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Abstract- This study develops fuzzy control that is designed 
with sliding modes to achieve stability of the fuzzy controller. 
Fuzzy control is formulated in the form of variable structure 
system (VSS) control. In contrast to previous works in which 
Lyapunov functions are used to examine the stability, the current 
study investigates the stability of fuzzy control from the view- 
points of differential geometric methods and the sliding mode 
theory. Best values for parameters in fuzzy control rules are 
determined with the aid of sliding modes. In order to improve 
control performance, a tuning algorithm is executed to adjust 
parameters for dealing with uncertainties and disturbances. Both 
computer simulations and experiments with regard to an inverted 
pendulum hinged to a rotating disk are carried out to validate the 
proposed method. This apparatus can to some extent represent 
cornering motion of a motorcycle on which a rider leans to main- 
tain stability. Effects of rider’s leaning angle on both stability and 
handling control are examined according to Bode plots. 

I. INTRODUCTION 
UZZY control research based on the fuzzy set theory 
[29] was initiated by Mamdani [19]. Fuzzy control is 

a direct method for controlling nonlinear ill-defined systems 
whose mathematical models are not exactly known. A fuzzy 
controller is endowed with control rules that are constructed 
based on heuristic control of experienced human operators. 
Braae and Rutherford [l] proposed both algebraic model and 
linguistic model for fuzzy control. The algebraic model cannot 
deal directly with rules of fuzzy controller. Harris and Moore. 
[8] extended the linguistic approach to phase planes. They 
proposed a graphical analysis tool for considering overall 
system Performance. Johansen [ 121 carried out stability and 
performance analysis of a multi-input multi-output (MIMO) 
fuzzy model based control system. Wang [28] proposed an 
adaptive fuzzy system, in which a training algorithm adjusts 
parameters of fuzzy systems using numerical input-output 
pairs. 

Although fuzzy control has been implemented in many 
industrial applications, there are few systematic procedures 
available for analysis and design of fuzzy control. Kiszka et 
al., [14] proposed the notion of energy for fuzzy relations 
to investigate local stability of fuzzy systems. However, the 
fuzzy relations describing the fuzzy system were exactly 
known, which contradict the main feature of fuzzy control. 
Langari and Tomizuka [15] proposed a method for the sta- 
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bility analysis of fuzzy control systems, in which Lyapunov’s 
direct method provided sufficient conditions for the stability. 
However, it is difficult to find out a Lyapunov function for 
higher-order systems. Lin and Kung [I61 proposed a fuzzy- 
sliding mode controller (FSC) that improved variable structure 
system (VSS) control with the aid of fuzzy control. Kawaji and 
Matsunaga [ 131 proposed, based on the VSS control, a method 
of generating fuzzy rules for servomotors. They determined 
linguistic values in fuzzy control rules and chose the best 
linguistic value based on both experience and trial and error. 

In contrast to [13], [15], and [16], the current study inves- 
tigates the stability of fuzzy control from the viewpoints of 
differential geometric methods and the sliding mode theory, 
in which fuzzy control is formulated to become a class of 
VSS control. With the aid of sliding modes, it provides an 
effective design method for fuzzy control to ensure stability. 
The sliding mode optimization is employed to obtain the 
optimal switching function that minimizes a cost function. To 
improve control performance, a tuning algorithm is executed 
to adjust parameters in fuzzy rules for dealing with uncer- 
tainties and disturbances. To validate the proposed method, an 
experimental apparatus is designed and conducted in which an 
inverted pendulum is hinged to a rotating disk. Both computer 
simulations and experiments are carried out. 

In this study, Section I1 describes definitions and assump- 
tions and then formulates fuzzy control. Section I11 presents 
the differential geometric method. The salient features in the 
sliding mode theory using the differential geometric method 
are described in Section IV. In Section V, fuzzy control rules 
are enacted with the aid of sliding modes and the stability 
is examined from the viewpoint of the differential geometric 
method. Section VI describes a case study to validate the 
proposed method. 

11. FUZZY CONTROL 

A. Dejinitions and Assumptions 
Several assumptions that facilitate formulation of fuzzy 

control in this study are described in the following: 
Assumption I :  Let X be a universe. and N are fuzzy 

subsets whose membership functions are continuous but not 
differentiable mappings p: X + [0,1]. Define pp(z)  and 
P N ( X )  as 
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Fig. 1. Membership functions of input variables. 

where xu and x1 denote the upper and lower bounds in the 
universe, respectively. P and N are shown in Fig. 1, in which 
they form fuzzy partitions of a closed bounded region. Both P 
and N are normal, i.e., supz p p ( x )  = supz p f i ( x )  = 1,x E 
[ X I ,  xu]. Moreover, for each x E [x i ,  xu]  

P P ( 4  + P N ( 4  = 1. ( 2 )  
Assumption 2: Let A = { A j }  and B = {&} be collections 

of fuzzy subsets over E c X and EC c X ,  respectively. E 
and EC denote the bounded universe for error e and error 
rate P: where P: = (ek  - ek - l ) /T .  This study assumes that each 
of A and B contains only two fuzzy subsets as described in 
Assumption 1. According to (2), for any e E E and P: E EC 

