step 1.  Give the membership function of
expansion cost, shown as Fig. 1.
Step 2.  Take ∈α [0, 1], and calculate the
lower bound and upper bound of conn-element

ijc~  by equations (7) and (8), respectively.
Denote by )(* αijL  and )(* αijU .
Step 3.  Construct the minimum spanning tree
by MST method and calculate the total cost with

)(* αijL  and )(* αijU , respectively.  The results
are denoted by )(αLTC ′ and )(αuTC ′ .
Step 4.  Construct the membership function by
equation (9).

4. Numeric Example

There are a number of all major issues facing
transportation professionals and decision-makers
today including increasing traffic congestion,
declining mobility, air quality and environment
concerns, deterioration of the transportation
infrastructure, and limited resources.  Thus, to
ensure that transportation planners from urban
and regional planning graduate schools possess
the necessary training and skills is of great
importance to public-sector agencies and private
firms responsible for all aspects of transportation
planning, operation, and management.

To respond to the change of transportation
planning market (E), transportation planners will
need a wide range of skills and knowledge.
Turnbull (1991) identified 12 knowledge and 9
skill areas as important for future transportation
professionals. Table 2 summarizied the future
demands of the transportation marketplace by
knowledge areas and technical skill areas.

Table 2 Summary of knowledge and skill areas
for future transportation planners
Knowledge Areas Skill Areas

Intermodal /Multimodal
Focus

Travel Demand
Modeling

Individual Mode
Characteristics

Air Quality and
Environmental
Analysis Techniques

Transportation/ Land
Use Interrelationships

Financial Analysis
Techniques

Traffic Engineering GIS
Air Quality and
Environmental Impact
of Modes

Database Management

TSM, TDM, and TCM Mode Specific
Travel Demand
Forecasting Process

Evaluation Techniques

ITS and Advanced
Technologies

Problem Solving
Techniques

Federal and State
Requirements

Communication Skills

Transportation Planning
and Decision-Making
Process
Public Participation
Process
Management

Suppose a green planner has already acquired
the competence of communication skills (c),
problem solving techniques (p), and evaluation
techniques (e).  To meet with the future need
for transportation planner, he or she still need to
learn other skills consisting of travel demand
modeling (t), air quality and environmental
analysis techniques (a), GIS (g), mode specific
(m), database management (d), and financial
analysis techniques (f).  By the terminology of
competence set analysis, the already acquired
skill set and the truly needed competence set can
be denoted by Sk={c, p, e}, and Tr={c, p, e, t, a,
g, m, d, f}, respectively.  Thus the set of skills
to be acquired can be represented as Tr\Sk={t, a,
g, m, d, f}.

Suppose the fuzzy expansion cost among
skills can be identified as table 3.  Note that
each membership function of cost is represented
by four parameters (a, m1, m2, b).  Moreover,
we define the expansion cost from the acquired
skills set, Sk, to other skills as follows:

}\,),,(min{),( SkTrySkxyxcySkc ∈∈= .

