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Parallel Smulation of Nanometer Devices Using Balance Equation Method
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Numerical simulation for nanometer semi-
conductor devices based on the balance equation
method has been developed in thiswork. The basic
equations for electron concentration, electron ve-
locity, and electron energy are derived from the
Boltzmann transport equation. The time evolution
Is descritized according to the Crank-Nicolson
scheme. The nonlinear equation system isline-
arized by Newton iteration and solved by LU de-
composition method. Thisformulation is suitable
to the implementation of paralel computation since
each row or column of the grid pointsin a semi-
conductor device can be treated independently. A
ballistic diode has been taken as an example. The
transient behavior of the electrostatic potential,
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electron concentration, velocity, and energy under
applied voltage are described. The distributions of
all variables under steady state at various applied
voltages are a'so shown. This model can accurately
predict the carrier heating phenomenain nanome-
ter device. However, the spurious velocity over-
shoot has not been observed in this work.
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The classical carrier transport problem is based
on the solution of Boltzmann transport equation for
the distribution function 7(7, p,t) inthe

position 7 and momentum p spaces as a function of

timet
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where vis carrier velocity, eisthe magnitude of
electronic charge, andy isthe electrostatic poten-

tial arising from the space charges in semiconduc-
tor according to the Poisson equation.
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where e is the permittivity, /N, is the dopant
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concentration, and nis the electron concentration.

The balance equations for the carrier density n,
the momentum density /D, and the energy den-
sity nw, can be obtained by integrating both sides
of the Boltzmann transport equation (1) for 1, p
and wover the momentum space.
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wherev, = p,/ m* isthe average drift velocity, nt
is the effective mass, kg is the Boltzmann constant,
and k @kynT/2m*n ,(w) isthethermal con-
ductivity.

Since the quantities nip, and nw,, on the | eft-

hand-side of (4) and (5) are the products of two
unknown quantities, these equations are dlightly
inconvenient. We must derive the equationsin
terms of the average carrier velocity v, and average

carrier energy w,
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The collision terms in the balance equati ons
can be represented by the ensemble relaxation
rates.

(0 91t)e =-n,(n- ny),

(v, 198), =-n,v,

(Twg /9) = -, (W - wig).

The Monte Carlo method is generally used to com-

pute the ensembl e relaxation rates as a function of
energy. The results for silicon can be expressed as.
n,=0
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wheren, =5 1013(ND/1025) :
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n, =6.782" 10%,n,, =6.063" 10°,
n,, =759 10%, n, =1.174" 10",
n, =2.500"10%, n, =2.338" 10",

and we = 0.03.

To simplify the mathematical derivation and
numerical computation, it is convenient to nor-
malize al physical quantities with respect to some
factors so that we have equations of pure numbers.
In general, the dopant and carrier concentrations
are normalized to the intrinsic carrier concentration

n; , the potential to the thermal potential
Vi, = kgT/ e, the energy to the thermal energy

w, = k; T, thevelocity to v, =,/2k, T/ m* , the
distance to the Debye length x, =./e.k, T/ €n, ,

thetimeto f, = X, / v,. Therefore, (2), (3), (6),
and (7) become
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The Crank-Nicolson method will be employed
to solve the transient problem.
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In the two dimensional problem, the velocity
v, should resolve along x and y directions asy,

and v, while the function GV asG, and G, The

nonlinear equation system is solved by the Newton
iteration method.

A simple aternating-direction-implicit (ADI)
method is employed and the two dimensional
problem can be reduced to one dimension under
this condition. (@) Along y-direction (j inner loop, i
outer loop)
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This formulation is suitable to the implementation
of pardlel computation since each row or column
of the grid points in a semiconductor device can be
treated independently.
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In thisreport, an'nn™ Si ballistic diode will
be taken as an example. In the following numerical
experiments we apply 0.7V to the ballistic diode
with atime step Dt = 0.5fs. The time evolution of
the internal distributions of electrostatic potential,
electric field, electron velocity and electron tem-
perature are shown in Figs. 1 ~ 4. The system
reaches steady state in approximately 3ps.

Asshown in Fig. 1, the potentialsin n* re-
gions are maintained at constant values and the
applied voltage is dropped across the n region.
Correspondingly, as shown in Fig. 2, the electric
fields approximate to zero in n* regions. The posi-
tive and negative peaks of electric field in n"n and
nn" junctions are due to the formulation of space
charge regions. The velocity distribution given in
Fig. 3 aso shows two peaks at the beginning. The
spurious velocity overshoot predict by some hy-
drodynamic modelsis not observed in our numeri-
cal caculation. Fig. 4 shows that the electron tem-
perature in the n region is higher than the lattice
temperature and thisisrelated to the velocity dis-
tribution given in Fig. 3.

Fig. 5 shows the distribution of electron con-
centration under steady state for various biases.
The injection of excess electrons from the left
junction creates a potential barrier shownin Fig. 1.
The transient behavior of current density under
various biasesis shown in Fig.6. The current den-
Sity oscillates terribly initially and convergesto a
constant value gradually
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