3 2 

( 3 )  

Assumption 3: Let U c X be a bounded universe for 
control input U.  The combination of fuzzy control rules R, 
defined on E x EC x U, is expressed as the union of four 
individual rules; i.e., 

(4) 

set of control input U can be expressed by, in terms of input 
values e0 and 60 . 

where @ denotes the union operator, 0 the algebraic product 
operator, o the composition operator, and C,, i = 1, . . . ,4 are 
fuzzy singletons. In this study, the algebraic product instead of 
the minimum operator is employed and results in interactivity 
among elements in (6). Let wj,l = p i ,  (eo) @ pfil (eo)  denote 
rule strength of (5) .  Since Ej,l w3,1 = 1 from (3 ) ,  under the 
center of gravity method for defuzzification, the crisp value U 

can be written as 

(7) 

where u3,1 is defined in (5) .  Since both wj,l and uj,i in (7) 
are continuous functions of eo and eo, U is a continuous and 
nonlinear function of eo and e o ,  i.e., fuzzy control is essentially 
a class of nonlinear control. 

To gain insight into the relationship between fuzzy control 
and VSS control, the phase plane of e and 6 can be divided 
into nine operating regions as depicted in Fig. 2(a), which 
accounts for 

Region 1: e 5 x p ,  8 2 x f i  
Region 2: xp < e < x f i ,  8 2 x f i  
Region 3: e 2 xfi,P: 2 x f i  
Region 4: e 5 xp, xp < P: < x f i  
Region 5: x p  < e < x f i , x p  < P: < x f i  
Region 6: e 2. x f i , x p  < e < x f i  
Region 7: e 5 xp, 5 xp 

Fuzzy control rules [26] containing two input variables e and 
i: can be written as 

Region 8: 

Region 9: 
xp < e < x f i ,  1 5 xp 
e 2 x f i , &  5 xp 

Rj,1: If e is A3 and 1 is B1 then uj,l =pbe + p2i: + p i  
e E E , e  E EC,u3,1 E U ,  i =1 , ... ,4 ( 5 )  

where pb,  p; ,  and p i  denote parameters of linear dependence 
between nonfuzzy values of input variables and control input 
for the i-th fuzzy rule. The fuzzy controller contains four 
control rules since only two fuzzy subsets P and N are defined 
for each of E and EC as described in Assumption 2. This 
study employs fuzzy rules proposed by Takagi and Sugeno 
[26] to reduce the number of fuzzy subsets and fuzzy rules. By 
adjusting crisp values p j  in (5 ) ,  via sliding modes in the current 
study, fuzzy rules can effectively correlate fuzzy subsets so 
that a multivariable and complex system is tractable. 

B. Formulation 
Fuzzy sets provide a useful foundation to handle human 

knowledge pertaining to a real world problem and contribute 
to the notation of fuzzy control. The formulation for fuzzy 
control is described in the following. Given crisp input values 
eo and eo,  assume that input values can be treated as fuzzy 
singletons Go and k o .  It follows from (4) and (5) that the fuzzy 

The input variables e and P: in fuzzy rules are scaled based on 
measured and calculated values. This study assumes xp = - 2  
and x~ = 2. The values of xg, and x f i  are associated with 
scaling factors. As long as scaling factors are determined, 
values of x p  and x f i  can be obtained, and vice versa. 
The effect of scaling factors on control performance was 
investigated in [22]. Increasing scaling factors renders control 
performance more sensitive during the steady state response 
whereas less sensitive during the transient response. The upper 
bound, at which the system is too sensitive to converge, and 
the lower bound, at which the rise time and steady state error 
are too large to exhibit poor transient performance, have to be 
determined in order to choose scaling factors. Equation (7) in 
nine respective regions can be written as 

OLw + H.O.T. when ( e ,  E) lies in I Regions 2,  4, 5, 
6, and 8 

when ( e ,  6) lies in 
Regions 1, 3 ,  7, 
and 9 

(8) 
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.B 111. DIFFERENTIAL GEOMETRIC METHOD 

Differential geometric methods [lo], [25], [27] have been 
developed for analysis and design of nonlinear control systems. 
The differential geometric method is an effective means of 
dealing with a class of nonlinear systems 

1 l L 1 3  

Fig. 2. 
mination of control actions based on partition planes. 

(a) Nine partition planes of error ( e )  and error rate (6 ) .  (b) Deter- 

where 0; = [0,10,2fl,3] denotes the parameter vector of 
Region m, the base vector w = [leRIT, and H.O.T. denotes 
higher-order terms. Fuzzy control entails different control 
inputs U over different regions as shown in (8). Specifically 

3 811 =Pz, Ol2 O13 = Pi 
1 1 1 

fl31 = P 2 ,  032 P o ,  033 Pi 
4 

071 = P i ,  072 = l$, 873 = Pi 

091 092 = Pi, fl93 = P?. (9) 

Each of f, m = 1, . . ' 9 is a continuous and differentiable 
function in terms of e and P.. However, U is continuous but 
not differentiable on lines e = x~ e = x f i  P. = xp and 
P. = x f i .  Control inputs U in these nine regions are shown in 
Fig. 2(b), in which FL and F N ~  denote linear and nonlinear 
functions, respectively. Control inputs obtained from Regions 
1, 3, 7 ,  and 9 are in the form of linear functions since u3,z in 
( 5 )  are linear functions and only one rule fires in each of these 
four regions. Hence, fuzzy control is similar to PD control in 
these four regions. Fuzzy control in essence resembles VSS 
control since control inputs U vary with divided regions on 
the phase plane as shown in (8). Therefore, fuzzy control 
can be treated as a class of VSS control. Besides, the lines 
e = xp, e = x f i ,  P. = x1; and @. = x f i  that divide the phase 
plane can be regarded as switching lines. 

