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Abstract: The authors consider transmitter power control of wireless communication systems. They propose an adaptive
second-order distributed power control algorithm in which the relaxation factors are adaptively adjusted to improve the rate of
convergence. The algorithm updates power using a weighted combination of the distributed power control algorithm and the
second-order power control (SOPC) algorithm. Simulation results show performance improvement over distributed
constrained power control and constrained SOPC.
1 Introduction

Transmitter power control has been considered as an effective
means for resource allocation in wireless communication
systems. In direct-sequence code-division multiple-access
(DS-CDMA) systems, power control is indispensable for
achieving the required level of quality of service (QoS),
which is usually measured in terms of the signal-to-
interference ratio (SIR). Over the past decade, many power
control algorithms have been proposed to maintain QoS of
communication systems. Utility maximisation under power
constraints and minimum SIR requirement is discussed in
[1–4] while power and rate control under outage constraints
is discussed in [5]. The works in [6, 7] address time-
varying link gain systems and propose algorithms to
maintain SIR requirement. For quasi-stationary link gains,
first-order algorithms, whose power updates use only
current power level, for improving the rate of convergence
over the distributed power control (DPC) algorithm in [8]
are proposed in [9–11]; second-order algorithms, whose
power updates used the current and the immediate past
power levels, are proposed in [12] and compared with DPC.

In this paper, we consider a quasi-stationary link gain
system and study a distributed power control algorithm
aiming at fast convergence. Our work is motivated by that
[12] in which a second-order power control (SOPC)
algorithm derived from the successive over-relaxation
(SOR) method [13] was proposed. The second-order
algorithm uses power levels of current and previous steps,
and can potentially achieve better convergence performance
than that in [8] provided the relaxation factor is properly
chosen. However, the non-adaptive choice of the relaxation
factor in [12] may lead to a situation in which the powers
of some users are adjusted unnecessarily low at the first few
steps owing to large power levels of the previous step. In
this situation, the required SIR of those users can no longer
be supported, resulting in large transient outage probability
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and system performance deterioration. Hence, we propose
an adaptive SOPC algorithm in which the relaxation factor
is adaptively adjusted based on the ratio of DPC power
level and the power level of the previous step. Simulation
results show performance improvement in SIR convergence
in the sense that the convergence to steady-state outage
probability is faster.

This paper is organised as follows. In Section 2, we
describe the system model and review the power control
algorithms in [12] and [8]. In Section 3, we describe the
proposed adaptive SOPC algorithm. Simulation results are
given in Section 4. Section 5 is a brief conclusion.

2 Power control schemes

We consider a generic case where there are K active mobile
station–base station pairs in a wireless communication
network. In a cellular CDMA system, K users are assigned
to a base station; in others the K pairs represent co-channel
cells using the same frequency band. We consider uplink
power control. The power received at the ith base station,
yi, is the sum of power from user i (the intended
transmitter), interference power and noise

yi = giipi +
∑K

j=1,j=i

gijpj + ui (1)

where pi is the power transmitted by user i, gij is the power
link gain from user j to base i and ui is the receiver noise
power at base i. We assume that gij ≥ 0 and gii . 0. The
SIR at the ith base station, gi, is defined as

gi =
giipi∑

j=i gijpj + ui

(2)

The goal of power control is to maintain a target SIR
961

& The Institution of Engineering and Technology 2011



www.ietdl.org
threshold for each user by adjusting the transmitter power pi,
that is, to achieve

gi = gt
i, i = 1, 2, . . . , K (3)

where gt
i is the target SIR for user i. If there are pi ≥ 0,

i = 1, . . . , K such that (3) holds, the power control
problem is said to be feasible, otherwise it is infeasible.

To analyse the problem, we define the normalised link gain
hij = gt

igij/gii for j = i and the normalised noise power
ni = gt

iui/gii, and rewrite (3) as

pi =
∑
j=i

hijpj + ni (4)

In matrix form, (4) becomes

p = Hp + v (5)

where p = [p1 p2 · · · pK ]T [ RK , v = [n1 n2 · · · nK ]T [

RK , and H [ RK×K is a non-negative matrix with zero
diagonal entries and ijth entry hij for i = j. We assume that
the problem is feasible, that is, there is a non-negative
power vector p∗ ≥ 0 that satisfies (5).

