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中文摘要 
 

本計劃首要目標在建立序列－結構－功能間的關係，並深入瞭解 RNA/DNA 與蛋白

質分子間交互作用。RNA/DNA、蛋白質及其最後生物功能間的複雜關係與疾病、藥物、

生醫研究密不可分，仍有極大的發展空間，這也是新興的蛋白質體學亟待解決的問題。

本計畫的研究成果，有助於高精確度地分析、預測 RNA/DNA 及蛋白質結構與生化網絡

的構成方式。簡言之，即是以序列及結構資訊為基礎，解析蛋白質－RNA/DNA 交互作

用系統。 

本計劃包括核醣核酸(RNA)二級結構預測及分類(Chapter 1)、蛋白質－去氧核醣核

酸(DNA)交互作用系統(Chapter 2)，以及蛋白質－核醣核酸交互作用系統(Chapter 3)。三

者間的緊密結合，可以涵蓋由 RNA 序列到生物功能間各層次的完整研究。 

本計畫所針對的目標有六︰ 

一、 建立預測 RNA 二級結構及 RNA 分類模組。(Chapter 1) 

二、 利用 RNA 二級結構及 protein-RNA 嵌合工具預測 protein-RNA 交互作用。

(Chapter 1、3) 

三、 將蛋白質功能區域(domain)及蛋白質結晶結構作為定義protein-DNA交互作用

的基礎，結合從已知生化路徑中萃取的 protein-DNA 間作用關係，預測未知

生化路徑或擴張已知生化網絡。(Chapter 2) 

四、 以已發展完成的 protein-ligand 嵌合工具(GEMDOCK)尋找可能的 protein-RNA
交互作用。(Chapter 3) 

五、 比較 protein-RNA 與 protein-DNA 交互作用之特性，以建立更完善之預測系

統。(Chapter 1、2、3) 

六、 發展 protein-RNA 嵌合預測工具及更精確的計分函式，此工具結合物理及生化

知識，可較現有工具更準確地預測 protein-RNA 交互作用及分子表面結合位

置。(Chapter 3) 

針對上述提出的六大目標，在本計畫的三年執行期限間(2005-2008 年)，研究團隊成

員共發表論文 5 篇，研究成果十分豐碩。整體而言，我們相信在本計畫實行的三年間，

研究團隊已順利達成執行目標，並取得豐富的研究成果。這些成果對於序列－結構－功
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能間的關係及 protein-RNA 及 protein-DNA 交互作用相關領域的後續研究將有所助益。 
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Abstract 
Our central theme is the study of the sequence-structure-function relationships and 

protein-RNA and protein-DNA interactions. RNA/DNA molecules are the key players in the 
biochemistry of the cell, playing many important roles in regulation, catalysis and structural 
support. These biological interaction networks still are not only hot issues in system biology 
but also very useful in practical biological research. Hence, it becomes increasingly important 
for computational biologists to develop reliable and efficient computational approaches to 
study sequence-structure-function relationships, protein-RNA and protein-DNA interactions, 
and to predict reliable 3D structures from the sequence level in order to help functional 
genomics research.  

This project covers research areas from RNA, DNA and protein networks of a biological 
system. Close cooperation between the RNA secondary structure prediction and clustering 
(Chapter 1), protein-DNA interaction (Chapter 2), and protein-RNA docking system (Chapter 
3) will be advantageous and valuable to researchers to find RNA sequence-structure-function 
relationships and protein-RNA interactions. 

The major objectives of this project are listed as follows:  

1. Developing a prediction system of RNA secondary structure and clustering. (Chapter 
1) 

2. Predicting protein-RNA interaction based on RNA structure prediction and 
protein-RNA docking system. (Chapter 1 and 3) 

3. Deriving domain-domain interactions from known protein-DNA complexes  and 
known biochemical pathways to predict protein-DNA interactions and find new 
biochemical pathways. (Chapter 2) 

4. Predicting docking conformation of protein-RNA interaction using GEMDOCK. 
(Chapter 3) 

5. Compare protein-DNA and protein-RNA interaction characteristic to improve 
prediction quality of protein-DNA and protein-RNA interactions. (Chapter 1, 2 and 3) 

6. Developing a new evolutionary protein-RNA docking method and creating a new 
protein-RNA binding model by integrating physical-based and knowledge-based 
scoring functions to reduce calculating quantity and to improve prediction quality of 
protein-RNA interactions. (Chapter 3) 

In summary, we have published 5 papers during 2005-2008. We believe that we have 
achieved fruitful results in this integrated project. This interdisciplinary research project 
covers research areas from protein-RNA interactions to protein-DNA interactions. We 
consider that these achievements will be advantageous and valuable to researchers to study 
sequence-structure-function relationships and protein-RNA and protein-DNA interactions. 
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Chapter 1: 

Protein/RNA structure prediction and 
clustering 
 
1.1 Introduction  
 

RNA plays a crucial role in posttranscriptional regulation. Similar to transcriptional 
regulation, post-transcriptional regulation is often accomplished by the binding of proteins to 
specific motifs in mRNA molecules. Most of the current structural bioinformatics research is 
focused on proteins, and yet thousands of genes produce transcripts exerting their functions 
without ever producing protein products. A fundamental principle of biology is that a stable 
3D structure is essential for biological functions. Many functional RNAs have evolutionarily 
conserved secondary structures in order to fulfill their roles in a cell. In another word, unlike 
DNA binding proteins, which recognize motifs composed of conserved sequences, RNA 
protein binding sites are more conserved in structures than in sequences. Various 
computational methods for the prediction of RNA secondary structures have been developed. 
According to the search strategies applied and the structure representations used, they can be 
roughly classified into the following categories: (1) free energy minimization [1-3] (2) 
comparative sequence analysis [4, 5] (3) stochastic context-free grammars [6-8] (4) heuristics 
[9-11] (5) graph theoretical approach [12, 13] and (6) hybrid [14-17]. A lot of works have 
been done for single RNA structure prediction; however, as more RNA sequence data have 
been produced, finding characteristic structure motifs within RNA families becomes very 
important. 

 
The goal of this section is to understand relationship of RNA/protein structure and 

function by secondary structure prediction and clustering. We have studied RNA/protein 
structure prediction and clustering in the past three years, and published four papers as fellow: 

 
1. Y. Hu, “RNA Clustering and Secondary Structure Prediction”, International Conference 

on Mathematics and Engineering Techniques in Medicine and Biological Science, 2005. 
2. S. Ku and Y. Hu, “A Multistrategy Approach to Protein Structural Alphabet Design”, 

Biocomp 2006. 
3. K. Chen and Y. Hu “Bicluster Analysis of Genome-wide Gene Expression”, IEEE 

Symposium on Computational Intelligence in Bioinformatics and Computational Biology, 
2006  

4. C. Huang and Y. Hu “A Two-stage Approach to Finding Common Structure Elements in 
Unaligned RNA Sequences”, Biocomp 2007 
 
In the first year (2005), we have proposed a new adaptive method that conducts structure 



6 

prediction and clustering simultaneously, since some current approaches can now identify 
common structure motifs from a set of RNAs, they typically assume the given set forms a 
single family, which is not necessarily correct. The performance of this study is demonstrated 
on several real RNA families, and showed very promising results.  

 
In the second year (2006), we demonstrated how the structural alphabet can be used with 

conventional 1D sequence alignment algorithms and presented its results. A comparative 
study of our alphabet with one of recently developed structural alphabets also showed a 
competitive result. Moreover, we proposed a new biclustering method based on the 
framework of market basket analysis in which a bicluster is described as a frequent itemset. 
As a feasibility test, we compared it with several standard clustering algorithms on a 
genome-wide yeast microarray dataset, and it showed very promising results.  