However, there are two differences between fuzzy control 
and VSS control. First, VSS control is generally devised with 
a sliding mode whereas fuzzy control is not. Secondly, control 
inputs of VSS control often change discontinuously whenever 
the trajectory crosses switching lines, on which sliding modes 
occur. By contrast, the variation of control input U in (8) for 
fuzzy control is continuous and no sliding mode occurs on 
four switching lines. 

where x is assumed to belong to an open set Ox of R", f and 
g are R"-valued mappings defined on Ox, and h is a real- 
valued function also defined on Ox. The right-hand side of 
(10) is a linear function of control input U .  The system (10) 
with (1 1) is said to have relative degree 7 at a point 50 if not 
only L,L!h(x) = 0 for k < I; - 1 and 2 around 50 but also 
L,LT-lh(rco) # 0. The relative degree 'f; of a linear system 
can be interpreted as the difference between the numbers of 
poles and zeros in its transfer function. 

Suppose the system has relative degree 'f; at 50 and set 

If I; < n, it is possible to find (n  - I;) functions 4~+1 (x), . . , 
and &(x) such that 

L,~,(z) = 0 for all T + 1 5 i 5 n and all 5 around 5 0  

and the Jacobian matrix of the mapping 

is nonsingular at xo. The mapping is sufficient to define 
a coordinate transformation z = @(x). As a result of this 
transformation, the system (10) with (1 1) can be written as 

where 

When the output y of the system is constrained to (become 
zero, the resulting equation 

from (13) is called the zero dynamics of the system [lo]. If 
the system (14) is asymptotically stable at E = 0, i.e., it is 
minimum phase [ 2 ] ,  one can determine the control input U to 
asymptotically stabilize the system (13). 
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IV. SLIDING MODE THEORY 

The VSS with sliding mode was proposed and elaborated 
by Emelyanov [4] and Itkis [11]. The VSS control employs 
switching and discontinuous control inputs to drive a phase 
trajectory toward a prescribed hyperplane, and to force the 
phase trajectory sliding on the hyperplane. The specific feature 
of sliding mode is that under certain conditions it remains 
insensitive to external disturbances and plant uncertainties. By 
properly designing the switching function, the sliding mode of 
a VSS control can guarantee to be asymptotically stable [3]. 
A detailed survey can be found in [9]. 

This section presents a formulation of salient features in the 
sliding mode theory using the differential geometric method, 
as described in [23]. Consider a single-input nonlinear system 
represented by the form 

x = A(x ,  U) (15) 

where x E Oz. The mapping A defined on Ox is assumed 
to be a linear function of U .  Let s denote a smooth function 
s: Ox -+ R, with nonzero gradient ds.  The set 

(16) 

defines a locally (n  - 1)-dimensional submanifold on Ox that 
is called switching manifold. The switching manifold is of a 
lower order than the given plane. Moreover, parameters of 
the switching manifold dominate the dynamic behavior of 
the system during sliding mode control. Sira-Ramirez [24] 
claimed that the system (15) with the output y = h(x)  has 
locally relative degree F = 1 if and only if a sliding mode 
locally exists on h(z )  = 0. A variable structure control law 
is defined as 

(17) 
U =  P+ U -  whens<O w h e n s > o  

where U+ and U -  are assumed to be smooth functions of x 
and to satisfy U+ > U -  without loss of generality. A sliding 
mode exists on S if 

s = {z E ox, s(z) = O} 

and lim L A ( z , u - ) ~  > 0. 
s+-0 

Equation (18) can be rewritten as, in terms of a Lyapunov 
quadratic function, 

s # 0. 

The sliding mode motion is described by 

s = 0 and B = L A ( ~ , ~ , , ) s  = 0 (20) 

where ueq denotes an equivalent control. The existence of ueq 
is only a necessary but not sufficient condition for the existence 
of sliding mode. The necessary and sufficient condition for 
the existence of sliding modes is that U+ > ueq > U -  [23]. Let 
&(z) denote a subspace of the tangent space TxOx on Oz, 
such that 

(ds, As(%)) = 0 (21) 

where (., .) represents an inner product. It follows from (21) 
that A,(x) constitutes the null space of ds. According to (20) 
and (21), one can obtain A(z,ueq) E A,(z). 

The sliding mode theory generally entails switching func- 
tions that are presented by lines on the phase plane. VSS 
control is generally devised with the sliding mode theory. 
Although it can also be devised without a sliding mode, 
such a system would not possess the associated merits. The 
feature of VSS control is that the sliding mode occurs on 
the switching manifold and the system remains insensitive to 
external disturbances and plant uncertainties. 

