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Abstract—This study systematically analyzes multilevel space-
vector pulse width modulation for a multiphase voltage source in-
verter (VSI). The instantaneous output voltages of the VSI, which
are called space vectors, can be classified according to the switch-
ing states of the VSI. By applying the eigenspace decomposition of
the system matrix, the n-phase VSI control problem can be solved
analytically. This analysis leads to a switching strategy that uses
the fewest space vectors and minimum total conduction time. This
yields a minimum switching number and efficient dc supply utiliza-
tion. Further, the switching strategy of a multilevel multiphase VSI
system can be solved based on the switching strategy of a two-level
multiphase VSI. Simulations and experimental results confirm the
effectiveness of the proposed algorithm.

Index Terms—Maximum modulation index, multiphase, pulse
width modulation (PWM), space vector, voltage source inverters
(VSI).

I. INTRODUCTION

THE preliminary idea of using multiphase inverters for
variable-speed drives was first proposed in the 1960s [1].

Using multiphasemachines instead of three-phase machines has
several advantages such as reduction in copper loss and attenu-
ation of phase-belt harmonics [2], improvements in efficiency,
and reduction in torque pulsation. Further, an improved fault tol-
erance without additional hardware [3], [4] and reduced power
handling requirement for each phase [1], [5] are achieved using
multiphase machines. In recent years, multiphase drives have
been applied to control multiphase brushless machines or mul-
tiphase permanent-magnet motors for electrical vehicles and
ships and for low-torque propulsion [5]. The additional degrees
of freedom in multiphase inverters are adopted to control other
multiphase machines independently [6]–[8], i.e., a multiphase
multimotor system driven by a single voltage source inverter
(VSI). Notably, the allowable number of motors that can be se-
rially connected in a system depends on the phase number of
the motors.

Advantages such as low-harmonic current waveforms, low-
voltage drop cross switches for the same current ratings, and
relatively low switching frequencies compared with two-level
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inverters are found in the multilevel inverters [9], [10]. In recent
years, multilevel inverters driven by the hysteresis current reg-
ulation method were proposed to improve output voltage [11].
Further, they were also applied to the direct torque control to
reduce switching losses [12].

The strategy of generating pulse width modulation (PWM)
switching signals for a multilevel multiphase inverter used in
multiphase machine is an important means of controlling mul-
tiphase machines. The study in [13] presents a control method
of a six-phase inverter for dual three-phase machines via vector
space decomposition. This strategy requires the analysis of three
two-dimensional orthogonal subspaces. In [14], the analysis of a
nine-phase inverter for sinusoidal phase voltage is conducted ac-
cording to different load circuits induced by gating patterns. The
concept of multiple d–q spaces is presented in [15] and [16] for
five-phase nonsinusoidal voltages and seven-phase sinusoidal
voltages, respectively. As mentioned in [15], for nonsinusoidal
phase voltages, torque per ampere is maximized when multi-
phase motors have concentrated winding and a nonsinusoidal
air-gap flux density distribution. For multilevel three-phase sys-
tems, a harmonically optimal strategy to allow the full usage
of voltage levels is proposed in [17] and a general method for
over-modulation operation is suggested in [10]. The method to
reduce the common mode voltage of the multilevel inverter is
advised in [18] and [19]. Further, a simple control strategy for
multilevel multiphase inverters is recommended in [20]. This
strategy achieves the objective of simplicity by solving a two-
level multiphase inverter control problem. A similar approach
to [20] that further considers state redundancy is proposed in [5],
i.e., increasing the modulation index.

While several factors can be considered for multilevel multi-
phase switching signal generation, the fundamental aim is still
to match the reference signal waveform given limited switching
states. Despite recent research progress, a complete theoreti-
cal analysis from the perspective of reference signal matching
is lacking. The potential benefits for theoretical development
is a relatively simpler implementation scheme as well as ex-
tensions to different applications. For instance, the methods
in [13] and [15] require calculation of the matrix inverse and
trigonometric functions; otherwise, a memory space is needed
to store data. The approach in [14] focused on sinusoidal phase
voltages [15], i.e., this method has limited applications. The
techniques for multilevel inverters [10]–[12], [17]–[19] are for
three-phase systems only. The extension to the n-phase system is
needed especially when the system is analyzed using the space-
vector PWM concept. Although the implementation in [20] is
relatively simple, it does not allow full use of supplied voltage.
By considering the redundant switching state, the system in [5]
achieves an extended modulation index compared to that in [20]
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with additional computations. Under the reasonable modulation
index, the only difference between strategies of [20] and [5] is
the distribution of zero switching states when two-level VSI is
considered. For multilevel VSI systems, there exists a selection
of switching states in [5] such that only the equivalent integer
part of reference input is different from that in [20]. There-
fore, no additional operations should be needed to achieve the
extended modulation index.

This study proposes a novel and rigorous mathematical anal-
ysis of a multiphase inverter under a multilevel switching topol-
ogy for a multiphase machine. The treatment of this problem
differs from the vector analysis adopted in many published stud-
ies [5], [13]–[16], [20]. This study is based on eigenspace de-
composition of the matrix composed of inverter output voltages.
This algebraic formulation allows one to systematically derive
general solutions of a multilevel space-vector PWM that satis-
fies the signal matching condition. Among existing solutions,
designing a particular scheme that uses the fewest space vec-
tors per duty cycle is possible. An immediate benefit is that
the switching number of the power switches (e.g., MOSFET)
can be minimal. Further, if one defines total conduction time
of the power stage as the duty ratio containing all nonzero
space vectors, this scheme also results in minimum total con-
duction time. Given these two properties, maximum modula-
tion indices for all phase numbers can be well explained. The
proposed scheme requires fewer arithmetic computations com-
pared with those for the method proposed in [5]. The analy-
sis of a two-level switching scheme can be extended to mul-
tilevels using integer–fraction decomposition with sum-of-zero
compensation. This treatment is similar to that in [20] with a
modification that ensures the sum-of-zero condition for refer-
ence signals is matched by two-level space vectors. Computing
the maximum modulation indices given the number of levels is
then straightforward.

