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We construct a real time current-conserving functional renormalization group (RG) scheme on the Keldysh
contour to study frequency-dependent transport and noise through a quantum dot in the local moment regime.
We find that the current vertex develops a nontrivial nonlocal structure in time that is governed by a new set of
RG equations. Solving these RG equations, we compute the complete frequency and temperature dependence
of the noise spectrum. For voltages that are large compared to the Kondo temperature (i.e., eV � kBTK ), two
sharp antiresonances are found in the noise spectrum at frequencies h̄ω = ±eV and, correspondingly, two
Kondo-assisted peaks appear in the ac conductance through the dot.
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Introduction. Not only the current flowing through a
system, but also its fluctuations (noise), carry crucial infor-
mation on the physics that governs transport.1 Zero-frequency
noise (shot noise) has been used; for example, to reveal
the fractional charge of the quasiparticle excitations in a
fractional quantum Hall liquid.2 The low-frequency electrical
noise has been extensively studied in various systems3 and
is by now relatively well understood. However, even more
information is stored in the finite-frequency (FF) current noise.
It has been predicted that the FF noise is sensitive to the
statistics of the quasiparticles4 and that in a quantum Hall
liquid a crossover between different quantum statistics can be
potentially observed as a function of frequency, similar to the
one observed as a function of temperature.5 Moreover, in the
quantum regime characterized by frequencies higher than the
applied voltage or temperature, the FF noise is a powerful tool
to reveal the characteristic time scales of the probed system6

as well as the dynamics of the excitations or the importance of
interactions.

Quantum dots (QD) provide an ideal test ground to
study nonequilibrium transport in the presence of strong
interactions. Due to their small size, transport through quantum
dots is strongly influenced by the Coulomb blockade. In
particular, QDs with an odd number of electrons behave as
artificial magnetic impurities and exhibit the Kondo effect,7

a paradigmatic many-body phenomenon corresponding to the
screening of the spin of the quantum dot by the conduction
electrons of the leads at temperatures T below the Kondo
temperature TK . While the conductance of a QD in the Kondo
regime is well understood by now,8 much less is known about
current fluctuations. Although noise is a promising quantity to
characterize the out-of-equilibrium Kondo effect, nevertheless,
most experiments have focused so far on measurements of
the average current,9–11 and even results on low-frequency
noise measurements have only appeared recently.12,13 While
the effect of ac voltage on the nonequilibrium Kondo effect
has been experimentally studied relatively long ago,14 to our
knowledge no FF noise measurements have yet been reported.
Also theoretically, most studies focused so far on shot noise:

a non monotonous bias-dependence of the shot noise with
a maximum at eV ∼ kBTK has been found at T � TK ,15

and a universal ratio (5/3)e between the shot noise and the
backscattering current at T = 0 has been predicted for the
SU(2) Kondo effect.16

The purpose of this work is to provide a general analysis
of the finite-frequency current noise through a quantum dot
in the local moment regime. To achieve this, we construct a
real time functional renormalization group (FRG) scheme on
the Keldysh contour to study frequency-dependent transport
and noise through a Kondo quantum dot. Our formalism sums
up the leading logarithmic singularities just as Abrikosov’s
parquet approximation,17 and reproduces the scaling equations
of Rosch et al.18 for the vertex function. However, we find
that the current vertex also develops a nontrivial nonlocal
structure in time governed by a new set of RG equations. Such
a structure of the current vertex turns out to be unavoidable to
guarantee current conservation and is necessary to calculate the
finite-frequency current noise in a controlled manner. Solving
this set of RG equations, we compute the complete frequency-
and temperature-dependent noise spectrum through the dot.
Our approach is valid at any frequency ω, voltage V , and
temperature T provided that max{eV,kBT } > kBTK . For
frequencies h̄ω � kBTK , we find sharp antiresonances in the
voltage dependence of the noise spectrum at eV = h̄ω, which
gradually disappear with increasing temperature and which
can be understood as Kondo-assisted noise singularities. The
absorption noise is also found to exhibit strong anomalies at
h̄ω = eV , and we find similar anomalies in the nonequilibrium
ac conductance, too, where a split nonequilibrium Kondo
resonance is observed. Precursors of the noise anomaly have
been found in the zero-temperature symmetrized noise at finite
frequency, as first computed at the Toulouse point of the Kondo
model19 and later confirmed by a nonequilibrium one-loop
perturbative calculation.20 However, logarithmic singularities
are completely absent at the rather special Toulouse point,19

while the method of Ref. 20 was not accurate enough to capture
fine details of the anomaly.
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Theoretical Model. In this paper, we focus our attention to
the local moment regime of the quantum dot, where we can
describe the electron on the dot as a spin S = 1/2 moment
which couples to electrons in the left and right electrodes
through the exchange interaction8