Accordingly, if all roots of s"-1+g-lsT~2+. . .+czs+cl = 0 
lie in the left-half s-plane, where s denotes a Laplace operator, 
the sliding motion on hz(z) = 0 is stable subject to feedback 
control input. 

For ease of formulation, it is assumed that x contains two 
terms, i.e., z E 0% c R2. Under uncertain conditions, in the 
phase plane (10) can be rewritten as 

where z1 denotes error e and xz error rate e .  It is assumed 
that both f ( z )  and g(z) contain uncertainty that is unknown 
but lies within a prescribed set 0.19. The switching function 
is defined as 
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where the slope x denotes a positive constant. In order to 
obtain the optimal value of 3, the optimization of sliding mode 
is implemented in the following. 

A. Optimal Sliding Modes 
In this study, the optimal switching function is obtained 

from sliding mode optimization. It is desired to design a 
switching function for (24) such that in sliding modes the cost 
function is minimized. Define a cost function 

B. Parameter Determination for Fuzzy Rules 

Since the system (24) with y = s(z) has relative degree 
r = 1, a locally sliding mode exists on s(z) = 0. As a result 
of coordinate transformation z = [s(z) x1IT, the system (24) 
becomes 

- 

i 1  = b(z) + a(z )u  (33) 

(34) 
00 I = l  xTQxdt  

where 

(26) Apparently, the sliding dynamics ZZ = -322 for > 0 repre- 
sents a minimum phase and the sliding motion on z1 = s(z) = 
0 is asymptotically stable subject to feedback control input. To 
carry out feedback linearization, substituting a control input 

Suppose a switching function is defined as 
into (33) yields 

(36)  
s = so(z1) + 2 2  = 0 Zl = -QZ1, a:>o 

where so(z1) is a function of 51, i.e., it may be nonlinear. It is 
desired to determine s g ( z 1 )  such that I reaches its minimum 
for motion on s = 0. Introduce a new variable 'U defined as 

which implies limtim z l ( t )  = 0 that is the desired result 
for sliding modes. If a Lyapunov function is prescribed as 
V = 212, (19) yields 

From (27), rewrite (24) and (26) to become (37) 

For the system (28) with the cost function (29), the optimal 
vector 322 can be derived as 

where P E R is the solution of the Riccati equation 

Since Q11, Q12, Q z l ,  and Q 2 2  are scalars for the system (24), 
(31) is a second order algebraic equation in P. The solution of 
(31) reads P = - & l a  + d-. Substituting P into (30) 
and comparing (30) with (25) yields the optimal x; i.e., 

I 

Accordingly, the sliding mode exists on z1 = s(z) = 0. 
Unlike VSS control that provides discontinuous control 

input, fuzzy control in essence exerts continuous control input. 
Hence, the present study uses (35) and (36) to design a con- 
troller such that the phase trajectory can approach switching 
lines asymptotically. VSS control uses discontinuous control 
inputs U+ and U -  in (17), which often result in chattering 
in sliding modes. To avoid chattering that is present in VSS 
control, the parameter a in (36) is time-varying and acts like 
a boundary layer that has been proposed by Slotine and Li 
[25 ] .  Further, in a manner similar to Padeh and Tomizuka 
[21], the present method facilitates fast convergence and good 
robustness in addition to asymptotic stability. 

To determine twelve parameters p: , i = 1, . 3 . ,4, j = 0, 1 , 2  
in four fuzzy rules, Regions 1, 3, 7 ,  and 9, as shown in 
Fig. 2, are considered since O m l ,  O m 2 ,  and Brh3, m = 1,3,7,9 
are equal to twelve parameters p3s as shown in (9). In 
addition, control inputs in these four regions are expressed by 
linear functions, as shown in (8), which facilitate determining 
parameters. Equation (8) is used to approximate U* in (35), 
which is feedback control based on sliding modes, i.e., 

Apparently, optimal 
the matrix &. 

only depends on diagonal elements of Due to (9), O m ,  m = 1,3,7,9 consists of p i .  Consequently, 
these twelve parameters can be determined by (38). 
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+ 
Y Both nonlinear terms b ( x )  and U(X) in (33) are not ex- 

Tuning 
Algorithm 

and T denotes the sampling time. The main feature of the 
tuning algorithm represented by (40) and (41) lies in that its 
tuning is on the basis of switching function values instead of 
errors, so as to on-line adjust parameters in fuzzy rules. It is 
desired that the tuning algorithm ensures the convergence of 
sk .  Substituting uk and uk-' in (39) into (41) yields 

g-'(z">r.;+l - f 2 ( 2 ' ) ]  - g-1(2'--')[5: - f2(xk-')] 

actly known due to the uncertainty of f and g in (24). 
The cancellation of nonlinear terms in (35) is not exact 
in conducting feedback linearization. This study employs 

(43) 

<7 

- 
Substituting x$ = sk  - %I$ and 2;'' = sksl - Ax:+' from 
(42) into (43) yields 

Plant 
off-line design is used to handle model imprecision. Fig. 3 

+ shows the block diagram of fuzzy control with the tuning 

= [ f 2 ( 2 )  + xx$+l] - s(2')s-1(2"-l)[f2(s~-1) 

+ x.3. (44) 

Furthermore, since g ( x k )  LX g(z"') for small T I  (44) be- 

output > 

where @ $ ]  @!] @, and @$ are calculated when a phase point 
(e', ik) is located in the second, first, third, and fourth 
quadrants, respectively. 