The rest of this paper is organized as follows. Section II gives
the mathematical foundation, proposed switching schemes, and
the analysis of the two-level multiphase switching scheme for
a VSI. The extension of the scheme to a multilevel system
is explained in Section III. Section IV presents simulation re-
sults for the proposed method. Experimental results on an R–L
circuit are given in Section V. Conclusion is finally drawn in
Section VI, along with recommendations for future research.

II. TWO-LEVEL SWITCHING STRATEGY FOR MULTIPHASE

SYSTEMS

The analysis of space vectors, generic switching strategy,
minimum conduction time strategy, and modulation index anal-
ysis are discussed in this section. To have a compact presenta-
tion, all formulations and expressions are shown based on the
general N-phase VSI system. Nevertheless, the explanation for
the three-phase system is provided in Appendix A. For readers
familiar with the three-phase setting, please refer to Appendix
A for a better understanding of the underlying theory.

Fig. 1 N-phase system with a two-level switching topology.

A. Space Vector Analysis

For an N-phase system under a two-level switching topol-
ogy (see Fig. 1), let si ∈ R

N ×1 , i = 1–M – 1, be the resulting
phase (line-to-neutral) voltage vectors (or so-called space vec-
tors). One can easily show that M = 2N . Among the switching
states, two zero vectors result in zero voltage for all phases,
i.e., all lower switches or all upper switches are closed. Without
loss of generality, the supply voltage is normalized to 1 in the
following.

The switching condition can also be described by number i
in the N-bit binary form. Each bit in i represents the status of
switches in each leg. The value of 1 means the upper switch
is closed and 0 means the lower switch is closed. Let σ(i)
be the number of bits in i, whose values are 1, and γj (i) is
the value of bit j in i, j = 1 − N . As the vector si is denoted
as si = [ si1 si2 · · · siN ]T , the jth element, sij , can be
written as follows:

sij = γj (i)
N − σ(i)

N
+ (γj (i) − 1)

σ(i)
N

= γj (i) −
σ(i)
N

.

(1)
Consequently, the space vectors can be organized into groups

according to their values of σ(i). For N phases, one can orga-
nize them into N groups (group 0 ∼ N–1). Group 0 contains
two zero space vectors. The remaining groups, group n, con-
tain CN

n vectors. As an example, 128 space vectors exist in a
seven-phase system. These vectors are categorized into seven
groups. Group 1 contains seven vectors whose binary num-
ber representations have only one bit that is one, and the rest
of the bits are 0. These vectors are s1 , s2 , s4 , . . . , s64 and
s1 = [(6/7) − (1/7) · · · − (1/7)]T , according to (1). Groups
2 (21 vectors) to 6 (seven vectors) can be found similarly. The
vectors in group 1 (s1 , s2 , s4 , . . . , s2N −2 and s2N −1 ) are defined
as fundamental space vectors (FSVs). Putting all FSVs together,
one can form an N-dimensional square matrix as follows:

Sc =

⎡
⎢⎢⎢⎢⎣

N −1
N − 1

N · · · − 1
N

− 1
N

N −1
N · · · − 1

N

...
...

. . .
...

− 1
N − 1

N · · · N −1
N

⎤
⎥⎥⎥⎥⎦

. (2)



HU et al.: ANALYTICAL SOLUTIONS OF MULTILEVEL SPACE-VECTOR PWM FOR MULTIPHASE VOLTAGE SOURCE INVERTERS 1491

Further, define the vector Γi as the bitwise expansion of
positive integer i, i.e.,

Γi = [ γ1 (i) γ2 (i) · · · γN (i) ]T . (3)

Then from (1), the space vectors in group n, n = 2–N – 1,
can be represented as the addition of n FSVs (see Appendix B).
Specifically, one can rewrite the space vectors according to (2)
and (3) as follows:

si = ScΓi . (4)

Additionally, an alternative representation of (1) by consid-
ering the bitwise complement of integer i can be derived as
follows:

sij = −
(

γj (̄i) −
σ(̄i)
N

)
(5)

where ī is the bitwise complement of i. Therefore, a second
space vector relationship to FSVs is

si = −ScΓī (6)

where Γī = [ γ1 (̄i) γ2 (̄i) · · · γN (̄i) ]T . By combining (4)
and (6), a general representation of space vectors in terms of
FSVs can be derived as follows:

si = Sc (βiΓi − (1 − βi)Γī) . (7)

where all βi values are numbers between 0 and 1.

B. Generic Switching Strategy for Averaged Response

Let ui (k), i = 1–M, be the duty ratio of space vector si at the
PWM sequence kT, where T is the period and

∑M
i=1 ui (k) = 1.

Consider that the averaged response of PWM signals for M line-
to-neutral voltages is equal to the sampled reference signals

Tr (k) = T

M∑
i=1

ui (k)si (8)

where r(k) = [ r1(k) r2(k) · · · rN (k) ]T is the vector of
the reference N-phase voltage sampled at kT. Let u (k) =
[ u1 (k) · · · uM (k) ]T ∈ R

M ×1 be the duty ratio vector and
S = [ s1 · · · sM ] ∈ R

N ×M be the quantized phase voltage
matrix; thus, one can derive the equation in that resulting PWM
signals match the reference signal vector r(k) as follows:

Su(k) = r(k) (9)

From (2) to (7)

S = ScH (10)

where

H = [h1 h2 · · · hM ] ∈ R
N ×M and

hi = βiΓi − (1 − βi)Γī . (11)

Putting (11) in matrix form yields

H = H1B − H2 (I − B) (12)

where H1 = [Γ1 Γ2 · · · ΓM ], H2 =
[Γ1̄ Γ2̄ · · · ΓM̄ ], and B= diag{βi} ∈ R

M ×M . As a

result, (9) becomes

Scuc(k) = r(k) (13)

where uc(k) = Hu(k). Thus, Sc is a circulant matrix and can
be represented as follows:

Sc =
N − 1

N
I − 1

N
P − 1

N
P2 − · · · − 1

N
PN −1

= I − 1
N

(
I + P + P2 + · · · + PN −1) (14)

where P is an N-dimensional circulant permutation matrix as

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1
. . . 0

0 0 0
. . . 0

...
...