Table 3.  Fuzzy expansion cost among skills
Sk t a g m d f

Sk × 3.6,
4.3,
5.7,
6.4

8.6,
8.8,
9.2,
9.4

7.4,
7.7,
8.3,
8.6

5.4,
6.72,
9.28,
10.6

2.9,
3.4,
4.6,
5.1

3.8,
3.9,
4.1,
4.2

t × × 6.1,
7.6,

5.7,
6.9,

2.7,
3.4,

6.5,
7.7,

3.4,
3.7,
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10.4,
11.9

9.1,
10.2

4.6,
5.3

10.3,
11.5

4.3,
4.6

a × 6.5,
7.7,

10.3,
11.5

× 2.7,
3.4,
4.6,
5.3

5,
5.5,
6.5,
7

9,
9,
9,
9

8.6,
8.8,
9.2,
9.4

g × 2,
2.5,
3.5,
4

2.7,
3.4,
4.6,
5.3

× 3,
3,
3,
3

3.4,
4.2,
5.8,
6.6

2.7,
3.4,
4.6,
5.3

m × 3,
3.5,
4.5,
5

5.8,
6.9,
9.1,
10.2

4.2,
4.6,
5.4,
5.8

× 6.2,
6.6,
7.4,
7.8

6.7,
7.4,
8.6,
9.3

d × 2.6,
2.8,
3.2,
3.4

3.8,
3.9,
4.1,
4.2

2.8,
2.9,
3.1,
3.2

6.7,
6.9,
7.1,
7.3

× 5.5,
5.8,
6.2,
6.5

f × 3,
3,
3,
3

2.7,
3.4,
4.6,
5.3

7.4,
7.7,
8.3,
8.6

3.4,
4.2,
5.8,
6.6

4,
4,
4,
4

×

According to the algorithm, the possibility
distribution of cost of minimum spanning tree
can be constructed step by step shown as fig. 2.

0

1

16 20

0.5

17 18 19 21

A B C D

Fig. 2  Possibility Distribution of expansion cost

The results of constructing process with α-cut
level ranging from 0 to 1 are shown as table 4.
The second column and fourth column represent
the lower bound and upper bound of expansion
cost under a certain α-cut level.  The third and
fifth columns represent the expansion process.
For example, when α-cut level is 0, the lower
bound of expansion cost, )0(LTC ′ , is 15.96, and
the corresponding expansion process is type A,
shown as Fig. 3.  Similarly, the upper bound of
expansion cost, )0(UTC ′ , is 21.44, and
corresponding expansion process is type D,
shown as Fig. 6.  The expansion processes of
type B and C are shown as Fig. 4 and Fig. 5,
respectively.

Table 4. The lower and upper bound of expansion cost
and the corresponding expansion process under α-cut
level

α )(αLTC ′ Expansion
Process

)(αUTC ′ Expansion
Process

0 15.96 A 21.44 D
0.1 16.26 A 21.42 D
0.2 16.56 A 21.40 D
0.3 16.87 B 21.37 D
0.4 17.16 B 21.35 D
0.5 17.43 C 21.33 D
0.6 17.67 C 21.31 D
0.7 17.91 C 21.29 D
0.8 18.14 C 21.26 D
0.9 18.38 C 21.24 D
1.0 18.62 C 21.22 D

Sk g t m

f a

d

Fig. 3 Type A Expansion Process

Sk g

t m

f

a

d

Fig. 4 Type B Expansion Process

Sk g

t

m

f

a
d

Fig. 5 Type C Expansion Process
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Sk
gt m

f
ad

Fig. 6 Type D Expansion Process

Table 4 shows that the expansion process,
which constructed by lower bound of conn-
element will vary from type A to type C when α-
cut level increase from 0 to 1.  However, the
expansion process constructing by upper bound
of conn-element will keep no matter how α-cut
level varies.  On the other hand, as depicted by
Fig. 2, the expansion process gradually varies
from type A to type D when the cost of
expansion increases.

5. Conclusions

We described an algorithm to establish the
possibility distribution of minimum spanning
tree.  More information can be provided by this
method compared to Chang and Lee’s (1999)
method that constructed the minimum spanning
tree by using overall existence ranking index
(OERI) method to defuzzify the edges’ cost.
Then with the algorithm we applied to find the
possibility distribution of the optimal expansion
process of competence set.

Because of the fuzziness of expansion cost,
the expansion process may vary with different α
level.  According to the results, the fuzzy cost
of optimal expansion process is characterized by
possibility distribution, rather than a crisp value.
It is a certain result of fuzziness of expansion
process when the fuzzy expansion costs are
considered.  However, it contains more
information.  We may give explanation as
follows.  Because of the fuzziness of expansion
costs, the so-called optimal expansion process
also is a fuzzy concept.  Therefore, the optimal
expansion process may be process A or another
process.

In the case containing many expansion
processes, how can a decision maker make
decision to choose expansion process?  We
suggest two ways for decision maker to choose
expansion processes.  First, given a α, which
represents the decision level, and then choose
the expansion processes with possibility larger
than α.  Second, rank the expansion process
according to the rule that “up is better than
down, and left is better than right.”  For
instance, by the numerical example given in

section 4, we can rank the optimal expansion
process as C�B�A�D.

Finally, in this study we did not consider the
case that compound skills are included in Tr\Sk,
therefore, it remains still a further research.
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