One way to solve (5) iteratively is to use the Jacobi iteration
[14, p. 353]

p(n + 1) = Hp(n) + v (6)

We know that a sufficient and necessary condition for
stability and hence convergence is that all the eigenvalues
of H lie inside the unit circle or equivalently the spectral
radius of H, r(H ), is strictly less than 1. Small r(H )
implies fast convergence and if r(H ) ≃ 1, the convergence
can be very slow. The iteration (6) in its present form,
however, cannot be implemented in practice, since to
compute p(n + 1) knowledge of the link gain matrix H, the
current power p(n) and the noise power v is required. The
distributed power control algorithm proposed by Foschini
and Maljanic [8] is basically an implementation (6) so that
each user adjusts its power based only on information
available locally. Rewriting (6) for user i, we have

pi(n + 1) =
∑
j=i

hijpj(n) + ni = gt
i

∑
j=i

gijpj(n) + ui

gii

( )

It follows that the DPC is

pi(n + 1) = gt
i

gi(n)
pi(n), i = 1, . . . , K (7)

Note the power pi(n + 1) depends only on gi(n), the SIR of
user i at the nth instant, and pi(n), both are available to user
i. It is proved in [8] that if the problem is feasible, then the
algorithm (7) guarantees the convergence of transmitter
power and SIR for each user.

Another way to solve (5) is to use the SOR method [13],
which modifies (6) to include a relaxation parameter. Based
on the SOR method, Jäntti and Kim [12] proposed the
iteration

p(n + 1) = v(Hp(n) + v) + (1 − v)p(n − 1) (8)
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which can be implemented as a distributed algorithm, that is,
for user i, the power update becomes

pi(n + 1) = v
gt

i

gi(n)
pi(n) + (1 − v)pi(n − 1) (9)

Iteration (9) defines an SOPC algorithm since to compute
pi(n + 1) we need both pi(n) and pi(n − 1) as well as the
SIR gi(n). It is shown that the optimal relaxation factor v∗

is given by Young [13] as

v∗ = 2

1 +
������������
1 − r2(H)

√ (10)

and for r(H ) , 1, 1 , v∗ , 2. However, since H is not
available, there is no way of knowing the exact value of v∗.
Note also that (9) reduces to DPC when v ¼ 1 and for an
arbitrary v, the convergence of (9) may be slower than that
of DPC.

3 Adaptive SOPC

Since the optimal relaxation factor v∗ is unknown and cannot
be determined from the available local information, it cannot
be used in (9). In this section, we consider a modification of
algorithm (9). Instead of using a fixed v for all users, we
allow each user to have an individual vi(n) which may vary
from step to step. Rewrite the second-order power control
(SOPC) algorithm (9) as

pi(n + 1) = gt
i

gi(n)
pi(n) + Dvi(n)

gt
i

gi(n)
pi(n) − pi(n − 1)

[ ]
(11)

where Dvi(n) = vi(n) − 1. Since the optimal relaxation factor
satisfies 1 , v∗

, 2, we confine eachDvi(n) to between 0 and
1. The first term on the right-hand side of (11) is the DPC
update, and the second correction term is the weighted
difference between the DPC update and the power of the
previous step. The algorithm is completely specified by the
choice of Dvi(n). If Dvi(n) = 0, the algorithm reduces to
DPC. The SOPC in [12], with Dvi(n) = 1/an for all i and
for some a . 1, is non-adaptive in the sense that Dvi(n) is
fixed a priori. If a is chosen large, the algorithm approaches
rapidly to DPC. If a . 1 is chosen small then, as observed in
[12], the power update in the first few steps may result in
negative power levels (which are then set to the minimal
transmitter power). As a result, a significant number of users
may have SIR below the target level. This is likely to happen
when pi(n − 1) is large compared to (gt

i/gi(n))pi(n). Note
that to the power update (11), we need to add the minimal
and maximal power constraint

pmin ≤ pi(n) ≤ pmax (12)

where pmin ≥ 0 and pmax . pmin for practical implementation.
The algorithms in (7) and in (11) with constraint (12) are
called the distributed constrained power control (DCPC)
algorithm and the constrained second-order power control
(CSOPC) algorithm, respectively.