...
. . . 1

1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

As a result, the eigenvalues of Sc , ξn , n = 0–N − 1, are [21]

ξn = 1 − 1
N

N −1∑
m=0

φm
n ,

where φn = e−(2πn/N )j (the eigenvalues of P). (15)

One can then easily verify that the matrix Sc has an eigen-
value of zero and all other eigenvalues are 1. The associated
eigenvectors of Sc are

vn =
1√
N

[ 1 φn φ2
n · · · φN −1

n ]T

Therefore, the eigenvector corresponding to the zero eigen-

value is v0 =
[
1
/√

N
1
/√

N · · · 1
/√

N

]T
. Hence, the

eigenvalue decomposition of the matrix Sc becomes

Sc =
[
Vc

vT
0

]T [ I 0

0 0

] [
Vc

vT
0

]
(16)

where Vc ∈ R
(N −1)×N , whose row vectors are eigenvectors

corresponding to the eigenvalue of 1. From (16), (13) becomes
[
Vc

0

]
uc(k) =

[
Vc

vT
0

]
r(k). (17)

This leads to

Vc (uc(k) − r(k)) = 0 (18)

and

vT
0 r(k) = 0. (19)

Equation (19) depicts the condition in which
∑N

i=1 ri (k) =
0. The solution of (17) must lie in the right null space of the
matrix Vc [see ( [18])]. One can easily see that the right null
space is the vector v0 as all row vectors of Vc are orthogonal to
v0 . Therefore, the general solution of (17) can be represented
by

uc(k) = r(k) + λd (20)
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where d = [ 1 1 · · · 1 ]T and λ is an arbitrary real value.
From (12) to (13) after some algebraic manipulations, the fol-
lowing equation is derived (see Appendix C)

H1u = r(k) + (λ + b)d (21)

where b =
∑M

i=1 (1 − βi)αi . Since λ can be any number, one
can always choose λ = λ1 − b. Therefore, the aforementioned
equation becomes

H1u = r(k) + λ1d (22)

Equation (22) is called the generic switching strategy equation
under the averaged response formulation of (8). The value λ1
now becomes a design parameter. The duty ratios satisfying (22)
must also be positive and the sum must equal 1.

C. Minimal Total Conduction Time

Total conduction time is defined as the ratio in each PWM duty
cycle containing nonzero space vectors. Since all components of
resulting vectors on the left side of (22) are non-negative, param-
eter λ1 must be selected, such that r(k) + λ1d ≥ 0. Since those
components are a partial sum of the duty ratio, a necessary con-
dition for minimal total conduction time is

∑N
i=1 |ri(k) + λ1 |

reaches the minimum. Given these two constraints, one can eas-
ily verify that λ1 should be the negative value of the minimum
of ri(k)s. Let PM be the permutation matrix for arranging
the components of the vector r(k) in a descending order, i.e.,
PM r(k) = ρ(k) such that elements of the vector ρ(k) satisfy
ρ1 ≥ ρ2 ≥ · · ·≥ ρN −1≥ ρN . This means λ1 = −ρN . As a re-
sult, (22) can be rewritten as follows:

PM H1u = ρ(k) − ρN d = ρd(k)

= [ ρ1 − ρN ρ2 − ρN · · · 0 ]T . (23)

Among the solutions for (23), this study is particularly inter-
ested in the solutions with the fewest space vectors. Since the
last element of ρd(k) is zero, choosing N−1 space vectors to
satisfy (23) is sufficient. Clearly, the last element of those vec-
tors must also be zero because all duty ratios are nonnegative.
Let u1 = [ ū1 · · · ūN −1 ]T ∈ R

(N −1)×1 contain the corre-
sponding duty ratios. By extracting the columns from the matrix
PM H1 , (23) becomes

[
Hd

o

]
u1 = [ ρ1 − ρN ρ2 − ρN · · · 0 ]T

or

Hdu1 = [ ρ1 − ρN ρ2 − ρN · · · ρN −1 − ρN ]T (24)

where Hd ∈ R
(N −1)×(N −1) and o ∈ R

1×(N −1) is a zero vec-
tor. Notably, one has C

(2N −1 −1)
(N −1) choices. This study seeks some

special structures of the matrix Hd as follows:
Case 1: Identity matrix
Hd = I.
In this case, only the FSVs are considered; thus, the duty

ratios are ūi = ρi − ρN . Total conduction time per duty is∑N −1
i=1 ρi − (N − 1)ρN .

Case 2: Band matrix

Hd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 · · · 0

0 1 1
. . .

...

0 0
. . .

. . . 0
...

. . .
. . . 1 1

0 · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The duty ratios are ūi =
∑�(N −i−1)/2�

n=0 ρi+2n − ρi+2n+1 .

The total conduction time per duty is
∑(N −1)/2

i=1 ρ2i−1 − ((N −
1)/2)ρN for odd N and

∑N/2
i=1 ρ2i−1 − (N/2)ρN for even N.

Case 3: Upper triangular matrix

Hd =

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

0 1
. . .

...
...

. . .
. . . 1

0 · · · 0 1

⎤
⎥⎥⎥⎥⎦

.

This is exactly the same as the study in [20]. The duty ratios
are ūi = ρi − ρi+1 and total conduction time is ρ1 − ρN .

Remark 1: Duties obtained in case 3 are the minimum con-
duction time solution (see Appendix D).

Remark 2: In case 3, only one phase leg switches its state at
each state transition. Therefore, the proposed strategy that uses
the least number of states has the minimum switching number.

Remark 3: The corresponding space vectors for the solution
to (24) are obtained by applying the inverse of permutation, i.e.,

Ĥs = PT
M

[
Hd

o

]

where Ĥs ∈ R
N ×(N −1) contains (N–1) space vectors Γi of (3).