 
In the third year (2007), unlike some methods that find consensus structures from a 

multiple sequence alignment if available or others that align sequences and structures 
simultaneously, we have developed an approach which separates consensus motif finding 
from sequence folding. After applying RNA folding algorithms to each sequence of given 
RNAs as a preprocess, we then combine structure decomposition and Gibbs sampling 
techniques to identify common structure motifs in unaligned RNA sequences. To demonstrate 
the performance, we tested it on several RNA families in Rfam. The experimental results 
show our new approach is competitive with other current prediction systems. 

 
 
 
 
 

1.2 Motivation  
 
RNA molecules are the key players in the biochemistry of the cell, playing many 

important roles in regulation, catalysis and structural support. Like proteins, their functions 
generally depend on their structures. Although structural genomics, the systematic study of all 
macro-molecular structures in a genome, is currently focused more on proteins, thousands of 
genes produce transcripts exerting their functions without ever producing protein products. 
Most of the current structural bioinformatics research is focused on proteins, and yet 
thousands of genes produce transcripts exerting their functions without ever producing 
protein products [18-20]. We can easily argue that the comprehensive understanding of the 
biology of a cell requires, besides proteins, the knowledge of the identities of all functional 
RNAs (both noncoding and protein-coding) and their molecular structures. 
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A fundamental principle of biology is that a stable 3D structure is essential for biological 
functions. Many functional RNAs have evolutionarily conserved structures in order to fulfill 
their roles in a cell. Some of the functions can be presented by functional motifs, such as 
several well-understood structurally conserved RNA motifs in viral RNAs, e.g. the TAR and 
RRE structures in HIV and the IRES regions in Picornaviridae [21]. Although experimental 
assays for basepairing in RNAs constitute the most reliable method for secondary structure 
determination, yet it is often difficult and expensive to acquire the 3D spectrum data of RNA 
molecules [22]. 

 
 
 

1.3 Methods 
We have studied about relationship of Protein/RNA structure and function in the past 

three years. In the first year, in order to understand RNA structure and function, we have 
studied how to cluster RNA by its function and predict its secondary structure. This study 
provides RNA functional classification and RNA structure prediction. The results have been 
published in International Conference on Mathematics and Engineering Techniques in 
Medicine and Biological Science. In the second year, in order to understand relationship 
between RNA and protein structure, we have studied protein structural alphabet design and 
bicluster analysis of genome-wide gene expression. These studies provide how to 
analyze/predict protein structure and a new biclustering method based on the framework of 
market basket analysis in which a bicluster is described as a frequent itemset. In the third year, 
we have proposed a two-stage approach to finding common structure elements in unaligned 
RNA sequences, in order to model RNA structure and predict its function more correctly. The 
detail of these studies are described as fellow: 

 
First Year: 
1.3.1 RNA Clustering and Secondary Structure Prediction 

 
Unlike previous studies of RNA secondary structure prediction whose input is either a 

single RNA sequence or a known class of functionally related sequences, our new method is 
instead applied to a set of unaligned RNA sequences which consist in an unknown number of 
classes. In order to find a reasonable partition for a given set of unaligned RNAs without 
knowing beforehand how many clusters actually existing in this set, we assume that each 
cluster is likely a functional family that contains characteristic structure motifs. Based on this 
assumption, our new method is focused on finding significant consensus structure motifs that 
can be used to characterize the families of RNAs. Since the number of clusters and its size are 
unknown in advance, we take a generateand-test strategy that iteratively adjusts the 
hypothesized cluster size until some significant consensus structure elements can be found 
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associated with this cluster. After a cluster is obtained, all its members are then removed from 
the given RNAs. We repeat the same separateand-conquer strategy to identify other clusters 
from the remaining RNAs. 

 
Generate-and-Test 

 
The generate-and-test strategy we use is an adaptive approximation approach that 

systematically revises the hypothesized cluster size. During the generate-and-test process, the 
cluster size is defined by a range between an upper bound U and a lower bound L. Without 
any prior information of clusters, the cluster size is initialized within a range between an 
upper bound U=n and a lower bound L=0, that is, we first assume that all the given RNA 
sequences consist in an entire family. To the entire family, a genetic programming-based 
structure prediction method is applied to look for the fittest consensus structure motifs. If the 
specificity of the structure motifs associated with a cluster exceeds or equals some 
pre-specified threshold, the hypothesis of the cluster is accepted, and the cluster along with 
the associated structure elements will be reported. On the other hand, low specificity suggests 
that the current hypothesized cluster size is too big to be real and needs to be decreased. In 
this case, we reduce the current hypothesized cluster, and search the fittest consensus 
structure motifs and evaluate their specificity again. If the specificity is still lower than the 
threshold, we further decrease the cluster size. The same process for cluster size reduction can 
be repeated till we find a cluster with structure motifs of highspecificity. On the contrary, if 
the specificity is over or equal to the threshold, one of the two possibilities holds: (1) the 
current cluster is real, and any more sequences added will be harmful to the specificity of 
consensus structures, or (2) the current cluster found is only a subset of a bigger real cluster. 
To verify which event actually happens, we increase the cluster size and a new search for the 
fittest consensus structure motifs is conducted. As each update generates a tighter range for 
cluster size, we expect the cluster size will eventually converge to the appropriate one.  

 
Secondary Structure Element Prediction by Genetic Programming 

 
The objective here is to learn the structure elements that can be used to distinguish the 

given functionally related sequences from the random sequences. We modify the fitness 
function of our previous work [23] on RNA consensus secondary structure prediction to find 
significant structure elements from a dataset that may contain multiple variable-sized clusters 
of unaligned sequences. 

 
The fitness function is used to measure the quality of individuals (i.e. candidate structure 

elements) in a population. The higher the fitness of an individual, the better its chances of 
survival to the next generation. In the previous work, the input dataset was assumed to be a 
single class of functionally related RNA sequences. We were interested in those structure 
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elements that can reflect the characteristics conserved in a family, e.g. the RNA protein 
binding sites. Derived from the F-score, the fitness function was aimed to balance the 
importance of two measures, recall (i.e. sensitivity) and precision (i.e. positive predictive 
value) [10]. It assigns higher values to those structural motifs commonly shared by the given 
family of RNAs, and rarely contained in random sequences. For a given set of RNA 
sequences that form a single family only, the fitness function used in [10, 23] can effectively 
guide the evolutionary process in genetic programming. Nevertheless, when the input dataset 
contains multiple functional classes, the recall measure may dominate the calculation of 
F-score if the fitness function treats the entire dataset as a single class. This will mislead the 
system to find overgeneral elements shared by most sequences. To alleviate the bias, we 
define a new measure of recall, and present the fitness function as below, where p is the 
number of positive examples containing motifi, Q is the total number of positive examples, R 
is the total number of examples containing motifi, and U is the upper bound of the 
hypothesized range for cluster size. 

 

          
)()(

)()(2)(
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ii
i motifprecisionmotifrecall

motifprecisionmotifrecallmotifFitness
+
××

= ,    (Eq. 1.3.1.1) 

 
where recall(motifi) = p/Q, if p < U or recall(motifi) = 1, if p > U. The value of 

precision(motifi) = p/R. By taking cluster size into account, we can better constrain the search 
space and allow conserved clusters to emerge more likely instead of being buried in bigger 
but much less coherent clusters. 
 
