
PHYSICAL REVIEW A 83, 053813 (2011)

Generation of optical crystals and quasicrystal beams: Kaleidoscopic patterns and phase singularity
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We explore the feasibility of the generation of pseudonondiffracting optical beams related to crystal and
quasicrystal structures. It is experimentally confirmed that optical crystal and quasicrystal beams can be
remarkably generated with a collimated light to illuminate a high-precision mask with multiple apertures
regularly distributed on a ring. We also found that exotic kaleidoscopic patterns can be exhibited with the
high-order quasicrystal beams. More importantly, the structures of phase singularities in optical quasicrystal
beams are manifested.
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I. INTRODUCTION

Durnin, Miceli, and Eberly [1] first realized a nondiffracting
Bessel beam that is intriguing because it has a comparatively
longer invariance length than a conventional Gaussian beam.
Since then, pseudonondiffracting optical beams have been
extensively studied [2] and applied in diverse fields, such
as in optical manipulation [3], biophotonics [4], optical
interconnects [5], and optical coherence tomography [6].
Despite a great number of works devoted to the investigation
of pseudonondiffracting beams [7], generation of pseudonon-
diffracting crystal and quasicrystal beams has not been inves-
tigated in detail so far. It has been demonstrated that optical
quasicrystal beams can be used to create the quasicrystalline
substrate potential for developing new materials and devices
[8]. Optical quasicrystal patterns have been also employed in
the optical induction technique [9,10] for exploring solitons
in two-dimensional nonlinear optical lattices [11,12] and
Anderson localization phenomena [13]. Furthermore, the
patterns with quasicrystalline and kaleidoscopic structures
have fascinated scientists, mathematicians, and artists in both
ancient and modern cultures [14,15]. Therefore, it is of general
interest to realize optical beams with quasicrystalline and
kaleidoscopic structures.

Multibeam interference technique is often used to generate
desired two-dimensional (2D) optical patterns for fabricating
different quasiperiodic structures [16]. However, splitting
a laser beam into several components of equal intensity
usually requires a complicated experimental setup and suffers
from low stability. Alternatively, the experimental technique
based on Fourier transform of the amplitude mask has been
demonstrated to be an extremely stable method for generating
the 2D square photonic lattice [12,17,18]. In this paper, we
will employ this approach to generate the desired quasicrystal
patterns. We first verify that the pseudonondiffracting optical
beams related to crystal and quasicrystal structures can be
formed by using a collimated light to illuminate a mask with
multiple apertures regularly distributed on a ring. We exper-
imentally fabricate stencil masks with high precision and set
up an optical configuration to realize the pseudonondiffracting
crystal and quasicrystal beams. Optical pseudonondiffracting
beams from low-order crystalline to high-order kaleidoscopic

*yfchen@cc.nctu.edu.tw

structures are generated excellently. Also, experimental results
reveal that various quasicrystal beams with different phase
factors can be generated by slightly tilting the mask relative
to the optical axis. We finally manifest the structures of
phase singularities for some experimental quasicrystal beams.
Optical fields with phase singularities, also called optical
vortices, have generated a lot of interest in recent years [19,20].
Although the singularities can be created by random scattering,
the singular structures carried by quasicrystal beams are
believed to play an important role in many applications.

II. THEORETICAL ANALYSIS

The optical fields with two-dimensional crystal or qua-
sicrystal structures in polar coordinates (ρ,φ) can be expressed
as a sum of plane waves [16]

ψq(ρ,φ) =
q−1∑
s=0

Ase
iϕs eiKs ·ρ, (1)

where Ks = (K cos(2πs/q),K sin(2πs/q)), ρ =
(ρ cosφ,ρ sinφ), q is an integer number, and As , Ks ,
and ϕs are the amplitude, the transverse wave vector, and
the initial phase of the sth plane wave, respectively. The
fields ψq(ρ,φ) with q = 2, 3, 4, and 6 yield periodic lattices,
which correspond to the standard 2D crystal structures. All
other values of q correspond to quasicrystals. Unlike periodic
crystals, the quasicrystals are not invariant under spatial
translation. For the convenience of description, the fields
ψq(ρ,φ) with the most representative parameters of As = 1/q
and ϕs = 0 are expressed as

�q(ρ,φ; K) = (1/q)
q−1∑
s=0

eiKρ cos[φ−(2πs/q)]. (2)

Figure 1 depicts the calculated patterns for the intensity
|�q(ρ,φ; K)|2 with q = 3, 4, 5, 6, 7, and 8. It can be seen
that the patterns with q = 3, 4, and 6 display translational
symmetry, whereas the patterns with q = 5 and 7 exhibit
quasicrystal structures.