Hint = 1

2

∑
α,β=L,R

∑
σ,σ ′

jαβSψ†
ασ σ σσ ′ψβσ ′ . (1)

Here σ stands for the three Pauli matrices, the fields ψασ =∫
cασ (ξ )e−|ξ |adξ destroy electrons of spin σ in leads α ∈

{L,R}, with 1/a being a high energy cutoff.21 Here the
dynamics of ψασ are governed by the noninteracting Hamilto-
nian H0 = ∑

α,σ

∫
dξ (ξ + μα)c†ασ (ξ )cασ (ξ ), where μα = eVα

is the chemical potential shift of lead α and ξ is the electrons’
energy in the leads.

To describe the spin using standard field-theoretical
methods, we make use of Abrikosov’s pseudo-fermion
representation:17 we introduce a fermion operator f

†
s for

each spin component s = ±1/2 and represent the spin op-
erator as Ŝi → ∑

s,s ′
1
2f

†
s σ i

s,s ′fs ′ with the additional constraint∑
s f

†
s fs = 1.

We then employ a path integral formalism on the Keldysh
contour. In this approach each fermionic field is replaced by
two time-dependent Grassmann fields living on the upper
and lower Keldysh contour (κ = 1,2), respectively, and the
dynamics are determined by the Keldysh action, S = Slead +
Sspin + Sint. The parts Slead and Sspin describe the conduction
electrons and the spin in the absence of interaction. They
are quadratic in the fields and determine the noninteracting
Green’s functions.22

The interaction part of the action, Sint, is diagonal in
the Keldysh indices and is initially local in time. However,
elimination of high-energy degrees of freedom in the course
of the RG procedure generates retardation effects, and the
interaction becomes nonlocal. We find that, with a good
approximation, it can be expressed as

Sint =
∑

κ

∑
α,β

sκ

1

4

∫
dt1dt2gαβ(t1 − t2)

× f̄ κ (T12)�σf κ (T12) · ψ̄κ
α (t1)�σψκ

β (t2), (2)

where T12 = (t1 + t2)/2 and sκ = ±1 for the upper and lower
Keldysh contours, respectively. The initial (bare) coupling
function gαβ (t) is local in time and is given by g

(0)
αβ (t) = jαβδ(t).

The justification for this structure, Eq. (2), is straightforward:
At electronic time scales the spin evolves very slowly, and its
time evolution can be very well approximated by the one in the
absence of interactions. However, conduction electrons have
fast dynamics and their retardation effects become important
as one approaches smaller energy scales.

Functional Renormalization Group. We construct the RG
equations by expanding the action in Sint and rescaling the
cutoff parameter a → a′. An integro-differential equation is
obtained for the functions gαβ(t), which becomes simple in
Fourier space:

dg(ω)

dl
= g(ω)q(ω,a)g(ω). (3)

Here l = ln(a/a0) is the scaling variable, a0 is the initial value
of the cutoff time, and we introduced the matrix notation

gαβ → g. The matrix q(ω,a) is a cutoff function, which
depends somewhat on the precise cutoff scheme but, for
practical purposes, it is well approximated by the function
qαβ(ω,a) ≈ δαβ
( 1

a
− |ω − μα|) at temperature T = 0.18 The

scaling equation, Eq. (3), is identical to the one obtained in
a more heuristic way in Ref. 18; however, in our real time
functional RG formalism the derivation is rather straightfor-
ward and simple.23 We remark that the usual poor man’s RG
procedure can be recovered by dropping the time dependence
of gαβ and replacing the generated nonlocal couplings by local
ones, gαβ(t) → δ(t)