Consensus Structure Specificity and Separate-and-Conquer Strategy 

 

The GP (Genetic Programming)-based structure prediction method can find the fittest 
secondary structure elements according to a given range of the cluster size, while the 
significance of the cluster found along with its characteristic structure elements highly 
depends on the range we choose. With proper adjustment of cluster size through the 
generate-and-test procedure combined with the GP-based prediction method, we can identify 
a meaningful cluster and the associated characteristic structure elements. The adaptive 
adjustment of cluster size in the generate-and-test procedure is controlled by the consensus 
structure specificity. It is defined as the Laplace prior precision. The Laplace prior approach 
has also been applied to inductive leaning to evaluate the significance of inductive rules [24]. 
The Laplace prior precision of cluster Ci is given by the formula:  

LaplacePriorPrecision(Ci) = (number of positive examples in Ci +1) / (total number of 
examples in Ci +2),                                        (Eq. 1.3.1.2) 

 
We consider the Laplace prior in the calculation of precision with the aim to avoid well 
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conserved clusters whose size is too small. For example, the Laplace prior precision of a 
cluster of 50 positive examples and five negative examples is better than that of a cluster of 
only five positive examples. Note that the Laplace prior precision is only used to determine 
the significance of a cluster found, unlike the F-score, which is used to direct the optimization 
process to find the best structure elements under the constraints of the cluster size. Based on 
the comparison of the Laplace prior precision with a pre-specified threshold, we adjust the 
range of cluster size accordingly, and then re-run the GP-based method to predict new 
structure elements and a new cluster they characterize.  

 
Once a significant cluster is found, we separate all its members out of the given dataset 

of RNA sequences. We then apply the same procedure to those that still remain in the dataset 
until the entire set is emptied. This separateand-conquer strategy is effective when no prior 
knowledge of the identities of the clusters is given. It can automatically partition the given 
dataset into meaningful clusters, and also identify their characteristic structure elements. 

 
Second Year: 
1.3.2. A Multi-strategy Approach to Protein Structural Alphabet Design 

 
The use of frequent local structural motifs embedded in polypeptide backbone has 

recently shown improvement in protein structure prediction [25-27]. Its success has shed 
some light on further studies of structural alphabet. We used the proteins classified to all-α 
fold within the SCOP database (version 1.65) in our study with the aim to build the structural 
alphabet suitable for all-α proteins. The same approach can be easily applied to other 
databanks as well. 

 
There are three issues addressed in our study. They are: (1) protein fragment 

representation, (2) alphabet size determination and (3) structural alphabet definition. Like 
others, we transform each protein backbone into a series of the dihedral angles (φ and ψ, 
neglecting ω) [26, 28]. Adapted from [28], the analysis is limited to fragments of five 
residues since they are adequate for describing a short α helix and a minimal β structure. 
With the fixed window size of five residues, we slid the window along each all-α protein in 
SCOP, advancing one position in the sequence for each fragment, and collected a set of 
overlapped 5-residue fragments. As the relation between two successive carbons, Cαi and 
Cαi+1, located at the ith and (i+1)th positions, can be defined by the dihedral angles ψi of Cαi 
and φi+1 of Cαi+1, a fragment of L residues can then be defined as a vector of 2(L-1) elements. 
Thus, in our study, each protein fragment, associated with α-carbons Cαi-2, Cαi-1, Cαi, Cαi+1 
and Cαi+2, is represented by a vector of eight dihedral angles, i.e. [ψi-2, φi-1, ψi-1, φi, ψi, φi+1, 
ψi+1, φi+2]. Based on this representation, we totally gathered 1,143,072 fragment vectors. 
Self-organizing maps (SOM) are widely used as a data mining and visualization tool for 
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complex data sets. A self-organizing map usually consists of a regular 2D grid of so-called 
map units, each of which is described by a reference vector mi = [mi1, mi2, mi3,…, mid], where 
d is the input vector dimension, e.g., d = 8, in our case of fragment vectors. The map units are 
usually arranged in a rectangular or hexagonal configuration. The number of units affects the 
generalization capabilities of the SOM, and thus is often specified by the researcher/user. It 
can vary from a few dozen to several thousands. An SOM is a mapping from the ensemble of 
input data vectors (Xi=[xi1, xi2, xi3,…, xid] ∈ Rd) to a 2D array of map units. During training, 
data points near each other in input space are mapped onto nearby map units to preserve the 
topology of the input space [29, 30]. The SOM is trained iteratively. In each training step t, 
distances between a randomly picked input vector xj and all the reference vectors are 
computed. The unit with the least distance is then selected as the winner unit and denoted by 
w. The winner unit and its topological neighbors are updated to move closer to input vector xj 
in the input space by the following rule: 

                  |)(|)()()()1( tmxthttmtm ijwiii −+=+ α ,        (Eq. 1.3.2.1) 

where t is time, α(t) is the adaptation coefficient, |xj-mi(t)| is the component-wise 
difference between the input vector and the ith reference vector, and hwi(t) is the 
neighborhood function acting on the array of units, whose form includes bubble kernel, 
Gaussian kernel and other more complicated ones. In our study, we used the bubble kernel 
[29, 31]. Unlike previous works that directly apply SOM to obtain clusters of backbone 
fragments as the basis to define the structural alphabet, our approach instead uses SOM only 
for the visualization purpose to predetermine the number of letters in the alphabet. 

 
By visual inspection of the trained SOM, we can get a preliminary idea of the number of 

clusters on the map. The unified distance matrix (U-matrix) is one of the most widely used 
methods for visualizing the clustering result on the SOM. It shows distances between 
neighboring reference vectors, and can be efficiently visualized using grey shade [32], as 
shown in Figure 1.3.2.1(a). In spite of the initial idea of the cluster structure provided by the 
U-matrix, a systematic method to determine the number of clusters on the map is still desired. 
We implement a post-process on the Umatrix that is based on the minimum-spanning-tree 
algorithm. Given the grey levels in the U-matrix, we can build the minimum spanning tree for 
all the map units, e.g., in Figure 1.3.2.1(b), all map unit are linked in the spanning tree. Based 
on a threshold of the grey level, we can partition the entire tree into several disconnected 
subtrees, by removing the links between map units with grey levels below the threshold, as 
shown in Figure 1.3.2.1(c). Conceptually, it means that we break the links of a distance longer 
than some threshold. Furthermore, those relatively smaller subtrees left can be also deleted 
later such that the remaining clusters can maintain a reasonable size, as presented in Figure 
1.3.2.1(d). The number of the subtrees finally kept becomes the structural alphabet size. As 
the SOM can be viewed as a topology preserving mapping from input space onto the 2D grid 
of map units [30], the number of map units can affect the clustering result. We systematically 
increase the number of units, and repeat the above process till the alphabet size stabilizes. 
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Figure 1.3.2.1. Visualization of the trained SOM. (a) the grey shade of the trained SOM, 
where darker areas mean larger distances, (b) the minimum spanning tree for the map units, (c) 
the disconnected subtrees after removing the links below some threshold and (d) the final 
disconnected subtrees after discarding those relatively small ones. 

 
 

Rather than adapt the two-level approach that first trains the SOM, then performs 
clustering of the trained SOM [30], after determining the alphabet size, we apply the k-means 
algorithm to the input data vectors directly to obtain the clusters. The SOM established a local 
order among the set of reference vectors in such a way that the closeness between two 
reference vectors in the Rd space is dependent on how close the corresponding map units are 
in the 2D array. Nevertheless, an inductive bias of this kind may not be appropriate for 
structural alphabets since the local order does not always faithfully characterize the relation 
between structural building blocks, and can sometimes be misleading, e.g. forcing the 
topology to preserve mapping from the input space of α-helix and β-strand to a 2D grid of 
units could be harmful to clustering. As a result, we use the SOM only for visualization the 
alphabet size, and rely on the k-mean algorithm to extract the local features from the input 
data that can actually reflect the characteristics of the clusters respectively. The centroid of 
each cluster forms the prototypical representation of each alphabet letter. Given the clustering 
result by the k-means algorithm as the basis of the structural alphabet, we can transform a 
protein into a series of the alphabet letters by matching each of its fragments against our 
alphabet prototypes. The control flow of our system named SMK is illustrated in Figure 
1.3.2.2. 
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Backbone Transformation into
Dihedral Angles

Protein Fragment Vectors Extraction
as Input to SOM, i.e.