The field of a general pseudonondiffracting beam can be
generated with a specific input field transformed by a lens.
Consider a coherent light with field distribution expressed by
polar coordinates uo(ρ ′,φ′) to be produced in the focal plane
in front of the lens with the focal length f. By Fresnel synthesis
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FIG. 1. (Color online) Numerical patterns for the crystal and
quasicrystal intensity |�q (ρ,φ; K)|2 with q = 3, 4, 5, 6, 7, and 8.

based on Fourier optics, the complex field u(ρ,φ,z) behind the
lens at a distance z is given by

u(ρ,φ,z) = −i

λf
eik(f +z)

∫ ∫
uo(ρ ′,φ′)ei

kρ′2
2f

(
1− z

f

)

× e
−i

2πρρ′
λf

cos(φ−φ′)
ρ ′ dφ′ dρ ′, (3)

where k = 2π/λ and λ is the wavelength of the coherent light.
Durnin, Miceli, and Eberly [1] obtained a circular hollow beam
uo(ρ ′,φ′) = δ(ρ ′−a) by directly illuminating a thin circular
slit with collimated light. Substituting this hollow beam into
Eq. (3), the output field can be found to be an approximate
Bessel beam propagating in the z direction, i.e.,

u(ρ,φ,z) = −i2πa

λf
eik(f +z)e

i ka2

2f

(
1− z

f

)
J0

(
2πa

λf
ρ

)
, (4)

where J0(·) is the Bessel function of zero order of the first
kind.

When a mask with multiple apertures (small circular holes)
regularly distributed on a ring is illuminated with collimated
light, the field just after the mask can be approximately ex-
pressed as uo(ρ ′, ϕ′) = (1/q)δ(ρ ′ − a)

∑q−1
s=0 δ(ϕ′ − ϕs). Sub-

stituting this field distribution into Eq. (3), the output field can
be derived to be given by

u(ρ,φ,z) = −ia

λf
eik(f +z)e

i ka2

2f

(
1− z

f

)
�∗

q

(
ρ,φ;

2πa

λf

)
. (5)

Equation (5) indicates that the output field represents a
pseudonondiffracting beam propagating in the z direction
with the transverse pattern revealing a crystal or quasicrystal
structure.

III. EXPERIMENTAL RESULTS AND DISCUSSION

To realize the pseudonondiffracting crystal and quasicrystal
beams, we set up an optical system that is essentially similar to
Durnin’s approach, as depicted in Fig. 2. The light source was
a linearly polarized 20-mW He-Ne laser with a wavelength
of 632.8 nm. A beam expander was employed to reduce
the beam divergence to less than 0.1 mrad. Metal masks of
different forms were fabricated with a laser stencil-cutting

Mask

Focusing lens 
f = 1000mm

He-NeLaser

CCD camera

Beam expander

FIG. 2. (Color online) Experimental setup for generating optical
crystal and quasicrystal beams.

machine. The radii of the aperture and the ring are 0.1 and
5.0 mm, respectively. The focal length of the lens is 1000 mm.
Interference patterns formed in the region behind the focal lens
were imaged by a CCD camera.

Figure 3 depicts the interference patterns for crystal and
quasicrystal structures observed in the experiment under the
condition of the optimal alignment. It can be seen that the
experimental observations agree very well with the numerical
patterns shown in Fig. 1. The good agreement between
the experimental and theoretical patterns confirms that the
pseudonondiffracting optical beams related to crystal and qua-
sicrystal structures can be manifestly generated with multiple
tiny apertures regularly distributed on a ring. Since the optical
configuration is essentially similar to Durnin’s approach, the
overall properties of diffraction lengths are nearly the same
as a pseudonondiffracting Bessel beam. Figure 4 shows the
experimental generated quasicrystal patterns for q = 5 at
different propagation distances along z. The patterns can
be seen clearly to be diffraction free over a finite distance,
zmax, the so-called propagation-invariant region, behind which
the center of the pattern rapidly turns vague. The finite
distance of the nondiffracting region comes from the finite
size of the beam. The maximum distance zmax can be derived
geometrically to be given by zmax = R/ tan θ , where R is the

q = 3 (b ) q = 4 (c ) q = 5

q = 6 q = 7 (f) q = 8

1.06 mm 1.42 mm 1.77 mm

1.77 mm 2.52 mm 1.95 mm

(  a  )

( d ) (e)

FIG. 3. (Color online) Experimental patterns for crystal and
quasicrystal structures observed under the optimal alignment.
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FIG. 4. (Color online) Experimental generated quasicrystal pat-
terns for q = 5 at different propagation distances along z.

radius of each interference beam in the plane of the focal lens
and θ is the inclination angle of each interference beam with
respect to the optical axis. In our experiment, R and θ are
approximately 2.0 mm and 5 mrad, respectively. As a result,
zmax can be estimated to be approximately 400 mm, which
agrees very well with the experimental observation, as shown
in Fig. 4.

