行政院國家科學委員會補助專題研究計畫成果報告

*	* * * * * * * * * * * * * * * * * * * *	*
*	多重感應器系統用於變形分析 (3/3)	*
*	Multi-sensor system for deformation analysis (3/3)	*
*	* * * * * * * * * * * * * * * * * * * *	*

計畫類別:□個別型計畫 ■整合型計畫

計畫編號:NSC 95-2221-E-009-353

執行期間: 94年8月1日至97年7月31日

計畫主持人:黃金維

執行單位:國立交通大學

中華民國 97 年 09 月 09 日

行政院國家科學委員會專題研究計畫成果報告

多重感應器系統用於變形分析(3/3)
Multi-sensor system for deformation analysis

 計畫編號:NSC 95-2221-E-009-353
 執行期限:94年8月1日至97年7月31日

主持人:黃金維
國立交通大學土木工程學系
協同計畫主持人:洪偉嘉

計畫參與人員:程自強、盧玉芳 國立交通大學土木工程學系

1. 前言

本計畫是以多重感測系統對雲林地區地面變形作監測,多重 感測系統包括全球定位系統(GPS)、水準測量,磁感應環分層式 監測井,重力測量和干涉合成雷達測量(INSAR)。雲林地區由於 地下水之過度使用已造成了嚴重的地層下陷問題。高速鐵路(如 圖 1)在雲林地區正通過最嚴重的下陷中心,依據經濟部水資源 局(2004)之監測研究報告,雲林地區2007年的最大年平均下陷 速率達8.2公分/年(如圖 2),1992年~2007年的最大累積下陷 量超過110公分以上(如圖 3),可以預見日益嚴重的地層下陷 問題將對國家百年大計之高鐵工程的行車安全、營運、維修投入 不可預期的變數。

圖 31992~2007年雲林地區累積下陷量圖

2. 地層下陷監測方法

目前地層下陷技術可分為五大類: (1)水準測量(2)GPS 測量(3)地層下陷監測井測量(4)重力測量(5)INSAR技術, 其中水準測量、GPS測量與地層下陷監測井在技術上相對較為成 熟,且目前已應用在實際監測上,而重力測量與INSAR技術,則 仍有關鍵技術需要克服,因此以下將分為三個部分來說明:

(一)水準測量、地層下陷井與GPS測量:

(二) 重力測量

(三) INSAR測量

2-1 水準測量、地層下陷井與GPS監測:

(一)水準測量

圖4展示整個雲林地區的水準網、GPS固定站與地層下陷監 測井的分佈圖,水準網由經濟部水利署所設置,雲林地區水準測 量範圍北起濁水溪南岸,南至北港溪北岸,東至林內鄉,西至沿 海一帶。整個水準檢測網係由53條主要水準測線連結組合成13 個環線閉合網,實際水準總里程數約為430公里,平均每1.5公里 設置一個水準樁,整體檢測面積達到1087平方公里。

雲林地區的下陷位置主要分佈在中山高速公路以西,因此整 個網形的基準點設置在東側麓山帶的WR12,監測網檢測的時間 分別為2002、2003年、2005年、2006年與2007 年共5次水準測量。

水準測量所使用之儀器為Trimple Dini 11之一等精密水準 儀,測量實施前,水準儀皆經過CNLA認證之實驗室進行檢校合 格。外業測量時,測線與測網之閉合差皆控制在 $3 \text{mm}\sqrt{K}$,系統 誤差則進行視準軸誤差與地球曲率差進行改正,因為測量的地點 皆在平地,因此不考慮正高改正,同時因為所使用的是銦剛尺, 因此不考慮水準尺溫度改正與刻畫改正。

4

平差依據(Hwang 2008) 之解算方法,平差前先使用Baada's data snooping 先進行除錯,確認整體沒有粗差之後,再利用最小二乘法進行平差,五次的水準測量成果如表 1,由表 1顯示,每次平差之水準網後驗中誤差控制在 $0.5\sim0.8 \text{ mm}\sqrt{K}$ 以內,而每個水準點的平均誤差,控制在 $3\sim4\text{mm}$ 之間(表 1)。

利用相鄰兩次之水準測量所獲得之水準點相減,獲得每個獨 立水準點之下陷量,依據地質統計的方法(Peng and Shih 2002) 以克利金法將所有水準點之下陷量內插成下陷趨勢面,再以 MapInfo軟體計算出整體下陷面積,依據每年之水準測量成果, 計算下陷面積如表 2,套疊降雨量與持續下陷面積如圖5,由圖5 顯示,2004年台灣地區發生旱災,當時地下水源補助不足,而地 面又大量抽用地下水,使得當年度為地層下陷最為嚴重之一年, 2005年~2007年,雨量回復正常,使得地下水源獲得補助之後, 整體下陷逐漸減緩。