Alternatively, the aforementioned equation can be replaced by
the space vectors of (1). For example, in considering case 3, the
resulting reference vector can be reached as

PT
M

⎡
⎢⎢⎢⎢⎢⎢⎣

N −1
N

N −2
N · · · 1

N

−1
N

N −2
N

. . .
...

. . .
. . . 1

N

−1
N · · · −

(
N −2

N

)
−
(

N −1
N

)

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

ρ1 − ρ2

ρ2 − ρ3

...

ρN −1 − ρN

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

r1

r2

...

rN

⎤
⎥⎥⎥⎥⎦

. (25)

Notably, (25) is valid only when
∑N

i=1 ri (k) = 0. Multiply-
ing the two matrices on the left side of (25) yields

PT
M

⎛
⎜⎜⎝

⎡
⎢⎢⎣

ρ1
ρ2
...

ρN

⎤
⎥⎥⎦− 1

N

N∑
i=1

ρi

⎡
⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎦

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

r1
r2
...

rN

⎤
⎥⎥⎦ . (26)

The summation of elements on the left vector is zero (note that
the summation remains the same after permutation). However,
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if
∑N

i=1 ρi =
∑N

i=1 ri (k) �= 0, (26) does not hold. That is, if
the reference vector does not satisfy

∑N
i=1 ri (k) = 0, the phase

voltages synthesized by the space vector using the case 3 strategy
become ri(k) − (1/N)

∑N
j=1 rj (k) = 0 for i = 1–N; i.e., the

voltage at each leg has an offset to the reference voltage.

D. Modulation Index Analysis

For an N-phase system, minimum total conduction time is
ρ1 − ρN , where ρ1 (ρN ) is the maximum (minimum) value in
the reference vector, r (k). To avoid overmodulation, total duty
ratios should be ≤ 1. This leads to the following constraints on
reference signals:

ρ1 − ρN ≤ 1. (27)

For N-phase sinusoidal reference signals with amplitude R,
(27) becomes (Appendix E)

R ≤ 1
2 cos (π/2N)

for odd N and R ≤ 1
2

for even N.

(28)
This computational result provides a complete explanation of

modulation indices for sinusoidal reference signals in [5] and the
derivation is similar to that of [22]. The indices for 3, 5, 7, 9, and
11 phases are 0.577, 0.526, 0.513, 0.508, and 0.505, respectively.
The index remains the same for even-numbered phases. For odd-
numbered phases, the modulation index approaches 0.5 as phase
number increases.

III. MULTILEVEL SWITCHING STRATEGY FOR MULTIPHASE

SYSTEMS

For a multilevel VSI system, Fig. 2 shows the schematic
diagrams for 2, 3, and L levels of each phase leg
[23]. The voltage levels produced in each phase leg with
respect to ground (or capacitor negative terminal) are
0, Vdc , 2Vdc , 3Vdc , · · · (L − 1) Vdc for an L-level VSI system.
Notably, the number of line-to-line voltage levels that can be
produced is 2L − 1, i.e., five different line-to-line voltages
(−2Vdc , − Vdc , 0, Vdc , 2Vdc) can be produced by a three-level
system [see Fig. 2(b)]. Further, 4L − 3 phase voltage levels
(with respect to the neutral point) are produced by an L-level
system for three-phase wye-connected load [23].

Using normalized voltage, output voltage (with reference
to the ground) of each phase leg for the L-level VSI system
belongs to the set of L = {0, 1, 2, . . . , (L − 1)}. The switch-
ing strategy can be easily derived following the method de-
scribed in [20], i.e., using the decomposition of input reference,
r (k) = ri (k) + rf (k), where the elements of ri (k) are all in-
tegers and the absolute values of elements of rf (k) are <1.
The multilevel multiphase control problem can be transformed
into a two-level multiphase problem. Notably, the decomposi-
tion aforementioned is not unique. As explained in Remark 2
in Section III-C, the two-level switching strategy cannot pro-
duce rf (k) when the sum of its elements is not zero. Therefore,
one must derive a decomposition scheme for the vectors ri (k)
and rf (k), such that the sum of their elements is zero. This

Fig. 2 Each phase leg of the VSI for (a) 2 levels, (b) 3 levels, and (c) L levels.

issue, which is not handled in [20], is solved in the following
section.

A. Switching Strategy

To express decomposition, one must first define the function
floor (y) as the nearest integer of y toward negative infinity.
Thus, ri (k) and rf (k) can then be written as follows:

ri(k) = floor(r(k)) − sign(z)
|z |∑

j=1

eij
and

rf (k) = r(k) − ri(k) (29)

where z is defined as the sum of elements in floor (r (k)), i.e.,
z =

∑N
j=1 floor (r (k))j . eij

∈ RN is the unit vector with the
ij th element equal to 1 and other elements 0, and ij corresponds
to the index of the jth minimum (maximum) value in the vector
r (k) − fix (r (k)) when z > 0 (z < 0). One can then easily
verify that the sum of elements in ri (k) is zero

N∑
k=1

ri (k)k =
N∑

k=1

⎛
⎝floor (r (k)) − sign (z)

|z |∑
j=1

eij

⎞
⎠

k

=
N∑

k=1

floor (r (k))k

− sign (z)
N∑

k=1

(
ei1 + ei2 + · · · + ei|z |

)
k

= z − z = 0.

Similarly, the sum of elements in rf (k) is also zero. Further,
because elements of rf (k) are within [−1 1], one can synthesize
rf (k) using only two levels, i.e., the problem is reduced to a
two-level multiphase problem

H1u = rf (k) + λ1d. (30)

The aforementioned equation is similar to (22). By applying
the minimum total conduction time criterion in Section III-
C, switching commands Ĥs = [hs1 hs2 · · · hs(N −1) ] and
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Fig. 3 Switching states and line-to-line voltage of the five-level five-phase system. (a) Input amplitude 0.51. (b) Input amplitude 2.0.