[ψi-2, φi-1, ψi-1, φi , ψi , φi+1, ψi+1, φi+2] 

Train SOM on Protein Fragment
Vectors

Visualizing trained SOM with UMatrix
in Grey Levels

Build Minimum Spanning Tree from
U-matrix

Partition Minimum Spanning Tree
into Disconnected Subtrees

Use number of subtrees as K and Run
K-mean Algorithm on Input Vectors

Define Structural Alphabet based on
K-means Clusters

Transform Proteins into Structural
Alphabet

 
Figure 1.3.2.2. The system control flow of SMK 
 
 
1.3.3. Bicluster Analysis of Genome-Wide Gene Expression 

 
As the advent of microarray technologies, numerous datasets generated by massive 

microarray experiments have drawn a lot of attention to the need for efficient and effective 
computational methods for gene expression data analysis [33-35]. In general, expression 
datasets are described by 2-D arrays. One axis represents the genes; the other, the conditions. 
Each element in the array records the expression level of a gene as a real number, which is 
usually derived by taking the logarithm of the relative abundance of the mRNA of that gene 
in a specific condition. Genes with compatible expression patterns are believed to be under 
identical or related regulatory control. Given appropriate gene clusters, there can be many 
further applications based on expression behaviors when combined with other biological 
information such as subcellular localizations, metabolic pathways and intermolecular 
interactions, and so on [36]. This demonstrates the importance of the finding of expression 
clusters. 

 
Clustering can be applied to either genes or conditions to obtain expression clusters, i.e., 

grouping genes according to all conditions, or grouping conditions according to all genes, 
separately. The most common clustering algorithms include hierarchical clustering [37], 
self-organizing maps (SOM) [32] and k-means clustering [38], etc. Nevertheless, most of 
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them only consider global similarity between expression profiles or between condition 
samples, thereby missing local relationships. They typically assume that functionally related 
genes behave similarly over all measured conditions, and the conserved condition patterns run 
across all measured genes. Those clusters found are in a sense aimed to reflect a global 
pattern of expression data, and yet for most cases in the real cellular processes, expression 
patterns are common only to a subset of genes under certain experimental conditions [39]. In 
order to characterize the expression behaviors more accurately, we need a local model instead 
of a global one. Identifying such local patterns will provide a deeper insight into genetic 
pathways that cannot be revealed from the point of a global view. As a result, our objective is 
to develop, beyond the common clustering paradigm, a method capable of discovering in the 
microarray data local expression patterns in terms of submatrices which we call biclusters. 
The rows and columns of a submatrix correspond to a subset of genes with similar expression 
behaviors under a certain subset of conditions, respectively.  

 
Figure 1.3.3.1. A sample of biclusters. A sample gene expression result is represented as a 
2D array. In this array, we show two overlapping biclusters that are formed by different 
subsets of genes and conditions 

For example, in Figure 1.3.3.1 we show a sample gene expression result represented by a 
2D array, where the rows stand for different genes; the columns, various conditions. In this 
array, there are two submatrices each of which consists of different subsets of genes and 
conditions.  

 
Several methods from various research fields have been proposed to perform clustering 

which take into account rows and columns at the same time. Though named differently, such 
as biclustering, local clustering, coclustering, direct clustering, bidimensional clustering, or 
block clustering, etc. [40-42], they all refer to the same class of algorithms which identify 
subsets of rows and subsets of columns by performing simultaneous clustering of these two 
dimensions. These methods can be further categorized according to the types of biclusters 
they intend to identify. The categories of biclusters may vary from the simplest one which 
contains only constant gene expression levels, or those with constant values in the rows or the 
columns, to more complicated ones which contain coherent expression levels with low 
variance, or others that only maintain a coherent expression trend without considering 
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specific expression values [43]. It is inevitable that there exists a tradeoff between the 
complexity of search strategy and the expressiveness of the biclusters identified. The type of 
biclusters to find determines the complexity of search strategies applied by the biclustering 
algorithms. The approaches previously proposed include greedy iterative search [40], 
divide-and-conquer [41], exhaustive enumeration [44] and probabilistic modeling [45], etc. In 
this study, we propose a new approach called PIFP (Progressive Iterative Frequent Pattern) to 
biclustering based on frequent itemset identification [46], which is not aimed at resolving all 
the issues in the biclustering problem, but instead at demonstrating the feasibility of tackling 
the problem from a different perspective. To fairly compare biclustering methods is not easy 
as each approach may formulate the same problem differently, and consequently applies 
different algorithms. Due to the inherent bias, their performance may vary in different 
scenarios. Recently, a systematic comparison methodology for biclustering has been proposed, 
which defines the common settings for most of the biclustering approaches [47]. Based on 
this testing methodology, we conducted the validation using prior knowledge, i.e. gene 
ontology. Several conventional clustering methods and some current biclustering systems 
were also tested for comparison in our studies. The conventional ones are hierarchical 
clustering [37], k-means [38], self-organizing maps (SOM) [32] and principle component 
analysis (PCA) [48]; the biclustering algorithms include OPSM [39], ISA [49], CC [40], 
xMotifs [50], BiMax [47] and SAMBA [49]. We demonstrate that our new approach 
outperformed these systems in the experiments. 

 
Unlike previous approaches, we transform the biclustering problem into a frequent 

itemset finding task, which is a welldefined activity in market basket analysis. To illustrate 
the idea, let us first consider a market basket containing a collection of items purchased by a 
customer in a single transaction. Retailers usually accumulate huge collections of transactions 
over time, and one common analysis run against a transaction database is to find sets of items 
(or itemsets) that appear together in many transactions. We call an itemset a frequent itemset 
if the percentage of the transactions that contain this itemset, which is called support, is above 
a userspecified threshold. As the items in a frequent itemset co-occur in many transactions, 
some association is expected among them. Motivated by this observation, we characterize a 
bicluster containing related genes and relevant conditions by a frequent itemset where genes 
or conditions are treated as items, and the conserved expression behaviors correspond to the 
associations. 

 
In microarray experiments, there are different sources of systematic errors [51]. 

Normalization refers to the attempts to remove such error that affect the measured expression 
levels. Although normalization alone cannot control all the systematic variations, it is still 
crucial to subsequent expression data analyses as the expression data may vary significantly 
from different normalization processes. We tested several normalization methods, including 
geometric mean normalization, rank normalization, quintile normalization and Spellman et 
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al.’s Z-score [52, 53]. As some pilot tests favored the Z-score approach, we decided to adopt 
the normalization procedure of Spellman et al., who normalized the expression level of each 
gene so that the mean and the deviation for each row and column are zero and one 
respectively. In addition to normalization, discretization is another preprocess required of 
PIFP as a bicluster is described by a frequent itemset. We partitioned numeric gene 
expression values into a set of intervals; as a result, the original expression data matrix can be 
viewed as a database of transactions. Several discretization procedures were tried to define 
intervals [54, 55]. The intervals may be determined by some specific thresholds, such as the 
median, the top N% expression value, or even pre-specified ad hoc values. On the other hand, 
we can partition expression levels into J intervals of equal size, e.g. J=10. It is usually 
difficult to define appropriate thresholds beforehand, and our pilot tests showed that the 
equal-interval partition method worked reasonably well, thus in the following experiments we 
adopted this discretization procedure with J set to 10. 