圖 4 雲林地區水準網示意圖

時間	2002	2003	2005	2006	2007
測量里程數 (單位:KM)	240	299	392	423	434
觀測個數	154	166	243	304	316
水準點數	150	161	232	292	303
多餘觀測數	5	6	12	13	14
後驗中誤差 單位∶mm√k	0.57	0.69	0.60	0.80	0.79
平均誤差 單位:mm	3.5	3.7	3.0	3.5	3.4

表 1 水準測量統計分析表

表 2:2002年~2007年持續下陷面積與最大下陷速率統計表

觀測期距	1. 200	2. 200	3. 200	4. 200	5. 200
	2	3	5	6	7
最大下陷速率	9.5	12.2	11.6	10.1	8.2
(cm/年)					
速率超過	610.5	703.1	678.6	557.1	551.5
(3cm/年)之					
面積					
(平方公					
里)					

圖 5:降雨量與持續下陷面積

(二)GPS测量

GPS测量在本計畫中主要分為兩個部分:1.Campaign GPS 2.Continuous GPS,以下將分別詳細說明:

A • Campaign GPS

本計畫改良過去GPS施測方法,利用強制定心、定平與固定 高之GPS監測樁進行監測,以降低人為誤差。在資料處理上,使 用L1及L2相位觀測量之線性組合而成的無電離層效應 (Ionosphere-Free)相位觀測量L3來消除電離層的影響,利用 SAASTAMOINEN模式解算對流層延遲量,同時加上海潮改正與 使用精密星曆,控制GPS高程測量精度達到2公分以內。

套疊2003年10月~2007年10月高速鐵路之水準測量與GPS 測量之成果如圖6,由圖6顯示,水準測量與GPS測量之高程差異 量控制在1公分以內,兩者獲得之下陷趨勢一致。

由圖形顯示高速鐵路在雲林地區整體呈現碗狀下陷,2003 年~2007年之最大下陷速率分別為-15.0公分/年、-10.6公分/年、 -8.7公分/年,三年來最大累積下陷量達到-34.3公分,由以上數據

7

顯示,雲林地區之地層下陷,已導致高速鐵路之墩柱下陷,雖然 目前沒有立即的危險,但若長期持續下陷,將導致差異沉陷,未 來將影響高鐵的結構安全。

圖 6 高速鐵路雲林地區地面監測成果

B • Continuous GPS

為有效監測雲林地區的下陷中心,因此水利署於雲林內陸地區設置GPS固定站,24小時連續觀測地層下陷中心的變化,GPS的構造圖與現地照片如圖7。

圖 7: 雲林地區GPS固定站及其規格構造圖

(三) 地層下陷監測井

地層下陷主要發生原因為超量抽水,空隙水壓升高,導致地 層壓縮,因此利用多層次的磁感應環地層下陷監測井,在不同土 層深度埋設磁感應環,透過不同時間量測感應環的深度,將可監 測地底下不同的土層壓縮量,因此高鐵沿線土庫地區1口300公尺 的地層下陷井(如圖8)進行地層下陷監測,監測的頻率為1個月 1次,以釐清高鐵主要下陷機制。

圖 8:地陷監測井之量測儀器及構造圖

(四) 監測成果

透過土庫國中之水準測量、GPS固定站與地層下陷監測井三 者之解算成果相互比對,如圖9,由圖中顯示水準測量與GPS固 定站之成果相當一致,但其下陷量都明顯大於地層下陷監測井, 分析土國國中之地層下陷監測井之數據如圖10,由圖中顯示,主 要的壓縮深度發生在地下200公尺以下,該深度之土層主要為砂 層與泥層之薄層相互交疊而成,因此只要抽水,因為厚度較薄, 會有快速壓縮的效果,因為監測井之深度為300公尺,在計算上, 300公尺點位固定為0,使得300公尺以下無法量測,所以研判該 地區在土壤的深層有集中抽水。

分析沿著高速鐵路之四口監測井的壓縮比例如表3,發現在 虎尾與土庫地區之圖層壓縮量,在200公尺以上,僅佔28%,也 就是200公尺以下的土層壓縮佔70%以上,因此未來如果能夠有 效控制該地區深地層的土層壓縮,就可以有效降低地表面之下陷 量。

 $\mathbf{2}$

圖 9:土庫國中之水準測量、GPS固定站與地層下陷監測井三者之解算成 果

圖 10: 土國國中之地層下陷監測井之地層數據

compaction						
Depth range (m)	HWSH	TKSH	YCSH	KCSH		
0- 70	14	10	7	10		
0-150	28	24	36	43		
0-200	28	28	48	60		