In this study, both sliding mode theory and differential geo- 
metric method provide an analytical approach to investigating 
stability of fuzzy control. The differential geometric method 
provides existence conditions for sliding modes, as described 
in Section IV. The control input of fuzzy control is formulated 
in the form of VSS control (8), thereby fuzzy control is 
designed. Moreover, the stability analysis of fuzzy control 
designed with sliding modes is achieved from the differential 
geometric method. According to the differential geometric 
method, if the zero dynamics is minimum phase, fuzzy control 
can indeed lead to asymptotic stability [lo]. With the aid 
of sliding modes, parameters in fuzzy rules can be off-line 
determined by (38), for which asymptotic stability is ensured 
by (36) and (37). The on-line tuning algorithm, which adjusts 
the parameters using (47), can achieve asymptotic stability as 
long as (46) is satisfied. 

VI. CASE STUDY 

A. System Model 
A rider-motorcycle integrated system can be treated as 

a man-machine system. Although a motorcycle is statically 
unstable in nature, appropriate steering of the rider enables 
the motorcycle to stabilize during riding. To maintain stability, 
with respect to tire bottoms on the ground, the moment 

comes 

S k + l  - UlSk + azsk-1 

= [f2(,p) - f2(&1)l + x[fl(xk) - f1(2k-1)] (45) 

where a1 = 1 +g(sk))p(l + l / a T )  and a2 = g(zk)P/aT. Fu- 
ruta [6] presented that the stability is guaranteed if < sg .  
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arising from the gravity force must be equal to but opposite 
to the direction of the moment due to the centrifugal force 
during cornering. Liu and Wu [ 171 employed the fuzzy control 
method to investigate the performance of rider-motorcycle 
systems. Forouhar [5] proposed a feedback control scheme 
based on robust optimal control theory to improve the dynamic 
behavior of motorcycles 

In this study, an inverted pendulum hinged to a rotating 
disk as shown in Fig. 4 represents cornering motion of a 
motorcycle on which a rider leans to maintain stability. This 
apparatus is designed in such a way that it can to some 
extent represent motion control involving the leaning angle 
of rider's body (represented by the inverted pendulum) and 
the banking speed of the motorcycle (represented by the 
disk). In a manner similar to the balance during motorcycle 
cornering, the inverted pendulum is not stable at any tilt angle 
unless both moments caused by the pendulum weight and the 
centrifugal force counteract each other. The inverted pendulum 
representing a rider's body in leaning motion is hinged to the 
rim of the rotating disk. The centrifugal force resulting from 
the rotating motion of the disk enables the inverted pendulum 
to rotate about the tangential direction of the disk. Disk rotating 
speeds that correspond to riding speeds of the motorcycle 
dominate the leaning motion of the inverted pendulum that 
corresponds to the rider's leaning motion. This study controls 
the tilting inverted pendulum to approach target angles using 
fuzzy control with the aid of sliding modes. It is desired to 
vary rotating speeds, so that the tilt angle can be controlled by 
the centrifugal force that arises from disk rotation. 

The Hamiltonian formulation constructs the system model 
in terms of generalized coordinates and generalized momenta 
and thus results in a set of first-order equations of motion. Fur- 
thermore, solution trajectories for equations of motion derived 
by the Hamiltonian formulation form a phase space that lends 
itself to the qualitative description of the system behavior. 
To derive Hamilton's equations, generalized coordinates and 
generalized momenta are defined as 

- -  

Hamilton's equations [7] are accordingly written as 

(49) 

where U denotes the generalized force, i.e., the torque of the 
motor, CO, and CO are respectively damping coefficients of 
the inverted pendulum and the disk to account for viscous 
damping at joints, and moments of inertia are formulated as 

Ib = ;ml2 
I M  = i M r 2  + m(r - $ 1  . sin Q b I 2  

IC = m ~ ( r -  + ~ . s i n ~ b ) c o s ~ b .  (50) 

I I 

Disk Mass 
M=6.30ka a 

I IServol I I 
I I I M o t o r l  I I 

Top View 

I I I I I I Front 
I I  I I  

r-----J' 

View 

Fig 4 Schematic diagram of an inverted pendulum hinged to a rotating disk. 

Neglecting generalized force and damping, i.e., U = 0 and 
Cob = CO = 0, (49) gives equilibrium points: p = O , Q b  = 
0, &7r, &27r,. . . , whereas 6' is arbitrary. If damping exists, 
as depicted in Fig. 5 ,  equilibrium points (n, 0), (37r, 0), etc. 
become stable nodes that account for the pendulum in the 
vertically downward direction. 