 
Figure 1.3.3.2. The PIFP system flow, in which we added the filtering and masking 
procedures to rule out spurious biclusters and the ones already found. These procedures have 
proved effective in producing more biclusters than the original FP-growth method. 
 
 

There have been many various approaches to frequent itemset finding, and one of the 
widely used methods is FPgrowth [46]. Unlike its relevant pioneer approaches, e.g. Apriori 
[55, 56], FP-growth only needs to scan the database twice without the time-consuming 
candidate-generation process. The first scan of a database derives an ordered list of frequent 
itemsets above some pre-specified support threshold. For the second scan, FP-growth 
performs a database projection of the frequent itemsets in the order that they are in the 
ordered list, and constructs a compact data structure called FP-tree, which stores the complete 
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frequent itemset information. This significant reduction on the number of necessary database 
scans dramatically increases its efficiency. We developed PIFP based on FP-growth. It 
extends FPgrowth in two directions. First, we embed a filter in PIFP to rule out those spurious 
itemsets by removing any itemset of less support if it overlaps with others over 75%. Second, 
we add a feedback loop to PIFP in order to identify weaker (i.e. with less support) frequent 
itemsets which may have been clouded by other stronger frequent itemsets. By masking out 
from the expression matrix the itemsets already found, PIFP is able to progressively identify 
more frequent itemsets than conventional FP-growth approaches. Our ablation experiment in 
the following section proves the effectiveness of these extensions. Given only two parameter 
values, minimum support s and minimum itemset size i, PIFP is capable of identifying 
overlapped biclusters presented as frequent itemsets. The system flow of PIFP is presented in 
Figure 1.3.3.2. A sample output of a bicluster is shown in Fig. 1.3.3.3. It contains information 
such as the total number of genes in this bicluster, who they are (e.g. gene or ORF names), the 
positive-correlated genes, the negative-correlated genes, and the corresponding conditions, 
etc. 

 

 
Figure 1.3.3.3. A sample output of PIFP. It shows there are 4 genes in bicluster18, and three 
conditions involved. Three of the genes are positive-correlated, and only one is 
negative-correlated. 
 
 
 
Third Year: 
 
1.3.4. A Two-stage Approach to Finding Common Structure Elements in 
Unaligned RNA Sequences 
 

Given functionally related RNA sequences, there are currently three main approaches to 
the finding of common secondary structures [57]. The first approach aligns sequences using 
standard multiple sequence alignment tools, e.g. ClustalW [58], and then detects consensus 
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secondary structures based on mutual information, free energy or sequence covariance [4, 59, 
60] etc. However this approach strongly depends on a reliable multiple sequence alignment. It 
is not suitable for RNAs with low sequence similarity. An alternative approach is to fold 
sequences and align structures at the same time. Though this approach can be applied in the 
case of unavailability of multiple sequence alignment, its high computational complexity 
restricts its practical use [61-63]. If there is no enough sequence conservation, and the 
complexity of structure motifs exceeds the pragmatic limit of the above approaches, we may 
take the last approach. It first predicts the secondary structure for each sequence, and then 
aligns the structures directly [16, 64, 65]. 

 
There are several important features in our method. First, it is applicable to unaligned 

RNA sequences with long flanking regions and low sequence similarity. Second, it has 
flexibility in incorporating new tools for single RNA global structure prediction in the first 
stage. Third, secondary structures predicted in the first stage are transformed to an abstract 
form that helps constrain the search space of consensus motifs. 

 

 
Figure 1.3.4.1. Positive and negative examples of structure motifs. (a)(b)(c) are legal 
structure motifs. Each satisfies all three conditions of a legal structure motif. (d)(e)(f) are the 
negative examples relative to (a)(b)(c) respectively, where (d)(f) are not continuous structures, 
and (e) has an unpaired segment which is supposed to be a stem. 
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Figure 1.3.4.2. An example of structure decomposition. The given structure (stem <1> to 
<10>) is not a component motif as it has several bifurcation sites, marked by “B”. We first 
remove its rightmost and leftmost component respectively to produce two legal substructures, 
one composed of stem <1> to <7>; the other, <6> to <10>. We later generate two 
substructures from stem <1> to <7>. They are stem <1> to <5> and stem <6> to <7>. These 
two structures are component motifs since they have no bifurcation site, and smaller legal 
substructures can be extracted from within, e.g., stem <2> to <5> extracted from structure 
<1> to <5>. We keep decomposing a structure until we reach its basic singlestem component, 
e.g. <3>, <5> and <7>. On the other branch, stem <6> and <7> are found to already occur in 
the left branch, therefore, they are considered redundant and will not be further processed. 
Stem <8> to <10> is also a component motif which is a pseudoknot containing stem <10>, 
the last legal substructure extracted. 

Our proposed method adopts the last approach, but the objective of our system is to find 
consensus structure motifs within a set of RNAs rather than a multiple global structure 
alignment. We define a legal structure motif for an RNA family as a commonly shared 
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structure: (1) that is folded from continuous nucleotides, (2) that begins with a 5’segment of a 
stem, and ends with a 3’segment which may be the half of another stem or paired with the 
first 5’segment, and (3) that has no unpaired 5’or 3’segment between the first 5’segment and 
the last 3’segment. Some positive and negative examples are shown in Figure 1.3.4.1. For 
each predicted structure from a folding algorithm, we exhaustively decompose it and 
enumerate all the possible substructures that comply with the three constraints above. A legal 
structure motif can be further defined as a component motif if it satisfies all three constraints 
above, and cannot be broken into smaller legal structure motifs, e.g. Figure 1.3.4.1(b) and (c). 
For a structure with only one component, we can discard either the outermost paired segments 
or pseudoknots to extract a smaller legal substructure by EXTRACT. On the other hand, 
given a structure with more than one component, we can divide it into two legal substructures 
by removing the leftmost (i.e. REMOVE_LEFT) or the rightmost component (i.e. 
REMOVE_RIGHT). One example of structure decomposition is illustrated in Figure 1.3.4.2. 
By applying EXTRACT and REMOVE recursively when applicable, we can decompose any 
given structure and enumerate all its possible legal substructures that will be later transformed 
into the search space of consensus motifs. 

 
The occurrences of a consensus motif in a family are rarely the same in every detail of 

their structures. For example, the size of stems or loops may vary among motif occurrences in 
different family members, and some may even contain extra bulges or internal loops, e.g. 
X83878.1/168-267 and Z99107.2/86084-86183 of Purine riboswitches in Rfam with their 
secondary structure motifs shown in Figure 1.3.4.3 (a). According to the alignment, the first 
stem of Z99107.2/86084-86183 has a symmetric bulge (small internal loop) consisting of 
CUCA, which does not exist in X83878.1/168-267. Besides, X83878.1/168-267 has a smaller 
symmetric bulge in the second stem and a shorter third stem when compared with 
Z99107.2/86084-86183, while it has longer first and second stems. To accommodate these 
minor differences between motif patterns (i.e. motif occurrences) in a family, we represent the 
decomposed substructures by an abstract shape [64], which corresponds to the common 
secondary structure, as illustrated in Figure 1.3.4.3 (b). By abstraction, these abstract shapes 
form a much smaller search space where we can find consensus motifs more efficiently. 
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Figure 1.3.4.3. Motif structure patterns in two members of the Purine riboswitch family in 
Rfam and the abstract shape for the motifs. (a) Consensus secondary structure between 
X83878.1/168-267 and Z99107.2/86084-86183 of Purine riboswitches in Rfam. (b) Ignoring 
the minor differences (e.g. different sizes of stems, loops or bulges) and focusing on the 
common relationship among the stems, we can represent the consensus structures by one 
abstract shape. 
 