Fig. 4 Phase voltages of the five-level five-phase system. (a) Input amplitude 0.51. and (b) Input amplitude 2.0.

corresponding duties u1 of (30) are written as follows:

Ĥs = PT
M

[
Hd

o

]
where Hd =

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

0 1
. . .

...
...

. . .
. . . 1

0 · · · 0 1

⎤
⎥⎥⎥⎥⎦

,

u1 =

⎡
⎢⎢⎢⎢⎣

ρ1 − ρ2

ρ2 − ρ3

...

ρN −1 − ρN

⎤
⎥⎥⎥⎥⎦

(31)

and PM rf (k) = ρf (k), such that elements of the vector ρf (k)
satisfy ρ1 ≥ ρ2 ≥ · · · ≥ρN −1 ≥ ρN . Consequently

[
hs0 Ĥs

] [1−ρ1 + ρN

u1

]
= PT

M

[
oT Hd

0 o

]

×
[
1−ρ1 + ρN

u1

]
= rf (k) + λ1d (32)

where hs0 ∈ RN is a zero vector. This means that (N–1) nonzero
space vectors are used to synthesize the signal rf (k) + λ1d and
the system stays at a zero state during the rest of the duty, say,
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Fig. 5 Switching states and line-to-line voltage of the five-level five-phase system. (a) Input amplitude 0.51 with third harmonic. and (b) Input amplitude 2.0
with third harmonic.

Fig. 6 Phase voltages of the five-level five-phase system, input amplitude 2 with 0.2 third harmonic.

1 − ρ1 + ρN . To consider ri (k), (32) is written as follows:

[
hs0 Ĥs

] [1 − ρ1 + ρN

u

]
+ ri = (rf + λ1d) + ri . (33)

Observe that ri = [ ri · · · ri ]
[
1 − ρ1 + ρN

u

]
, (33) is

equivalent to
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Fig. 7 Block diagram of the experimental platform.

Fig. 8 Experimental platform.

[hs0 + ri hs1 + ri · · · hs(N −1) + ri ]

×
[
1 − ρ1 + ρN

u

]
= (rf + λ1d) + ri . (34)

This implies that if the elements of (hsj + ri) , j =
0 to (N − 1) are valid, i.e., elements of (hsj + ri) belong to the
set L, the control strategy of the multilevel multiphase system
uses columns of [hs0 + ri hs1 + ri · · · hs(N −1) + ri ]
as switching states and the corresponding duties are[
1 − ρ1 + ρN

u1

]
. However, the elements of the vector

(hsj + ri) may be negative and cannot be switching states.
Further computations are needed. One simple method without
changing the output phase voltage of VSI is to add an inte-
ger −ηj to each element of the vector (hsj + ri), such that all
elements are non-negative, thereby yielding a switching state
h′

sj = (hsj + ri) − ηjd. The selected ηj should not be larger
than the minimum value among (hsj + ri)

ηj ≤ min (hsj + ri) . (35)

One selection is, ηj = min (hsj + ri) . (36)

At the last step, the order of switching sequences
(hsj + ri) , j = 0 to (N − 1), is reorganized to have minimum
switching number. First, we simply sum up the elements in the
vectors (hsj + ri) , j = 0 ∼ (N − 1), i.e., N numbers are ob-
tained and each corresponds to a switching state. The sequence
of switching is obtained by sorting these N numbers in an in-
creasing order.

B. Example

A five-phase five-level VSI system with sinusoidal reference
inputs is used as an illustrative example, i.e., the reference signal
for phase P is

rp = R sin
(

ωt +
2π

5
(P − 1)

)
for P = 1, 2, . . . , 5. (37)

When speed is ω = 2π × 60 (rad/s) and normalized ampli-
tude is R = 2, the reference vector at time t = 0.051 s is written
as follows:

r = [ 0.74 2.00 0.50 −1.69 −1.55 ]T .

Therefore, floor (r (k)) = [ 0 2 0 −2 −2 ]T and z =
−2. Because z < 0, we have to find indices i1 and i2 that
correspond to the maximum and second maximum values in
r (k) − fix (r (k)).

From r (k) − fix (r (k)) = [ 0.74 0 0.5 0.31 0.45 ]T

i1 = 1, i2 = 3, and ei1 = e1 = [ 1 0 0 0 0 ]T , ei2 =
e3 = [ 0 0 1 0 0 ]T .

Thus,

ri (k) =

⎡
⎢⎢⎢⎢⎢⎣

0
2
0
−2
−2

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1
2
1
−2
−2

⎤
⎥⎥⎥⎥⎥⎦

and rf =

⎡
⎢⎢⎢⎣

−0.26
0

−0.5
0.31
0.45

⎤
⎥⎥⎥⎦ .

The minimum conduction-time solution of H1u = rf (k) +
λ1d is obtained from (31)

Ĥs =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 1 1
0 0 0 0
0 1 1 1
1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

and u1 =

⎡
⎢⎢⎣

0.14
0.31
0.26
0.24

⎤
⎥⎥⎦ .

⎛
⎜⎜⎜⎜⎜⎝

Note:PM =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

.

Therefore, the N switching state candidates and correspond-
ing duty ratios are [see (32) and (33)]

hs0 + ri = [ 1 2 1 −2 −2 ]T ,

u0 = 1 − (0.14 + 0.31 + 0.26 + 0.24) = 0.05 (38a)
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Fig. 9 Top and middle: leg voltages of the first and the second legs; bottom: line-to-line voltages. (a) Simulation results. (b) Experimental results (values are
normalized to the dc supply voltage).

hs1 + ri = [ 1 2 1 −2 −1 ]T , u1 = 0.14 (38b)

hs2 + ri = [ 1 2 1 −1 −1 ]T , u2 = 0.31 (38c)

hs3 + ri = [ 1 3 1 −1 −1 ]T , u3 = 0.26 (38d)

hs4 + ri = [ 2 3 1 −1 −1 ]T , u4 = 0.24 (38e)

To derive reasonable switching states, (36) is used to find the
level shift for hsj s as

η0 = −2, η1 = −2, η2 = −1, η3 = −1, η4 = −1.