∫
dtgαβ(t), which corresponds to setting

ω → 0 in Eq. (3).
Our primary purpose is to compute current-current cor-

relation functions. To do that, we first define the left and
right current operators from the equation of motion as ÎL(t) =
−ÎR(t) = ∑

αβ
e
2vL

αβ Ŝ(t) · ψ̂†
α(t)σ ψ̂β(t), with the current ver-

tex matrices defined as

vL = −vR =
(

0 −ijLR

ijLR 0

)
. (4)

In the path integral language, it is useful to introduce a
corresponding generating functional,

Z
[
hκ

α(t)
] ≡ 〈

e−i
∑

κ,α

∫
dthκ

α (t)I κ
α (t)

〉
S , (5)

from which the current-current correlation functions can be
generated by functional differentiation with respect to hκ

α(t).
A systematic investigation of the leading logarithmic diagram
series shows that the expression of the current field I κ (t)
necessarily becomes nonlocal in time under the RG procedure
and acquires the form (no summation over κ)

I κ
L(t) = e

4

∑
αβ

∫
dt1dt2V

L
αβ(t1 − t,t − t2,a)

× f̄ κ (t)�σf κ (t) · ψ̄κ
α (t1)�σψκ

β (t2). (6)

The physical motivation of the double time structure is simple:
in the renormalized theory it is not enough to know the times
at which electrons enter and leave the dot (t1,2), but the time t

of the current measurement must also be kept track of.
It is relatively straightforward to derive the scaling

equations from the perturbative expansion of Eq. (5). We obtain

dVL(ω1,ω2)

dl
= VL(ω1,ω2)q(ω2,a)g(ω2)

+ g(ω1)q(ω1,a)VL(ω1,ω2). (7)

This equation needs be solved parallel to the scaling equation,
Eq. (3), with the boundary conditions VL(ω1,ω2,a0) =
vL(τ1,τ2,a0) = δ(τ1)δ(τ2)vL and VR(τ1,τ2,a0) =
δ(τ1)δ(τ2)vR . Although the renormalized couplings gL(ω)
drive the scaling of the current vertices VL(ω1,ω2,a0), there
seems to be no simple connection between these two. In
other words, introducing the renormalized current vertices
within the functional RG scheme is unavoidable to compute
time-dependent current correlations. The above extension
also seems to be necessary to guarantee current conservation.
Equation (7) is linear in VL and, therefore, the condition
I κ
L(t) + I κ

R(t) ≡ 0 is automatically satisfied for any value a

of the cutoff. On the other hand, we could not find any way to
generate a current field from just the renormalized action, Eq.
(2), such that it respects current conservation.
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FIG. 1. (Color online) Voltage dependence of the symmetric
noise as computed by FRG for h̄ω = 30kBTK .

We solved Eqs. (3) and (7) numerically to obtain g, VL,
and VR . All of them display singularities at frequencies
h̄ω = ±eV/2.22 With the couplings g(ω1) and the current ver-
tices VL(ω1,ω2) and VR(ω1,ω2) in hand, we then proceeded
to compute the noise through the device by doing perturbation
theory with the renormalized action. For the Fourier transform
of the absorption and emission noise components, S>

LL(t) ≡
〈ÎL(t)ÎL(0)〉 and S<

LL(t) ≡ 〈ÎL(0)ÎL(t)〉, respectively, we ob-
tain S>

LL(ω) = S<
LL(−ω), with

S>
LL(ω) = e2

2
S(S + 1)

∫
dω̃

2π
Tr{VL(ω̃−,ω̃+)

× G>(ω̃+)VL(ω̃+,ω̃−)G<(ω̃−)}. (8)

Here, ω̃± = ω̃ ± ω
2 , and the greater and lesser Green’s func-

tions are G
>/<

αβ (ω) = ±i2πδαβf ( ± (ω − μα)), respectively.