 

Gibbs sampling is one of the MCMC (Markov Chain Monte Carlo) algorithms. In Gibbs 
sampling, we iteratively sample each variable conditioned on the most recent values of the 
other variables. Starting with a set of initial values of all the variables, we cycle through the 
sampling process for each single variable in any order until the values of all the variables 
converge to a stable state. Under this framework, the given RNAs are the variables, and the 
motif patterns are treated as their values. Our goal here is, by Gibbs sampling, to find the 
appropriate value (i.e. motif pattern) for each variable (i.e. RNA) such that the values can 
reach a stable distribution which corresponds to a consensus structure motif.  

 
 
We define the similarity between two structure patterns, si and sj, as the following: 

 

if RLD(si , sj)>θL , sim(si , sj) = 0;                        (Eq. 1.3.4.1) 
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otherwise sim(si , sj) = w1*seqalign(si , sj)+w2*structalign(si , sj).  (Eq. 1.3.4.2) 

RLD(si , sj) = | len(si) – len(sj) | / max( len(si) , len(sj) ).          (Eq. 1.3.4.3) 

 
where RLD(si , sj) is the relative length difference between si and sj, len(sk) is the 

sequence length of structure sk. The seqalign(si , sj) is the sequence alignment score based on 
the Needleman-Wunsch algorithm [66], assuming match=1, mismatch=0 and gap=-1, and 
structalign(si,sj) is the structure alignment score computed by RSmatch [67]. Both 
seqalign(si,sj) and structalign(si,sj) are normalized between zero and one. Note that we assign 
zero to sim(si,sj) directly when RLD(si,sj) is greater thanθL to save the time for the 
computation-intensive alignment procedures. The motivation behind this is our observation of 
most families in Rfam shows that the relative length difference between family members is 
usually insignificant, which makes it an effective filter. In eq.(1.3.4.2), sim(si,sj) is computed 
as the weighted sum of the sequence and structure alignment scores, where w1+w2=1. 

 
The Gibbs sampling process in our system starts with an initial state of a consensus motif 

represented by a set of seeds, SEED, each of which is a possible occurrence of the motif in a 
particular RNA sequence. In each iteration, we sample the motif patterns for one RNA, e.g. R, 
conditioned on the currently selected motif occurrences in the others, and a structure pattern 
pi∈R will be chosen as a new seed (i.e. a new motif occurrence) if it satisfies either of the 
following conditions. 

 
If R does not currently have a seed in SEED, then 
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    As we iterate over every RNA, we can either add new patterns as new motif occurrences 
when the above condition is satisfied, or delete old seeds from the seed set if they no longer 
meet the constraint. We update the set SEED with the aim to increase the total pairwise 
pattern similarity simtotal(SEED) defined below. We repeat the same sampling process until no 
change of motif occurrences can be made to improve simtotal(SEED). 
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    The initial seeds determine where and how fast Gibbs sampling converges, and the size 
of the initial seed set does not need to be equal to the total number of the RNAs given. Since 
we can start Gibbs sampling with different initial seeds, it can terminate at various sets of 
final seeds. When Gibbs sampling stops after it converges, the size of converged SEED will 
ideally be equal or approximate to that of the given RNA family, and the seeds per se are the 
predicted occurrences of a consensus motif. According to simtotal, we rank all the motifs to 
which Gibbs sampling converges, and report them in a sorted list after the user specifies the 
number of top-ranked motifs required in the output. 
 
 
 

1.4 Result 
First Year: 
1.4.1. RNA Clustering and Secondary Structure Prediction 

 
Two types of quality were considered to evaluate the performance of our method. One is 

to measure the agreement between the predicted clusters and the actual cluster identities; the 
other, to quantify the agreement between the predicted structure elements and the actual 
structure assignment. Since no other current approaches known to perform clustering and 
structure prediction in parallel, no comparative study can be done. Instead we applied the 
widely-used precision and recall to measure the first quality; the Matthews correlation 
coefficient [68], to measure the second quality. 

 
For each sequence in the data set, two secondary structure assignments were compared 

by counting the number of true positives Pt (base pairs exist in actual assignment and are 
predicted), Nt true negatives (base pairs do not exist in actual assignment and are not 
predicted), false positives Pf (base pairs do not exist in actual assignment but are predicted) 
and Nf false negatives (base pairs exist in actual assignment but are not predicted), 
respectively. The Matthews correlation coefficient can then be computed as: 
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    Given that the sequence length is sufficiently large, the Matthews correlation coefficient 
can be approximated in the following way [69]. 
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    With the published/curated alignments, we can calculate the Matthews correlation 
coefficient. Higher correlation coefficients mean more accurate structure predictions. 
 
 
Table 1.4.1.1. Summary of the RNA families used in experiments. The first row shows the 
total number of sequences in each data set. Row 2 to 4 present the minimum, the maximum 
and the average sequence length respectively. The fifth row gives the standard deviation of 
sequence length. 

Dataset 16s RNA IRE-like Viral 3’UTR 
Total Sequences 34 56 18 
Min Seq Length 90 117 37 
Max Seq Length 108 330 137 
Avg Seq Length 97.59 202.93 63.89 
Seq Length Std 3.77 59.31 25.95 

 
 

 
Our algorithm is designed to automatically partition a given set of unaligned RNA 

sequences into meaningful clusters, each with characteristic conserved secondary structure 
elements. The number of real clusters and the distribution of cluster size may affect the 
prediction of partitions and characteristic structure elements. To measure their effect on the 
performance, we tested our method on different datasets with various RNA families. We used 
three families, including 16S RNA, IRE (Iron Response Element) and viral 3’UTR as 
summarized in Table 1.4.1.1, to prepare the test datasets. They have been used in previous 
experiments and published in literature [10, 69]. The sequence data and the correct structure 
elements can be accessed at public databases [70, 71]. The 16S RNA dataset contains 34 
archaea 16S ribosomal sequences originally derived from a set of 311 sequences extracted 
from the SSU rRNA database. The archaea set of 311 sequences was further reduced to 34, 
filtering out the sequences that miss base assignments or are greater than 90% identical. The 
IRE dataset was constructed by Gorodkin et al.[69] from 14 sequences from the UTR 
database. They modified the IREs and their UTRs to make the search more difficult. By 
iteratively shuffling the sequences and randomly adding one nucleotide to the IRE conserved 
region, they built a set of 56 IRE-like sequences from the 14 IRE UTRs. The third data set 
includes 18 viral 3’UTRs each of which contains a pseudoknot. Seven of the RNA sequences 
are the soil-borne rye mosaic viruses; the others are the soil-borne wheat mosaic viruses.  
 
 
Table 1.4.1.2. Summary of the experimental results. Table (a), (b) and (c) present the result 
for the dataset containing IRE and viral 3’UTR, 16S RNA and viral 3’UTR, IRE and 16S 
RNA, respectively. 