Therefore, the valid switching states and corresponding duties
are

h′
s0 = [ 3 4 3 0 0 ]T , u0 = 0.05 (39a)

h′
s1 = [ 3 4 3 0 1 ]T , u1 = 0.14 (39b)

h′
s2 = [ 2 3 2 0 0 ]T , u2 = 0.31 (39c)

h′
s3 = [ 2 4 2 0 0 ]T , u3 = 0.26 (39d)

h′
s4 = [ 3 4 2 0 0 ]T , u4 = 0.24 (39e)

To decide the switching sequence for minimum switch-
ing number, the summations of elements in h′

sj , j = 0 ∼
4, are calculated: 10, 11, 7, 8, and 9. Then the switch-
ing states are applied according to the increasing or-
der of these five summations, i.e., switching sequence is

h′
s2→h′

s3→h′
s4→h′

s0→h′
s1→h′

s0→h′
s4→h′

s3→h′
s2 and the

corresponding duties are 0.155, 0.13, 0.12, 0.025, 0.14, 0.025,
0.12, 0.13, and 0.155. Notably, only one phase leg changes its
states during each state transition yielding the least switching
number for one state transition. Further, with the fewest space
vector usage that implies the minimum transition occurrence,
the switching sequence of the proposed scheme has the mini-
mum switching number.

Remark 4: The switching states obtained in (39a) and (39e)
correspond to different gate drive signals of switches for differ-
ent inverter types. To have a union presentation without losing
the focus of this study, it is not discussed here.

Remark 5: The maximum modulation index, mmax , of the
multilevel multiphase system for sinusoidal reference signals
is the same as the two-level multiphase system [5]. By defini-
tion, the maximum modulation index is the maximum applica-
ble ratio of reference amplitude to maximum supplied voltage
(L–1); thus, the allowable amplitude R for the L-level system is
written as follows:

R ≤ (L − 1) mmax =
(L − 1)

2 cos
(

π
2N

)

for odd N and

R ≤ (L − 1) mmax =
(L − 1)

2
for even N.

IV. SIMULATION RESULTS

Two 60 Hz five-phase sinusoidal waves with normalized am-
plitudes of 0.51 and 2.0 are applied to the five-level five-phase
system in the simulation. The sampling frequency of the ref-
erence input is 3 kHz and the resolution in one input period
is 8 bits, yielding a minimum pulse width of 1

/(
3k × 28

)
s.

Switching states for the first two phases and the corresponding
line-to-line voltage Vab are shown in Fig. 3. Fig. 4 shows the
reference voltage and phase voltage applied by the VSI. To have
nonsinusoidal references, a third harmonic with amplitude 1/5
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Fig. 10 Experimental results: leg voltage a, leg voltage b, phase voltage, and neutral voltage (from top to bottom): (a) Sinusoidal reference input. (b) Sinusoidal
reference with third harmonic.

of the fundamental amplitudes is added to the reference. The
corresponding waveforms are shown in Figs. 5 and 6.

V. EXPERIMENTAL RESULTS

A five-phase two-level R–L system is built to verify the effec-
tiveness of the proposed scheme. Fig. 7 shows the implementa-
tion block diagram. The proposed space vector PWM solution
for minimum conduction time is employed to produce 10 con-
trol signals for the five-phase VSI. A wye-type R–L circuit with
the resistance of 10 Ω and inductance of 0.5 mH is connected to
the output of the VSI as the load. The dc supply voltage of the
VSI is 20 V. Fig. 8 shows a picture of the experimental platform.

Five sinusoidal waves with 2π/5 phase shift are applied as
the reference signals. The frequency is 60 Hz and the normal-
ized amplitude is 0.51. A comparison between experimental
and simulation results shown in Fig. 9 is in a good agreement.
A third harmonics with amplitude 1/5 of the fundamental am-
plitude is further added to the reference signals. Fig. 10 shows
various signals measured from the first phase of the R–L circuit
under the sinusoidal references with/without third harmonics.
Leg voltage is the output voltage of one inverter leg with respect
to ground, and the corresponding phase voltage is the difference
between leg voltage and neutral voltage. The filtered neutral
voltage (with respect to ground) is also shown in Fig. 10. Five-
phase current signals are measured as shown in Fig. 11. The
five-phase current signals with and without third harmonic are
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Fig. 11 Phase currents: (a) Sinusoidal reference input. (b) Sinusoidal reference with third harmonic.

reproduced accordingly at the load indicates that the proposed
scheme selects switching control commands effectively.

VI. CONCLUSION

This study adopts an algebraic analysis viewpoint of space-
vector PWM technology as opposed to a vector analysis one,
which is commonly adopted. This generates a concise and ef-
fective treatment of the problem. By applying eigenspace de-
composition, a general solution to match reference signals under
limited space vectors can be derived for a two-level multiphase
system. The free design parameter in the solution is chosen, such
that total conduction time for the power stage is minimized. This
yields a switching scheme that also uses the fewest space vec-
tors. Extensions to the multilevel multiphase system are given
using two-level results. The results show that the computation
for space vectors and corresponding duty ratios is simple and
the computation complexity is independent of the level number.
We believe that this study will increase the current understand-
ing of the multilevel multiphase space-vector PWM in aspects
such as harmonic analysis or waveform modifications for ef-
ficiency enhancement. For future extension, one can consider
noise effect due to switching. For instance, ideas such as noise
shaping [24], [25], which generates a different matching condi-
tions, can be investigated.

To demonstrate the proposed strategy, simulation of the five-
level five-phase system is shown. The experimental platform of
a two-level five-phase system is constructed and experimental
results are compared to the simulation to validate the theory.