表 3: Ratio (in %) between compaction at depths 0 -200 m and total compaction

2-2 重力監測

本研究利用絕對重力測量來觀測台灣西部沿海地層下陷,選 定雲林縣地層下陷較顯著地區之同安國小(TAES)進行長時間觀 測,見圖11。觀測分為2004年10月、2005年4月、2005年12月與 2007年4月四次時段進行,各次觀測成果詳見表4,自2004年10 月至2007年4月止,重力值變化為58.68±2.78µGal,見圖12。

DATE	GRAVITY	SET SCATTER	MEAS. PRECISION		
Oct-04	978867746.947	10.844	2.261		
Apr-05	978867764.720	18.933	2.007		
Dec-05	978867771.669	17.715	2.505		
Apr-07	978867805.628	9.877	1.624		

表 4:同安國小(TAES)四次絕對重力觀測成果表(µGal)

Time Series of Absolute Gravity at TAES

圖 12:同安國小(TAES)絕對重力值時變圖

另外以Lacoste & Romberg Graviton EG相對重力儀(S/N 1184)與Scintrex CG-5相對重力儀 (S/N 137)作相對重力網之觀 測,見圖13,各相對重力站之重力值是FG5絕對重力點(TAES) 之觀測成果為固定點作平差與化算而得,分別於2004年12月、 2005年4月、2005年12月、2006年7月、2006年11月與2007年4月 共計六次,由於海洋波浪、風以及地農工業與交通活動,使得相 對重力觀測量的隨機誤差比位於安靜的環境下要高出約十倍之 多,環境噪聲所產生的影響量級高過觀測精度,經過增加多於觀 測量後,精度已有明顯改善,見表5,但對重力觀測量化算至垂 直變動量時,未能通過顯著測試(99%信水平),因此必須更進 一步研究改善方法,屆時本計畫主持人黃金維2007年7月將參加 義大利-佩魯賈 IUGGIUGG 第24屆大會,與國際重力與地球科 學方面之專家進行討論,以改進本計劃之研究結果,各相對重力 點位年變化率詳見表6。

圖 13: 雲林地層下陷區相對重力點位分布圖

	2004/12	2005/4	2005/12	2006/7	2006/11	2007/04
TIME	Graviton	Graviton	2005/12	2006/7	2000/11	Graviton
POINT	EG	EG	00-5	00-5	0.0-5	EG
DKES	57.946	36.291	21.679	11.974	10.350	7.763
G041	41.360	31.370	19.356	13.866	10.363	6.546
G049	66.030	59.228	19.006	11.970	10.184	7.425
I025	44.099	28.917	19.109	12.620	8.633	7.701
JYES	42.084	39.184	19.646	12.613	10.172	7.426
PKBD	40.819	33.753	19.446	9.967	9.078	7.022
WTES	39.942	29.245	19.493	13.091	17.400	7.699
KTES	>	\geq	19.619	11.594	10.464	6.453

表 5: 雲林地層下陷區相對重力點標準偏差成果表(µGal)

表 6:雲林地層下陷區相對重力點位變化表(µGal/year)

POINT	adjusted gravity change	STD (µGal)	
DKES	133.35	58.46	
G041	102.87	41.87	
G049	28.83	66.45	
I025	200.09	44.77	
JYES	-3.25	42.73	
PKBD	78.77	41.42	
WTES	76.35	40.68	
KTES	35.25	20.65	

2-3 INSAR 監測

以衛星雷達差分干涉量測雲林地層下陷研究上,衛星資料是 以歐洲太空總署發射之ERS-2衛星所擷取之雷達影像維主要資料 來源,篩選出衛星軌道基線差較小的影像對,進行雷達差分干涉 測量,觀測雲林地層下陷的變形。影像擷取範圍為 Track/Frame:232/3123圖福分析區,如圖14。

在差分干涉的計算中,有許多因素會影響相位因而導致地表 變形計算之誤判。其中,影響最顯著的為衛星軌道誤差及非穩定 性的誤差。衛星軌道誤差會在差分干涉圖中產生明顯平行排列之 干涉條紋,嚴重影響資料計算。因此,本研究採用荷蘭Delft大學 所提供之Envisat精密軌道參數以消除此項誤差。而非穩定性的誤 差包含了兩大類:第一類誤差是隨機的雜訊、沒有特定分佈,像 是數值高程模型(DEM, Digital Elevation Model)、SAR處理過程 及影像本身所造成的誤差;第二類非穩定性的誤差主要來自大氣 的遲滯效應。雷達波雖然可以穿透大氣中的雲、霧及水氣,但卻 可能使雷達波傳遞延遲,因而造成計算時的誤差。