25 

(a) 

IRE+viral 3’UTR Recall Precision Matthews 

IRE 0.97 0.99 0.97 

Viral 3’UTR 0.71 0.95 0.79 

(b) 

16s RNA+viral 3’UTR Recall Precision Matthews 

16s RNA 0.97 0.95 0.83 
Viral 3’UTR 0.77 0.98 0.77 

(c) 
IRE+16s RNA Recall Precision Matthews 

IRE 0.73 0.99 0.85 
16s RNA 0.81 0.73 0.67 

 
On the basis of the three real families of RNA sequences, we tested our method on each 

possible pair of the families, i.e. 16S RNA/IRE, 16S RNA/viral 3’UTR, and IRE/viral 3’UTR. 
In each run of the experiment, no information regarding the number of families or the family 
size was given to the algorithm beforehand. One purpose of this experiment is to analyze the 
effect incurred by the distribution of cluster size in a dataset. Furthermore, as the real 
conserved structure elements differ in various families, we can also observe how the 
interleaving of distinct structure motifs within a single dataset may affect the prediction 
process. The results are presented in Table 1.4.1.2, and some partial predicted secondary 
structures are shown in Figure 1.4.1.1. 
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Figure 1.4.1.1. A partial result of the predicted RNA motifs. The numbers above the 
sequences are the indices of the nucleotides. The predicted and the published motifs are both 
shown for reference. 
 
 
 
Second Year: 
1.4.2. A Multi-strategy Approach to Protein Structural Alphabet Design 

 
We tested our approach on the all-α proteins in SCOP. By this experiment, we show that 

our method can produce an appropriate structural alphabet for describing these all-α proteins. 
After transforming protein backbones into dihedral angles and extracting protein fragments, 
we trained the SOM on these dihedral angle vectors. 

Three issues were addressed in the experiments. First, the meaningfulness of the 
structural alphabet size in terms of the number of clusters was presented by showing the size 
stability given various parameters. Second, we demonstrated cluster cohesiveness by visual 
superimpositions of protein fragments as well as computed the intra-cluster and inter-cluster 
distance. Third, we proved the fragment clusters found were not arbitrary by comparing our 
result with that from a random background. 
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Figure 1.4.2.1. The variance in the number of clusters produced by the SOMs of varying 
sizes. There exists a distinctive plateau that suggests the cluster number has stabilized. 
 
 

Since the number of map units has influence over the SOM’s clustering behavior, to 
obtain the optimal number of clusters, we varied the number of units on the map until the 
number of clusters found became steady. The results are shown in Figure 1.4.2.1, which 
indicates a distinctive plateau within the range between nine and twelve. Because eleven is 
the most frequent number of clusters on the plateau, as shown in Figure 1.4.2.2, it is 
designated as the structural alphabet size. 

 
Figure 1.4.2.2. The frequencies of cluster numbers. It shows 11 is the most frequent 
number of clusters. 
 
 

To further confirm the general geometric regularities characterized by the structural 
alphabet, we also built a negative all-α protein fragment set for comparison. The negative set 
was derived from the real all-α protein fragment vectors prepared earlier by rotating the 
dihedral angles at random (increase or decrease) within a certain degree, e.g. 30° in our 
analysis. We compared the clusters produced by clustering on the real vector set and on the 
negative control set. Insignificant difference suggests that the alphabet we found could be 
arbitrary. Our experiments (see Figure 1.4.2.3) show that clustering on the negative control 
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set cannot even produce consistent clusters, which supports our hypothesis that the clusters 
found from the real fragment vectors reflect the classes of local protein structures; otherwise, 
these clustering results would have been similar. 

 

 
Figure 1.4.2.3. The variance in the number of clusters produced by the SOMs of varying 
sizes trained on a negative fragment set. It shows no sign of convergent cluster number. 

Given the size, we ran the k-means algorithm on the input fragment vectors to find the 
twelve clusters by which to define the structural alphabet. Figure 1.4.2.4(a) and (b) shows the 
fragment superimpositions for the alphabet. Even though the fragment structures do not 
superimpose perfectly, yet the general structural cohesiveness of each category is quite 
evident. In addition, we computed the Euclidean distances from each fragment in a given 
cluster to its centroid. The average of these within-cluster distances was then compared with 
the center-to-center distances between clusters as presented in Table 1.4.2.1. It shows that in 
most cases, the center-to-center distance between any two clusters is greater than the mean 
distance of all vectors in that cluster from its center plus one standard deviation. The result 
indicates that the individual clusters are fairly well separated from each other. 
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Figure 1.4.2.4(a). The superimposition in wireframe format for the structures of each 
structural cluster found by SMK. 
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Figure 1.4.2.4(b). The superimposition of the structures of each structural cluster found by 
SMK in the balland-stick form. 
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Table 1.4.2.1. Summary of within-cluster distances and center-to-center distances. 

 
 
 
The detection and analysis of structural similarities between proteins allows deeper insight 
into their functional mechanisms and relationships. To search for structural similarities, the 
structural alphabet provides a good basis on which to work with a 1D representation. As a 
result, numerous 1D alignment algorithms can be used, with minor modifications, to detect 
structural similarities. In our experiments, we first transformed the 3D structures of proteins 
into a 1D sequence of the letters in our structural alphabet. To demonstrate the applicability of 
the alphabet, we used FASTA to search for structural similarities between a query protein and 
a bank of proteins, using an identify matrix of our alphabet letters to find maximal exact 
matches. For comparison, we also conducted the same tests also using FASTA but based on 
different structural alphabets, one developed by de Brevern et al. [72], the other by the 
two-level SOM approach [30]. As the baseline reference, we used BLAST with the standard 
20 amino acid letters to find the best sequence hit. 
 
Table 1.4.2.2. Summary of frequencies at the lowest common level. The first column 
shows the methods used in the experiments. The remaining columns present the frequency for 
different levels at which the query and the best hit are both located. 

 frequency at different level 

Method class fold super family Family 

BLAST 71 4 5 20 
SMK 55 11 5 29 

De Brevern 58 4 11 27 
2-level SOM 73 6 14 7 
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Table 1.4.2.3. Summary of average RMSD and standard deviation between the queries and 
the best hits. 

Method mean 
(RMSD) 

sd 
(RMSD) 

BLAST 8.953744 4.764597 
SMK 7.290972 3.934283 

De Brevern 8.076746 4.819178 
2-level SOM 10.38624 5.217078 

 
 
The proteins used in the experiments were selected from the all-α proteins in SCOP. 

After filtering out those with more than 30% sequence similarity, we have totally 1055 
proteins. For each run of the experiment, we randomly picked one protein as the query, and 
then matched it against the rest, using FASTA or BLAST with different alphabets. Given the 
best hit, we computed the RMSD between the query and the hit, and recorded the lowest level 
in the SCOP hierarchy at which the query and the hit are both located, i.e. class, fold, 
superfamily or family. Smaller RMSD and lower common level in SCOP hierarchy indicates 
higher structural similarity. We repeated the same experiment for 100 times and the results 
are summarized in Table 1.4.2.2 and Table 1.4.2.3. According to Table 1.4.2.2, we notice that 
our method SMK and de Brevern et al.’s both produced higher frequencies at lower common 
levels than the other two methods. This suggests that our structural alphabet and de Brevern et 
al.’s can better characterize the SCOP hierarchy. Table 1.4.2.3 shows that SMK has the 
lowest mean RMSD and standard deviation among all. 

 
In this study, we propose a multi-strategy approach to designing the structural alphabet 

which allows local approximation of protein 3D structures as well as enables the applications 
of 1D alignment algorithms to search for 3D structural similarities. The success of the 
alphabet design depends on three crucial factors. First, it is the protein fragment 
representation, which determines what and how 3D structural characteristics to be 
approximated, e.g. thermodynamic stability, amino acid physicochemical properties, amino 
acid usage in known proteins, distances, dihedral angles, bond lengths, bond angles, etc. The 
effects of the representation selected are entangled with the performance of the learning 
approach we apply to develop the structural alphabet. Overcomplicated representations can 
sometimes lead to overfitting. To avoid this problem, we currently focus on the dihedral 
angles. Other features can be easily included in the representation if proved necessary. 