APPENDIX A

For a three-phase two-level system, the resulting line-to-
neutral voltage vectors, si ∈ R

N ×1 and the corresponding bit-
wise expansion vectors Γi , i = 0 to M – 1, are

s0 = s000
Δ=

⎡
⎢⎣

0
0
0

⎤
⎥⎦ , s1 = s100

Δ=

⎡
⎢⎣

2
3

− 1
3

− 1
3

⎤
⎥⎦

s2 = s010
Δ=

⎡
⎢⎣
− 1

3
2
3

− 1
3

⎤
⎥⎦ , s3 = s110

Δ=

⎡
⎢⎣

1
3
1
3

− 2
3

⎤
⎥⎦

s4 = s001
Δ=

⎡
⎢⎣
− 1

3

− 1
3

2
3

⎤
⎥⎦ , s5 = s101

Δ=

⎡
⎢⎣

1
3

− 2
3

1
3

⎤
⎥⎦

s6 = s011
Δ=

⎡
⎢⎣
− 2

3
1
3
1
3

⎤
⎥⎦ , s7 = s111

Δ=

⎡
⎢⎣

0
0
0

⎤
⎥⎦

and

Γ0
Δ=

⎡
⎢⎣

0
0
0

⎤
⎥⎦ , Γ1

Δ=

⎡
⎢⎣

1
0
0

⎤
⎥⎦ , Γ2

Δ=

⎡
⎢⎣

0
1
0

⎤
⎥⎦ , Γ3

Δ=

⎡
⎢⎣

1
1
0

⎤
⎥⎦

Γ4
Δ=

⎡
⎢⎣

0
0
1

⎤
⎥⎦ , Γ5

Δ=

⎡
⎢⎣

1
0
1

⎤
⎥⎦ , Γ6

Δ=

⎡
⎢⎣

0
1
1

⎤
⎥⎦ , and Γ7

Δ=

⎡
⎢⎣

1
1
1

⎤
⎥⎦.

It is straightforward to know that three vectors (s1 , s2 , and
s4) belong to group 1, i.e., σ (i) = 1 for i = 1, 2, and 4 and the
matrix Sc in (2) is in the form.

Sc =

⎡
⎢⎣

2
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3

− 1
3 − 1

3
2
3

⎤
⎥⎦ .

Therefore, we can write si = ScΓi . By observing s100 =
−s011 , s010 = −s101 and s001 = −s110 , another expression of
si is obtained: si = −sī = −ScΓī where ī is the bitwise com-
plement of i. Then the general expression of phase voltages for
three-phase system is derived as shown in (7). By eigenvalue
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decomposition, Sc is written as follows:

Sc =
[
Vc

vT
0

]T [ I 0

0 0

] [
Vc

vT
0

]

where

Vc =

⎡
⎣
√

2
3 −

√
1
6 −

√
1
6

0
√

1
2

√
1
2

⎤
⎦

and v0 =
[
(1/

√
3) (1/

√
3) (1/

√
3)
]T

. Therefore, the
matching (9) is transformed into (22)

⎡
⎢⎣

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

⎤
⎥⎦u (k)

= H1u (k) = r (k) + λ1d. (A1)

According to the minimal conduction time discussed in Sec-
tion II-C, λ1 = −ρ3 and apply the permutation matrix PM , (A1)
becomes

PM

⎡
⎢⎣

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

⎤
⎥⎦u (k)

= PM H1u (k) =

⎡
⎣

ρ1 − ρ3

ρ2 − ρ3
0

⎤
⎦ . (A2)

Notably, PM will permute the row vectors of H1 , i.e., it is
easy to observe that column vectors of PM H1 are the same as
that of H1 but with different order. Therefore, solving (A2) is
the same as solving
⎡
⎢⎣

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

⎤
⎥⎦u (k) =

⎡
⎣

ρ1 − ρ3

ρ2 − ρ3
0

⎤
⎦ . (A3)

Because the last element of the right-hand-side vector in (A3)
is always zero, the problem is reduced to

⎡
⎢⎣

0 1 0 1
0 0 1 1
0 0 0 0

⎤
⎥⎦u (k) =

⎡
⎢⎣

ρ1 − ρ3

ρ2 − ρ3
0

⎤
⎥⎦

or

[
0 1 0 1
0 0 1 1

] [
u1 (k)
u2 (k)

]
=
[

ρ1 − ρ3

ρ2 − ρ3

]
(A4)

To have least state transition for minimum switching number,

only two column vectors of

[
0 1 0 1
0 0 1 1

]
are used. Further,

to ensure the existence of the solution, two vectors are selected

in the form

[
1 c
0 1

]
where c is either 0 or 1. The selection of c

depends on the minimum conduction time
[

1 c

0 1

] [
u1 (k)
u2 (k)

]
=
[

ρ1 − ρ3

ρ2 − ρ3

]

which implies u2 (k) = ρ2 − ρ3 and u1 (k) = ρ1 − ρ3 −
c (ρ2 − ρ3), yielding the total conduction time u1 (k) +
u2 (k) = ρ1 − ρ3 + (1 − c) (ρ2 − ρ3). For ρ2 − ρ3 ≥ 0, select
c = 1 will result in minimum conduction time ρ1 − ρ3 . There-
fore, we can write

⎡
⎢⎣

1 1
0 1
0 0

⎤
⎥⎦
[

u1 (k)
u2 (k)

]
=

⎡
⎣

ρ1 − ρ3

ρ2 − ρ3
0

⎤
⎦ with u1 (k)

= ρ1 − ρ2 and u2 (k) = ρ2 − ρ3 . (A5)

Comparing (A1) and (A2) with (A5), we obtain
⎡
⎢⎣

1 1
0 1
0 0

⎤
⎥⎦
[

u1 (k)
u2 (k)

]
= PM (r (k) + λ1d) .