B. Analysis 
Let 

IC = [qT PTIT (51) 

(49) yields 

x = f(Z) + g(IC)u. (52) 
The system is locally reachable [27] around ICO = 
[e* Gt 0 polT since the distribution A,(Ic~) = 
span{ad>g,0 5 z 5 3) has dimension 4, where Q b  denotes 
the desired angle of inverted pendulum, Fe constant, and W the 
motor angular velocity at Ob = 8 b .  However, the system (52) 
is not input-state linearizable [lo], i.e., there does not exist an 
output function ~ ( I c )  for which the system has relative degree 
r = 4 at 20, since the distribution AD = span{g, adfg,  ad$g} 

- 

- 
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Letting z1 = z2 = z3 = 0 in (54) and (53, the zero dynamics 
is expressed by 

24 = ( e  - ce)T(O, O , O )  + U (56) 

where 

Y(O,O,  0) = F r - 1/2 sin 6'6 

Due to constant $ b ,  ( e  - Ce)r(O, 0,O) in (56) is a constant 
value. Moreover, 24 = ex2 + 5 4  from (53) and 24 = CO + 1 ~ 0  
from (48), (49), and (51). The internal dynamics 24 = ( c  - 

0 3.14 6.28 
&(rad) 

Fig. 5. Phase planes of and p s ,  without control 

is not involutive in the neighborhood of 20. Suppose the 
output function is prescribed as 

In this case, L,hl(z) = L,Lfhl(z)  = 0 and L,L'$l(z) = 
- 2 4 ( 1 ~ ( 2 1 ) / I b I ~ ( 2 1 ) ) .  The system has relative degree ?= = 
3 if z4 # 0 and 5 1  # (n  + 1/2)7r. This means that a locally 
normal form can be found away from any point where 2 4  = 0 
(corresponding to the motor at rest) and z1 = (n  + 1/2)7r 
(corresponding to the pendulum that becomes horizontal). 

- 
y = hl(z) = ~1 - 0 b .  

To find the normal form, set 

21 = (bl(2) = hl(z) = 51 - e b  

5 3  

I 6  
2 2  =#J2(2) = Lfhl(Z)  = - 

24 = 44(2) = c52 + 2 4  

z3 =(b3(z) = L;hl(z) = (b3(21,23,24) 
(53) 

where c denotes a constant, together with its inverse transfor- 
mation 

(54) 

The motor rotates counterclockwise from its top view since 
z4 in (54) is positive. In addition, x4 may also be equal to 
-IM(zI)$z~, 22, x g )  and hence the motor rotates clockwise. 
Under this new coordinate z = (a(x), the system can be written 
as 

C e ) ~ ( z l ,  2 2 ,  xg) + U expressed in (55) accounts for the motor 
dynamics. If the internal dynamics is stable in the bounded- 
input bounded-output (BIBO) sense, the control system (55) 
can be stabilized [25]. However, it is not amenable to directly 
determining stability of the internal dynamics. Delineating the 
characteristics of zeros in transfer functions [lo], the zero 
dynamics (56) is hence employed to facilitate determining 
stability of the internal dynamics. The zero dynamics (56) is 
indeed minimum phase since an AC servo motor is operated in 
this study such that U in (56) implicitly contains the feedback 
control term -kzg where IC denotes a positive gain. Therefore, 
the system (55) can be stabilized by applying nonlinear control 
input U .  

To carry out sliding mode control, the switching function 
for the system (55) can be specified as 

It follows from (53) that 

where c1 and e2 are constants. Equation (57) implies the 
assumption that z1,z2, and 23 and hence from (53 )  state 
variables 2 1 ,  z3, and 2 4  are available for measurement. Since 
the system (55) with y = hz(z) has relative degree F = 1, a 
locally sliding mode exists on hz(z) = 0. The sliding motion 
on h 2 ( ~ )  = 0 is stable subject to feedback control input if 
both roots of s2 + cas + c1 = 0 lie in the left-half s-plane. 

Since the system (52) is not input-state linearizable, it 
is difficult to control four states z simultaneously by one- 
input only feedback linearization. Nevertheless, substituting 
5 4  = I ~ ( z l ) y ( z l ,  z2,z3) in (54) into the second equation in 
(49) yields 6' = w = y ( q ,  53,  5 4 ) .  That is, the motor angular 
velocity w depends on the control of 6'b. It requires a larger w 
to track a larger target angle of 6'6. This applies to motorcycle 
cornering in the sense that only a larger body lean of the 
rider can accomplish faster cornering motion. Since an AC 
servo motor is operated in this study, its resulting w variation 
being treated as accurate as desired, only the control of 6'b is 
considered in the following. Let x = [Ob - $b Pe,/IbIT and 
U = ( p e / I ~ ) '  = w 2 ,  the system is described by 

x = f(z) + g(z)u 

y =x1  
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where 

= [-%I p,: . 