From (11), we see that the power update pi(n + 1) may
become negative if the difference in square brackets is
negative and large (in magnitude) and Dvi(n) is not small.
Although it will be adjusted to pmin, this unnecessarily low
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power level is then likely to decrease gi(n + 1) and cause
outage. To discuss the problem, we define

Ai(n) = gt
i

gi(n)

pi(n)

pi(n − 1)
(13)

the ratio between the DPC update and the power level of the
previous step. Since (13) can be rewritten as Ai(n) =
gt

ihi(n)/(giipi(n − 1)), where hi(n) =
∑

j=i gijpj(n) + ui . 0
is the interference of user i, we have Ai(n) . 0. The
following proposition gives a sufficient and necessary
condition under which pi(n + 1) ≤ 0.

Proposition 1: Consider algorithm (11) with Dvi(n) ≥ 0.
Suppose pi(n − 1) . 0. Then pi(n + 1) ≤ 0 if and only if

(a) Ai(n) , 1 and
(b) Dvi(n) ≥ Ai(n)/1 − Ai(n).

Proof: Since pi(n − 1) . 0, we divide (11) by pi(n − 1) and
obtain

pi(n + 1)

pi(n − 1)
= gt

i

gi(n)

pi(n)

pi(n − 1)
+ Dvi(n)

gt
i

gi(n)

pi(n)

pi(n − 1)
− 1

[ ]

= Ai(n) + Dvi(n)[Ai(n) − 1]

= [Ai(n) − 1]
Ai(n)

Ai(n) − 1
+ Dvi(n)

[ ]

Since Dvi(n) ≥ 0 and Ai(n) . 0, it is seen that pi(n + 1) ≤ 0
if and only if Ai(n) − 1 , 0 and (Ai(n)/Ai(n) − 1) +
Dvi(n) ≥ 0. The result follows. A

By the choice Dvi(n) = 1/an in [12], Dvi(n) is large when n
is small. Thus, from Proposition 1, the power may update to a
negative level in the first few steps. The basic idea of the
proposed adaptive algorithm is to prevent the power update in
the first few steps from being unnecessarily low. From
Proposition 1, this means that when Ai(n) , 1 or equivalently
(gt

i/gi(n))pi(n) − pi(n − 1) , 0, we must have

Dvi(n) ,
Ai(n)

1 − Ai(n)
(14)

so that pi(n + 1) . 0. To satisfy (14), one choice of the
relaxation factor is

Dvi(n) = min{1, 1Ai(n)} (15)

where 0 ≤ 1 ≤ 1. By the adaptive adjustment in (15), we expect
the performance of the algorithm to be better than that in [12]
during the first few iterations since (a) or (b) in Proposition 1
is avoided. Moreover, if Dvi(n) = 1Ai(n), we can substitute
(15) into (11) and obtain

pi(n + 1) = (1 − 1)pi(n − 1)Ai(n) + 1pi(n − 1)A2
i (n) (16)

Note that if 1 ¼ 0, then from (15) we have Dvi(n) = 0 and (16)
reduces to DPC algorithm. Comparing algorithm (16) with
the DPC algorithm, if Ai(n) . 1, then A2

i (n)pi(n − 1) .
Ai(n)pi(n − 1) and thus pi(n + 1) . (gt

i/gi(n))pi(n). Also, we
have pi(n + 1) , (gt

i/gi(n))pi(n) for Ai(n) , 1 and
pi(n + 1) = (gt

i/gi(n))pi(n) for Ai(n) = 1. The parameter 1
can be regarded as the weighting factor between DPC update
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and the term A2
i (n)pi(n − 1). For a large 1, the gap between

pi(n + 1) and (gt
i/gi(n))pi(n) becomes large if Ai(n) = 1.