為降低前述差分干涉計算時可能造成之誤差,本研究採用 2006年9月21日至2007年6月28日,共計8幅之Envisat影像進行配 對。配對條件設定為垂直基線長小於300米,共計產生13組影像 對(影像對之規劃表及規劃圖如圖15)。

資料處理部分,本計畫使用Diapason軟體以二軌跡法解算差 分干涉資料,並加入農航所提供之40米空間解析DEM,藉以消除 地形效應、並且將此差分干涉資料進行解相位。另外,應用水準 測量得到之相對穩定點,做為差分干涉資料相位回覆後之基準 點。最後將此13組相位回覆後之地表變形成果疊加,求解2006 年至2007年之平均地表下陷率(圖16)。結果顯示,雲林地區地表 下陷如盆地形狀、最高下陷率於元長鄉達10公分/年。

資料驗證方面,我們分別對DInSAR及水準測量結果切A-B 及C-D兩剖面進行比對,剖面位置如圖16~17,剖面資料如圖 18。由DInSAR及水準測量結果之剖面資料比對得知,兩者求得 之地表垂直位移率只有1至2公分的差距。根據兩者地表垂直位移 率之差距得知,衛星軌道誤差及非穩定性的誤差在計算中已被大 致消除。特別值得注意的是,我們在DInSAR地表垂直位移率的 成果觀察到許多清楚且變形率較小的地區(圖15),但水準測量卻 未偵測到此項結果(圖18),此一特性顯示DInSAR於地層下陷監測 之高空間解析。

8

圖 14:(track/frame)232/3123圖幅

圖 15 INSAR影像配對示意圖

圖 17:水準測量內插之下陷速率圖 (期距:2006-2007)

圖 18:DINSAR與水準測量成果比較圖

3. 結論

本研究已完成計畫書所提的有關水準,GPS重力及INSAR 技術開發,及應用到雲林地層下陷監測。 本研究成果已整理成期刊及研討會論文如下: SCI Paper:

- (a) Hwang C, WC Hung, and CH Liu, Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation, Natural Hazards, in press, 2008, DOI 10.1007/s11069-007-9211-5
- (b) Wei-Chia Hung, Cheinway Hwang, Chung-Pai Chang, Yen, Chih-Hsi Jiun-Yee Liu, Wan-Huei Yang Monitoring severe subsidence in Taiwan by multi-sensors: Yunlin, the southern Choushui River Fan, accepted, Environmental Alluvial Geology, 2008(SCI)
- (c) Cheinway Hwang, Tze-Chiang Cheng, C.C. Cheng, Wei-Chia Hung, Land subsidence using absolute and relative gravimetry: A case study in central Taiwan, s accepted, survey review, 2008(SCI)

Conference Paper :

- Hwang, C, TC Cheng, WC Hung and YF Lu, Integrated monitoring of surface deformation over Central Taiwan using GPS, leveling, INSAR and gravimetry, 2007, invited speech, 4th Annual meeting of AOGS, Bangkok, July 30-August 4, 2007
- (b) Wei-Chia Hung, Cheinway Hwang, Chung-Pai Chang,Jiun-Yee Yen, Chih-Hsi Liu, Inter-comparison of

multi-sensor results for high-speed rail risk analysis, AGU fall meeting, San Francisco, December 10-14, 2007.

 (c) Cheinway Hwang, Wei-Chia Hung, Chung-Pai Chang, YF Lu ,Vertical displacements over Yunlin and Choshui River Alluvial Fan from leveling, GPS, multi-leveling well and DInSAR. Proceedings of the 27th Survey Symposium: 1493-1513, September 5-6, 2008.

4. 參考文獻

- 工業技術研究院(2007), "台灣地區地層下陷監測、分析與評估",經濟部水資源局,台灣。
- Hwang C, Hsiao YS (2003) Orthometric correction from leveling, gravity, density and elevation data: a case study in Taiwan. J. Geod., 77: 279-291.
- 3 Peng MH, Shih TY (2002) A Quality Assurance Approach for Land Subsidence Interpolation, Survey Rev., 36(286): 568-581.
- 4 Terzaghi K, Peck RB (1948) Soil mechanics in engineering practice. Wiley, New York
- Zildoski, D.B., D'Onofrio, J.D., and Frakes, S.J. 1997."Guidelines for Establishing GPS-DERIVED Ellipsoid Heights (Standards: 2CM AND 5CM) Version 4.3", NOAA Technical Memorandum NOS NGS-58.