The system (58) is locally reachable and input-state lineariz- 
able arou,-.. -CO = [OO]'. The switching function of the system 
can be expressed as 

s(Z) = 1x1 f 5 2  = x ( # b  - g b )  + e b  (59) 

where 1 denotes a positive constant. Since the system (58) 
with y = S(Z) has relative degree F = 1, a locally sliding 
mode exists on S(Z) = 0. Moreover, the sliding motion on 
S(Z) = 0 is stable subject to feedback control input since x 

\ is positive. Under new coordinate x = [s(z) x1IT the system 
(58) is written as 

(60) 
(61) 

Zl = b(z) + a(z)u 
z 2  = 21 - Ax2 

- 

where 

defined as Q11 = 100 and Q22 = 1 and then the slope = 10 
from (32). Adequate values of a,P, and T in (41) and (42) 
enable the tuning algorithm to converge. Note that g(z) in (58) 
is not constant since IC in (50) varies with 8 b .  From (46) and 
g(z), bounds of a,P, and T that ensure convergence can be 
calculated. Substituting (62) and (63) into (35) gives 

U* = bo + ble + b28 + Higher order terms (65) 

where 
mgl - mgl - 

bo=-sinOb, IC b 1 =  -cos&+aX k! 

Twelve parameters p:s in the consequences of four rules in 
(64) are determined and tuned by (38) and (47), respectively. 
For instance, to determine parameters p; ,  p:, and p i  in the 
second rule of (64), Region 9 depicted in Fig. 2 is considered 
since only in Region 9 the second rule is fired according to 
(8) and (9). From (64), control input in (60) in Region 9 is 

U = w 2  = ( p i ) 2  +p&ie+p:pii:+Higher order terms. (66) 

For specified target angle &, = 20" and a = 10, using (66) to 
mgl CO approximate (65), i.e., U M U * ,  three parameters in the second 

rule in (64) are obtained as (62) b(z) = __ sin(x2 + e h )  + (X - L)(x~ - 1 x 2 )  
2 1 b  I h  

and 

IC a(.) = --. 
2 I b  

- 
From (61), the sliding dynamics Z2 = -Ax2 is a minimum 
phase since is positive. 

C. Simulation Results 
In this study, initial conditions are prescribed as: the inverted 

pendulum angle O b  = 36", its angular velocity 8 6  = 0, and 
the motor angular velocity w = 0. The inverted pendulum is 
initially supported by a vertical strut such that &, can never 
exceed 36". Four cases are investigated in which Cases I and 
I1 are used to examine stability control whereas Cases 111 and 
IV are used to examine handling control. The target angles 
of the inverted pendulum in Cases I and I1 are 20" and lo", 
respectively. By contrast, the target angles in Cases I11 and 
IV are prescribed to change from 20" to 10" and from 10" to 
20" at the fifth second, respectively. The present fuzzy control 
contains both coarse-tuning and fine-tuning controls. Since P 
(positive) and fi (negative) are denoted as fuzzy subsets for 
input variables as depicted in Fig. 1, four fuzzy rules can be 
written as, in the form of (3, 
IF e is P AND 1 is P THEN w = p ;  . e  + p i .  & + p i  

IF e is fi AND &is  THEN w = p : ,  e + p ;  .i: + p i  
IF e is fi AND i is fi THEN w = p t .  e + p f .  i: + p i  (64) 

where error e denotes the current angle of the inverted pen- 
dulum minus the target angle and 8 the error rate. To obtain 
the optimal value of 1 in (59), the elements of Q in (26) are 

IF e is p AND 1 is # THEN w e + p ; .  i: + p z  2 

p i  = 34.13, pf = 1.132, p z  = 4.74. (67) 

It is noted that three values in (67) are obtained when e and 
i: are not scaled. In order to specify scaling factors, the upper 
bound, at which the system is too sensitive to converge, and 
the lower bound, at which the rise time and steady state error 
are too large to exhibit poor transient performance, have to be 
determined. Let scaling factors for e and i: be 285.7 and 10, 
respectively, three parameters in the second rule are calculated 
as 

(68) 

In a similar manner, considering Region 1 in Fig. 2 due to 
(8) and (9), three parameters of the third rule in (64) are 
calculated as 

2 p ,  = 0.12, p: = 0.11, p ;  = 4.74. 

p ;  = 0.12, p: = 0.11, p ;  = 4.74. (69) 

Since the switching function (59) is located in the second and 
fourth quadrants due to > 0, it passes through Regions 1 
and 9 Hence, control inputs in Regions 1 and 9 are similar to 
the equivalent control U,* given in (20). By contrast, control 
inputs in Regions 3 and 7 are similar to U+ and U -  expressed 
in (17), respectively. Due to (8) and (9), parameters of the 
first and fourth rules are determined by considering Regions 3 
and 7 in Fig. 2, respectively. Since the existence condition of 
sliding modes is U+ > ueq > U -  [23], parameters of the first 
and fourth rules in (64) are 

p: =0.12, p i  = 0.11, p i  = 4.90 

p $  =0.12, p: = 0.11, p;  = 4.58. (70) 

Parameter values expressed in (68)-(70) comprise 12 param- 
eters of four rules in (64). 
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Fig. 6.  
and (b) phase trajectories for Cases I and 11. 