The second-order algorithm CSOPC asymptotically
approaches the first-order algorithm DCPC. For example,
with a ¼ 1.5, then in (11) the relaxation factor
Dvi(n) = 1/an

, 0.1 for n ¼ 6. So effectively the algorithm
is of second order only in the first few iterations; this is to
avoid the undesirable consequence of fast power
convergence to pmin. In the proposed adaptive algorithm, the
power update switches to DCPC if a certain condition is
satisfied. To discuss the condition, let us suppose
pi(n) = pmin and gi(n) . gt

i at the nth instant; then we have
giipmin/hi(n) . gt

i or, equivalently, (gii/g
t
i)pmin . hi(n). In

addition, from (16), since (gt
i/gi(n))pmin ≤ pmin, we obtain

pi(n + 1) , pmin, which is set to pmin because of the power
constraint (12). This situation is undesirable in the sense that
user i cannot decrease its transmitter power, which results in
the increase of the interference hj(n + 1), for j = i.
Therefore we switch algorithm (16) to the DCPC algorithm
before hi(n) reaching (gii/g

t
i)pmin to slow down the power

convergence to pmin, that is, we set Dvi(n) = 0 if hi(n) ≤ z,
where z . (gii/g

t
i)pmin is a positive value. Although we

know that the users with large gii will converge to pmin faster
than those with small gii, they have no link gain information
about each other and we need to use an estimated value. One
appropriate choice of the switching level is

z = b
ĝ

gt
i

pmin (17)

where ĝ =
�������������
�g2 + var(g)

√
is estimated value of the large link gain

with �g denoted the expected link gain and var(g) denoted the link
gain variance and b is a positive value. With proper choice of b,
we can obtain good performance. Note that if b is large, the
convergent behaviour of the algorithm, named adaptive second-
order power control (ASOPC) in Fig. 1 is similar to that of the
DCPC algorithm because of switching early.

Remark 1: The parameter 1 in (15) determines the relative
weighting of DPC update and the term A2

i (p)pi(n − 1).
From the simulation example in Section 4, it is seen that
1 [ [0.4, 0.6] yields good performance.

Remark 2: From (17), the parameter z is determined by b. For
a large b, the algorithm switches to DPC early. From the
simulation examples, b [ [0.3, 3] is a good choice.

4 Simulation results

In this section, we use examples to compare the proposed
ASOPC algorithm with the DCPC algorithm and the
CSOPC algorithm. The DCPC and CSOPC power updates
are, respectively

pi(n + 1) = min pmax, max pmin,
gt

i

gi(n)
pi(n)

{ }{ }

and

pi(n + 1) = min pmax, max pmin, 1 + 1

an

( )
gt

i

gi(n)
pi(n)

{{

− 1

an
pi(n − 1)

}}
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Fig. 1 Adaptive second-order power control algorithm
where pmin and pmax are, respectively, the minimum and
maximum power that can be used by each user. In
simulations, the target SIR for each user is chosen to
be the same fixed value. In each example we compare the
convergence of the SIR, which is measured in terms of the
outage probability. The outage probability at each iteration
is defined to be the number ratio of users whose SIR is
below a required SIR, a value slightly lower than the target
SIR. When the number of users is large, say a few
hundreds, the ratio is close to the probability that the
achieved SIR is below the required SIR.

4.1 Example 1

We consider the same IS-95 system example as in [12], in
which the processing gain is set to 21 dB. The omnibase is
assumed to locate at the centre of a hexagonal cell. In each
simulation run, 190 mobiles uniformly distributed over the
19 hexagonal cells are generated. We assume that the
minimum distance between any two base stations is

��
3

√
km.

The link gain is modelled as gij = sij · d−4
ij , where sij has log-

normal distribution with E[sij] = 0 and ssij
= 8 dB and dij is

the distance between base i and mobile j. The target SIR gt
i

is set to 8 dB, the required SIR is set to 7 dB, the maximum
power pmax = 1 W, the minimum power pmin = 4 × 10−6 W
and the receiver noise is taken to be 10−12 W for all mobiles.
We consider 11 000 independent instances and take the
‘feasible’ ones in each instance for the computation of the
average outage probability. The initial power for each mobile
is randomly chosen from the interval [pmin, 1].