Results. The symmetrized noise spectrum, SLL(ω) ≡
1
2 [S>

LL(ω) + S<
LL(ω)] is plotted in Fig. 1 for h̄ω = 30kBTK as a

function of voltage V . Clearly, the noise spectrum shows rather
strong features at the bias voltage eV ≈ h̄ω. The appearing
dip is a clear fingerprint of the nonequilibrium Kondo effect;
It gradually vanishes as we increase the temperature T .24

The origin of this anomaly can be better understood by
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FIG. 2. (Color online) Voltage and temperature dependence of
the emission noise as computed through FRG for h̄ω = 5kBTK .
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FIG. 3. (Color online) Temperature dependence of the symmet-
ric noise, as computed by FRG for TK = 6.3 × 10−5h̄/a0. Inset:
Comparison with third-order bare perturbation theory (PT) and
renormalized perturbation theory (RPT) using a reduced cutoff,
ã = h̄/(10eV ) and the corresponding couplings jLR(ã) and effective
second-order perturbation theory (EPT) with renormalized couplings
jLR(ã = h̄/(eV )), but still using the original bandwidth. None of these
methods are able to get close to the FRG results.

analyzing the emission (or absorption) noise, S
e/a

αβ (ω > 0) ≡
S<

αβ(±ω), as a function of the bias voltage (see Fig. 2).
In fact, it turns out to be more convenient experimentally
to measure these quantities.23 The emission noise vanishes
for voltages V < h̄ω/e at T = 0 by energy conservation.
However, for eV > h̄ω, photon emission becomes possible
through processes where an electron is transferred through the
dot. These processes have a logarithmic singularity (cut off by
the voltage-induced spin relaxation rate) since, for h̄ω ≈ eV ,
the initial and final electron states are very close to the
Fermi energies of the corresponding leads. Correspondingly,
the slope of Se at the threshold is very large due to the
nonequilibrium Kondo effect, while it becomes smaller as one
goes away from the threshold. A similar anomaly appears
in the absorption noise for eV < h̄ω. These Kondo-assisted
emission and absorption noises give rise to a sharp dip in
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FIG. 4. (Color online) Ac conductance for ω > 0 and T = 0.
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the symmetrized noise at temperatures T � TK , which is
gradually smeared out for kBT > eV (see Fig. 1). The increase
in the symmetrized noise with decreasing V at low voltages
has a different origin; it is the consequence of increasing spin
relaxation time, giving rise to an increased Kondo conductance
through the dot. At very high voltages, on the other hand, the
increasing noise is associated with increased photon emission.

Similar Kondo-effect-induced features appear in the
frequency-dependent symmetrized noise shown in Fig. 3. It
is instructive to compare the FRG results with perturbation
theory, which gives

S>
LL(t) = −e2 3

4
|jLR|2 cos(eV t)

×
{

1

(t − ia)2
+ 2(jLL + jRR)

ln(1 + it/a)

t(t − 2ia)
+ · · ·

}
.

(9)

The curves in the inset of Fig. 3 were obtained by taking the
Fourier transform of this expression. While the perturbative
result also exhibits singular features at h̄ω = ±eV , it does
not reproduce the precise shape of the anomaly, even if we use
renormalized parameters, jαβ → jαβ(eV ), obtained by solving
the usual leading logarithmic scaling equations.

Finally, let us discuss another quantity of experimental
relevance; the nonequilibrium finite-frequency linear conduc-
tance, which is defined as the current response of the system
to an external time-dependent variation of one of the lead
potentials. According to a formula of Safi,26 this can be
expressed as

Re GLL(ω,V ) = − 1

h̄ω
[S>

LL(ω) − S<
LL(ω)]. (10)

Notice that GLL(0,V ) is just the usual nonequilibrium differ-
ential conductance, GLL(0,V ) = ∂VL

〈ÎL〉, while GLL(ω,V →
0) corresponds to the usual equilibrium ac conductance.27

Re GLL(ω,V ) is an even function of ω and exhibits two peaks
at h̄ω = ±eV , which are associated with the nonequilibrium
Kondo effect15 (see Fig. 4). Since in equilibrium GLL(ω,0) is
directly related to the spectral function of the dot level, this
result suggests that the dips in the noise are related to the
splitting of the Kondo resonance at a finite bias.23

Summary. We have developed a real-time functional renor-
malization group approach. We have shown that the current
vertex becomes nonlocal in time under renormalization, under
renormalization. This nonlocal structure ensures nonequilib-
rium current conservation. We have been able to calculate
the voltage and temperature dependence of the current noise
at finite frequency and the nonequilibrium ac conductance;
quantities which are within experimental reach.25
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