Simulation results of (a) angular displacement of inverted pendulum 

Fig. 6 shows simulation results for Cases I and 11. Sim- 
ulation results for Cases I11 and IV are shown in Fig. 9. 
The same control rules whereas parameters vary with target 
angles. To validate the tuning algorithm, bounded white noise 
is exerted from the 2nd to 10th seconds during excursion. It is 
seen in Fig. 6(a) that fuzzy control with the tuning algorithm 
can deal with disturbances. The phase trajectories shown in 
Fig. 6(b) initiate from O b  = 36" and & = 0 for both cases. 
They approach switching lines asymptotically due to (36) but 
do not slide exactly on them. This is anticipated since the 
switching lines are the prescribed reference lines and control 
input for fuzzy control is continuous, as described in Section 
II.B, the sliding mode cannot be fulfilled perfectly. Besides, 
discrete-time VSS control can only achieve quasisliding modes 
according to [20]. 

D. Experimental Results 
The schematic diagram of the experimental setup is shown 

in Fig. 7. A shaft encoder at the hinge of the inverted pen- 
dulum measures the tilt angle. An interface card transmits 
the position count to PC to carry out fuzzy control. The 
sampling time of PC command is lms. A motor driver receives 
control signals via the interface card, and enables instantaneous 
rotation motion of the AC servo motor. The initial angle of 
pendulum O b  is 36" and the rotational velocity of the motor 
w = 0. 

Figs. 8 and 9 depict experimental results for four cases. 
Data is collected at a sample rate of 25 Hz. In contrast 
to simulation results, curve wiggle is present due to gear 

Shaft 
Encoder 

Binary 
Counter 

Servo 
Motor 
Driver 

Interface I Card 1 6, Interface 

Fig. 7. Block diagram of experimental setup. 
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Fig. 8. 
for (a) Case I; and (b) Case 11. 

Experimental results of angular displacement of inverted pendulum 

collision at backlash in the gearbox for the servo motor. 
The collision occurs whenever the motor undergoes large 
acceleration or deceleration. The collision hence belongs to 
random disturbances. For both cases in Fig. 8, relative to the 
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Fig. 9. 
for (a) Case I11 and (b) Case IV. 

Experimental results of angular displacement of inverted pendulum 

desired O b  error of solid curves are smaller than that of dashed 
curves. This result validates the proposed tuning algorithm. 

To obtain the feedback control model and examine stability 
performance using Bode plots, a software package MATLAB 
is employed, in which input signals u(n> and output signals 
y(n)  are assumed to be related by a linear system [18], i.e., 

y(n) = G(')u(n) + ~ ( n )  n = 1 , 2 , .  . . , N 

where G(q) denotes a transfer function, q a shift operator, and 
the disturbance v(n) can be described as filtered white noise. 
An ARX-model in system identification that implements the 
least square estimation method is used to estimate the system 
model based on collected input-output data. The ARX-model 
is written as 

where k denotes the number of delays between input and 
output and 

A(q) = 1 + ulq-'+ . + unaqPna 
B(q) = bl  + b2q-1 -I-. . . + bnbq-nb+l.  

Resulting from the estimated model (71), Bode plots are 
presented in Fig. 10, which shows Bode plots of O b  versus 
the motor angular velocity w for Cases I and II. It can be seen 
from the phase angle plot that the system exhibits a minimum 
phase. Gain margins of both cases are very large. Case I (target 
angle 20" and Case I1 (target angle IO") yield phase margins 
of 85.7" and 54.7", respectively. The smaller target angle 
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-120 

I I I I l i l l l  I I I I l l l t l  I I I I 1 1 1 1  
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Frequency (rad/s) 

Fig. 10. Bode plots in experiments for Cases I and 11. 

results in larger phase lag. It is noted that compensating for 
larger phase lag requires more control effort. Corresponding 
to cornering motion of a rider-motorcycle system, the rider 
must bank at an adequate angle in order to maintain balance 
when the radius of the circular motion is constant. Therefore, a 
smaller leaning angle exhibits a poor stability control. On the 
other hand, handling controI is examined from Fig. 11, which 
shows Bode plots of O b  versus the motor angular velocity w in 
the period of target angle change for Cases 111 and IV. Phase 
margins in Cases I11 and IV are 65.2" and 32", respectively. 
The phase lag in Case IV is larger than that in Case 111. 
From the viewpoint of a rider-motorcycle system undergoing 
rider's posture change, Fig. 11 demonstrates that it takes more 
handling control effort for a rider to increase than to decrease 
the leaning angle. Accordingly, stability control and handling 
control contradict each other. Trade-off between stability and 
handling control is thus needed for the motorcycle design 

VII. CONCLUSIONS 
This study has proposed a method for developing fuzzy 

control that is designed with sliding modes to ensure stability 
of the fuzzy controller. The stability has been investigated 
from the viewpoints of differential geometric methods and 
the sliding mode theory, in which fuzzy control has been 
formulated in the form of VSS control. The differential geo- 
metric method provides existence conditions for sliding modes. 
Sliding modes facilitate determining best values of parameters 
in fuzzy control rules. For the stability control, experiments 
demonstrate that the smaller the desired leaning angle of a rider 
is, the more difficult it is to maintain stability. For the handling 
control, it takes more handling control effort for a rider to 
increase than to decrease the leaning angle. Consequently, 
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s I- 

Frequency (rad/s) 

Fig. 11. Bode plots in experiments for Cases Ill and IV 

stability control and handling control contradict each other. 
These results are consistent with human’s riding experience. 
Motorcycle design hence has to compromise between stability 
and handling performance. 
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