Further apply P−1
M = PT

M

PT
M

⎡
⎢⎣

1 1
0 1
0 0

⎤
⎥⎦
[

u1 (k)
u2 (k)

]
= r (k) + λ1d

implying that the selected switching states are PT
M

⎡
⎣

1
0
0

⎤
⎦and

PT
M

⎡
⎣

1
1
0

⎤
⎦ and the corresponding duties are u1 (k) = ρ1 − ρ2

and u2 (k) = ρ2 − ρ3 . The total conduction time is ρ1 − ρ3 .
Notably, when total conduction time is less than 1 (ρ1 − ρ3 <
1), then zero switching state will be applied during the rest of
the duty, i.e., with the duty of 1 − ρ1 + ρ3 .

APPENDIX B

From (1), the vector sin
in group n is represented as follows:

sin j = γj (in ) − n

N
. (B1)

There are n bits in value in that equal 1, and the bit num-
bers are denoted as j1 , j2 , . . . , jn . The other (N − n) bits are
represented as jn +1 , jn +2 , . . . , jn , i.e.,

γj1 (in ) = γj2 (in ) = · · · ,= γjn
(in ) = 1 and

γjn + 1 (in ) = γjn + 2 (in ) = · · · ,= γjN
(in ) = 0.

Now consider the vectors, si1 , m
,m = 1 − n, in group 1.

They are represented as si1 , m j = γj (i1,m ) − (1/N),m = 1 −
n. Suppose the only bit that equals 1 in the value i1,m is jm , i.e.,
γjm

(i1,m ) = 1. Then the sum of these n space vectors in group
1, si1 , m j ,m = 1 − n is written as follows:

n∑
m=1

si1 , m j =
n∑

m=1

(
γj (i1,m ) − 1

N

)
=

n∑
m=1

γj (i1,m ) − n

N
.

(B2)
Notably, the term

∑n
m=1 γj (i1,m ) is 1 when j = jm and 0

otherwise, indicating that the right side of (B1) is equivalent
to that of (B2). Therefore, when the union of bit numbers that
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correspond to a bit value 1 in n FSVs matches the set of bit
numbers with a value 1 in the vector belongs to group n, the
group-n-vector can be represented by a linear combination of
these n FSVs.

APPENDIX C

From (13) and (20), we obtain that

uc (k) = Hu (k) = r (k) + λd

From (12) and the fact that H2 = Λ − H1 where
Λ ∈ RN ×M and all elements in Λ are 1, we can write
(H1B − (Λ − H1) (I − B))u (k) = r (k) + λd or equiv-
alently, H1u (k) − Λ (I − B)u (k) = r (k) + λd, which
implies

H1u (k) = r (k) + (λ + b)d

where b =
∑M

i=1 (1 − βi) αi .

APPENDIX D

First, Hd should be chosen such that its rank is N–1. Second,
because the elements in the RHS vector in (24) are positive num-
bers in descending order and elements of u1 must be positive,
the sum of row vectors in Hd should also be in a descending
order to ensure the existence of feasible solutions. Notably, el-
ements of Hd are either 0 or 1. To unify the expression of Hd ,
this study permutes the columns of Hd , such that Hd can be
written as an upper triangular matrix [see (D1)]. Notably, the
columns of Hd are the selected switching states, i.e., permuting
the columns will not alter the solution

Hd =

⎡
⎢⎢⎢⎢⎢⎣

1 h12 · · · h1×(N −1)

0 1
...

...
. . .

. . . h(N −2)×(N −1)

0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦

. (D1)

The corresponding duties of (24), u1 =
[ ū1 ū2 · · · ūN −1 ]T , are then written as follows:

ūN −1 = ρN −1 − ρN

and

ūi = ρi − ρN −
N −1∑

j=i+1

hij ūj

for

i = (N − 2) , (N − 3) , . . . , 2, 1,

yielding total conduction time of

N −1∑
i=1

ūi =
N −2∑
i=1

⎛
⎝ρi − ρN −

N −1∑
j=i+1

hij ūj

⎞
⎠

+ ρN −1 − ρN = −ρN −
N −2∑
i=1

⎛
⎝

N −1∑
j=i+1

hij ūj

⎞
⎠. (D2)

To minimize the value in (D2), hij , when i =
1, 2, . . . , (N − 2) and j > i are selected to be one because for
all j, uj > 0, indicating that Hd is the upper triangular matrix
with all upper elements equal to one.

APPENDIX E

The maximum modulation index, mmax , of the N-phase sys-
tem with a sinusoidal reference signal is obtained by solving the
minimization problem

mmax = Min
θ∈S

t∈[0,2π/ω ]

1
|sin (ωt) − sin (ωt − θ)|

where

S =
{

2π

N
,
2π

N
× 2,

2π

N
× 3, · · · , 2π

N
× (N − 1)

}

or equivalently

mmax = Min
n∈Z

t∈[0,2π/ω ]

1∣∣sin (ωt) − sin
(
ωt − 2π

N n
)∣∣ where

Z = {1, 2, 3, . . . , (N − 1)} . (E1)

Observe that∣∣∣∣sin (ωt) − sin
(

ωt − 2π

N
n

)∣∣∣∣ =
∣∣∣2 sin

( π

N
n
)∣∣∣ |cos(ωt + φ)|

(E2)
Using the simplified representation in (E2), (E1) can be writ-

ten as (E3)

mmax =
1

Max
n∈Z

∣∣2 sin
(

π
N n
)∣∣ . (E3)

Because of symmetry, one can only consider the values
of n that result in the phases that are in the first and sec-
ond quadrants, i.e., n ∈ Z and n ≤ (N/2). Further, as the
phase difference between (π/N)n and (π/2) decreases, the
value of |2 sin(π/N(n))| increases. Therefore, finding mmax
is equivalent to finding n (n ∈ Z and n ≤ (N/2)), such that
|(π/N(n)) − (π/2)| attains the minimum. One can straight-
forwardly show that n = (N ± 1)/2 for odd N and n =
(N ± 1)/2 for even N results in mmax , as indicated in (E4)

mmax =
1

2 sin
(

π
2

N ±1
N

) =
1

2 sin
(

π
2 ± π

2N

)

=
1

2 cos
(

π
2N

) , odd N (E4a)

mmax =
1
2
, even N. (E4b)
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