Fig. 2 shows the the outage probability of ASOPC with
1 ¼ 0.5 and z ¼ 0.01, CSOPC with a ¼ 1.5, and DCPC.
The outage probability for the CSOPC algorithm has an
initial surge and remains high for the first six steps. This is
because the power level of a significant number of users are
adjusted unnecessarily low. The ASOPC prevents this from
happening at the first few steps with larger power
adjustment steps compared to DCPC, thus yielding the
lowest outage probability. After the initial surge, the outage
probability of CSOPC drops rapidly and compares
favourably with DCPC. In addition, the outage probability
of ASOPC converges to 1.5 × 10−4, which is regarded as
the steady state of the outage probability, at the 15th
964
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iteration on average. CSOPC takes 30 iterations on average
to reach the steady-state outage probability while DCPC
needs more than 30 iterations.

There are two parameters1 and z in the ASOPC algorithm, one
specifies the relative weighting between DPC update and the term
A2

i (n)pi(n − 1), and the other specifies the condition under which
to switch to DCPC. We consider the effect of these two
parameters. Fig. 3 plots the outage probability for different 1
and a fixed z ¼ 0.01. For small 1, the behaviour of the
algorithm approaches the DCPC algorithm and as 1 increases,
A2

i (n)pi(n − 1) term is weighted more. For 1 too small (1 ≃ 0)
and 1 too large (1 ≃ 1), the algorithm results in a large outage
probability and a reasonable choice is 1 [ [0.4, 0.6].

Fig. 4 plots the outage probability for a fixed 1 ¼ 0.5 and
different z (in logarithm scale). Algorithm (16) switches
to DCPC when hi(n) ≤ z. As z is large, the iteration switches
to DCPC early and the performance of the algorithm is
similar to that of DCPC. When log(z) decreases to 21.3
(z = 5 × 10−2 in linear scale), the outage probability
improves. When log(z) ¼ 22, the outage probability of the
10th iteration is better than other choice of log(z). As log(z)

Fig. 2 Outage probability of DCPC, CSOPC with a ¼ 1.5, and
ASOPC with 1 ¼ 0.5 and z ¼ 0.01
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decreases further, the outage probability dose not change
significantly.

4.2 Example 2

We use another example to see the effect of the parameter z.
Consider a system in which 10 mobiles are uniformly
distributed in a cell. The cell size, processing gain and link
gain are set the same as in Example 1. Also, the target SIR
is 8 dB, the required SIR is 7 dB, pmax = 1 W and
pmin = 4 × 10−6 W. The initial power for each mobile is
randomly chosen from the interval [pmin, 1]. Fig. 5 shows the
outage probability by taking 10 000 independent instances. It
is clear that when z = 5 × 10−2, the outage probability of
ASOPC is better on average than that of CSOPC and DCPC.
For z = 5 × 10−1, the outage probability of ASOPC
approaches to that of CSOPC owing to early switching. If
z = 3 × 10−3, we can see that the outage probability of
ASOPC has a slight increase from the seventh iteration to
ninth iteration. This is because some users have reached pmin
before the switch occurs. In this figure, we see again that
with proper choice of power adjustment step between DCPC

Fig. 3 Outage probability for different 1 and z ¼ 0.01

Fig. 4 Outage probability for different z and 1 ¼ 0.5
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and CSOPC, the ASOPC performs better than the other two
algorithms. Fig. 6 shows the percentage of users switching to
DCPC. It is obvious that when z = 5 × 10−2, all users use
DCPC to update power after the fifth iteration; when
z = 5 × 10−1, all users switch to DCPC update after the
fourth iteration; while z = 10−4, only about 92% of users
switches to DCPC after the eighth iteration.

5 Conclusion

We consider uplink power control in a wireless
communication network. The control objective is to achieve
a preset target SIR for each user in the network. We modify
the SOPC algorithm proposed in [12] to include an adaptive
adjustment of the relaxation factor in each iteration.
The choice of the relaxation factor is based on the ratio
between the DPC update and the power level of the
previous step. The adaptive algorithm makes sure that the
power updates in the first few steps do not become
unnecessarily low, which then results in better performance
in terms of outage probability. Simulation results show
performance improvement over DCPC and CSOPC.

Fig. 5 Outage probability of 10 users’ case

Fig. 6 Percentage of users switching to DCPC
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