It is intriguing to explore the characteristics of experimental
quasicrystal patterns for the large value of the index q.
Figures 5(a)–5(c) and 5(a′)–5(c′) show the experimental and
numerical quasicrystal patterns for q = 16, 21, and 30. The
high-order quasicrystal beams display exotic kaleidoscopic
patterns. The central part of the high-order patterns can be seen
to have some resemblance to a Bessel beam. This feature comes
from the limiting behavior limq→∞ �q(ρ,ϕ; K) = J0(Kρ).

By slightly tilting the mask relative to the optical axis,
rich patterns related to various quaiscrystal structures can
be observed. The experimental patterns for different tiny tilt

q =16 (c) q = 30

(a ) (b ) (c )

2.84 mm 2.48 mm 2.84 mm

(a) (b) q =16

FIG. 5. (Color online) Experimental [(a)–(c)] and numerical
[(a′)–(c′)] quasicrystal patterns for q = 16, 21, and 30.

(a ) (b ) (c )

2

0

2

0

2.28 mm

2.78 mm
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FIG. 6. (Color online) (a), (a′) Two experimental octagonal
patterns obtained for two tilt angles. (b), (b′) Reconstructed patterns
with the fields ψ8(ρ,φ) with ϕs = sπ/4 and ϕs = sπ/2, respectively.
(c), (c′) Contour plots of phase field 
(ρ,φ) for the boxed regions
shown in (b) and (b′), respectively.

angles can be reconstructed with the fields ψq(ρ,φ) with
some specific phase parameters ϕs , although the relationship
between the experimental tilt angle and the phase parameters
ϕs cannot be analytically expressed. Figures 6(a) and 6(a′)
show two experimental octagonal patterns obtained for two

1.36 mm 2.20 mm

(a) (a )

(b) (b )

FIG. 7. (Color online) (a), (a′) Experimental results for the
interference patterns between the inclined plane wave and the
quasicrystal beams shown in Figs. 6(a) and 6(a′), respectively. (b),
(b′) Theoretical results corresponding to the patterns shown in (a) and
(a′), respectively.
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tilt angles. These two patterns can be reconstructed with the
fields ψ8(ρ,φ) with ϕs = sπ/4 and ϕs = sπ/2, as shown in
Figs. 6(b) and 6(b′).

The present crystal and quasicrystal beams generally belong
to the complex optical fields. Phase singularities of the
complex fields are characterized by isolated dark spots, where
phases are ambiguous and amplitudes are zero. Phase singular-
ities are conventionally described in terms of the phase angle
field 
(ρ,φ) = arctan{Im[ψq(ρ,φ)]/Re[ψq(ρ,φ)]}, where
Re[ψq(ρ,φ)] and Im[ψq(ρ,φ)] are the real and imaginary
parts of the field ψq(ρ,φ). The vortices of 
(ρ,φ) are the
singularities at which the phase angle of the field ψq(ρ,φ) is
undefined. Figures 6(c) and 6(c′) depict the contour plots of
phase fields 
(ρ,φ) for the boxed regions shown in Figs. 6(b)
and 6(b′) to display the feature of phase singularities. We
also employed an inclined plane wave to perform interference
with the generated quasicrystal beams for exhibiting the phase
structure. Figures 7(a) and 7(a′) depict the experimental results
for the interference patterns between the inclined plane wave
and the quasicrystal beams shown in Figs. 6(a) and 6(a′). The
theoretical patterns are also depicted in Figs. 7(b) and 7(b′) for
comparison. The good agreement confirms that the generated
waves do indeed have the phase structure of quasicrystal
beams. Optical vortex beams that possess orbital angular
momentum due to a phase singularity have been extensively

used in the study of optical tweezers, trapping and guiding
of cold atoms, and entanglement states of photons. Therefore,
the generated quasicrystal beams are expected to be potentially
beneficial to future applications.

IV. CONCLUSION

In conclusion, we have explored the generation of
pseudonondiffracting optical beams related to crystal and qua-
sicrystal structures. We have excellently generated pseudonon-
diffracting optical beams from low-order quasicrystal to high-
order kaleidoscopic structures by using a collimated light to
illuminate a high-precision stencil mask with multiple aper-
tures regularly distributed on a ring. We also experimentally
found that tilting the mask relative to the optical axis could
lead to the generation of various quasicrystal beams with
different phase factors. Finally, we employed some experi-
mental quasicrystal beams to manifest the structures of phase
singularities.
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