 
The second factor is the size of the alphabet. We took advantage of the SOM as a 

visualization tool that helps determine the alphabet size. By systematically varying the 
number of map units on the map, we visualized the clustering behavior of the SOM. Our 
experiments showed a distinct plateau corresponding to the convergent number of clusters, 
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compared with the increasing number of clusters in the results of clustering on the random 
negative control dataset. This suggests that the structural alphabet size we found is not 
arbitrary. 

 
Various types of algorithms have been applied to clustering local protein 3D fragments 

into a limited set of fold patters, e.g. self-organizing maps (SOM), hidden Markov models 
(HMM), neural networks, hierarchical clustering, k-means clustering, etc. Each has its own 
learning bias and inherent limitations. For example, the topology (e.g. number of layers or 
map units) of neural networks, the SOM and the HMM strongly affect the performance. The 
value of k in kmeans algorithm determines the clusters. As a consequence, the third factor is 
the learning algorithm. In our study, we took a multi-strategy approach. We first used the 
SOM and the minimum-spanning tree algorithm to determine the alphabet size, and then 
applied the k-means algorithm to group fragments into meaningful clusters. The number of 
map units in the SOM and the value of k in k-means are not prespecified in advance, but 
instead determined systematically. To verify the correspondence of our structural alphabet 
letter to the fold patterns, we computed the average within-cluster distance for each alphabet 
cluster as well as the distance across clusters. The small average within-cluster distance and 
the relatively large between-cluster distance demonstrate the significance of the structural 
alphabet we found. Furthermore, the visualized superimposition of protein fragments in each 
cluster also justifies the structural cohesiveness. 

 
The objective of the study is to propose a new approach to developing the structural 

alphabet. To verify its usefulness, we tested it on the all-α proteins in SCOP, and the 
experimental results show its promising applicability. After the success on the all-α proteins 
in SCOP, we plan to test our method on different data banks to further verify its feasibility 
and generality. Also as mentioned above, the representation is a crucial factor in the alphabet 
design. We will consider other structural features besides dihedral angles, add more useful 
features to enhance our structural alphabet, and test the new approach on other families in 
SCOP. 

 
 
 

1.4.3. Bicluster Analysis of Genome-Wide Gene Expression 
 

There are two objectives in our experiments. One is to demonstrate the superiority of 
PIFP to those standard clustering methods in terms of identifying more meaningful gene 
groups related to GO categories. The other is to show PIFP’s competitive performance 
compared with other current biclustering algorithms. 

 
Two expression datasets were used in our analysis and comparison with other standard 
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clustering algorithms. One dataset contains 6335 genes with 121 conditions which were 
obtained by combining expression profiles from several gene expression experiments [37, 53, 
73-78]. This dataset was used in our pilot tests to select the appropriate normalization and 
discretization procedures for PIFP. We tried different normalization and discretization 
methods as mentioned earlier, and settled on the one with the best performance. The second 
dataset is the one used by Hughes et al. [79], which contains 6325 genes and 300 conditions. 
We tested PIFP on this dataset and compared with several representative conventional 
clustering algorithms. In order to keep the consistency, instead of reimplementing these 
algorithms or using any ad hoc versions, we adopted in our experiments Cluster3.0 [37], 
which provides hierarchical clustering, k-means, SOM and PCA, and also has been used in 
other published similar experiments [49]. In addition, we also included the fuzzy c-means 
method in our experiments [80]. 

 
The quality measure for a cluster is the p-value based on the widely used hypergeometric 

distribution [80, 81], defined as below, 
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where M is the total number of genes, N is the size of the cluster, K is the total number 

of genes annotated in some GO [82] category, and z is the number of genes within this cluster 
in common with this GO category. This measure takes into account both the cluster size and 
the number of clusters found with respect to the correlation with GO categories. The smaller 
the p-value, the more consistent the cluster with the annotations. We took the negative 
logarithm of the p-value to increase the readability. 

 
Following [37] to use the default parameter settings in experiments, with Cluster3.0, we 

tested hierarchical clustering, k-means, SOM and PCA on Hughes expression data. We plot 
the –log(p-value) vs. cluster count distribution for each of the above methods, as shown in 
Figure 1.4.3.1(a) to Figure 1.4.3.1(d) respectively, and the results of fuzzy c-means and PIFP 
are presented in Figure 1.4.3.1(e) and Figure 1.4.3.1(f). In each histogram, we show the 
cluster count distribution for –log(p-value), and each bar represents the number of clusters 
with the corresponding –log(p-value) ranging from 1 to 30. 

 
We also summarize the total number of clusters found, the mean and standard deviation 

of cluster size and –log(p-value) as well as the proportion of clusters with –log(p-value)>5 in 
Table 1.4.3.1. It is interesting to see that the standard deviation of cluster size is quite large. 
This seems to agree with the real world that various gene groups of different size perform 
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very different biological functions. We further divide the values of –log(p-value) into three 
intervals, and show their proportion distributions for all algorithms in Figure 1.4.3.1. It 
indicates that the quality, measured by –log(p-value), of the clusters found by the standard 
clustering algorithms mostly falls within the first interval (i.e. 1≤–log(p-value)≤5), but on the 
contrary, most of the biclusters identified by PIFP cover the other two. All the evidence 
provided by Figure 1.4.3.1, Figure 1.4.3.2 and Table 1.4.3.1 clearly shows that PIFP 
outperforms all the standard clustering algorithms in our experiments. 

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1.4.3.1. The cluster count distribution of –log(p-value) for each algorithm: (a) 
hierarchical clustering, (b) k-means, (c) SOM, (d) PCA, (e) fuzzy c-means and (f) PIFP. We 
partition the value of –log(p-value) into three intervals and present the distribution with bars 
of different styles to increase readability. Also note that the clusters with –log(p-value)>30 
are included as 30 in order to save figure space. 
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Table 1.4.3.1. Summary of comparisons between standard clustering algorithms and PIFP  
Algorithm Total 

Cluster 
mean±s.d. 

(cluster size) 
mean±s.d. 
(–log(p)) 

-log(p)> 5 

Hierarchical 68 89.37±61.66 3.22±3.72 16.18% 
k-means 100 63.25±82.27 2.84±3.33 11.00% 

SOM 27 233.41±91.90 5.44±5.83 37.04% 
PCA 300 63.25±82.27 1.70±0.85 0.33% 

Fuzzy c-means 64 95.83±343.29 2.63±3.60 7.81% 
PIFP(s=17,i=21

) 
98 255.72±301.21 10.20±5.97 88.78% 

 

 
Figure 1.4.3.2. The proportion of –log(p-value) in different intervals. We divided the value 
of –log(p-value) into three intervals, 1≤−log(p-value)≤5, 6≤−log(pvalue)≤ 10 and 
11≤−log(p-value). We present the percentage of clusters (or biclusters) with −log(p-value) 
falling within each interval in bars of different styles. It clearly shows that the clusters 
produced by the standard clustering algorithms mostly fall in the first interval. On the other 
hand, most of the PIFP’s biclusters cover the other two intervals. 
 
 

Since PIFP is controlled by two parameters, to verify the stability of PIFP in terms of its 
parameter settings, we varied the parameter values, 15<s<80 and 30<i<70, to generate over 
2000 different parameter settings. We tested PIFP with these different parameter values on 
the same dataset. The average of –log(p-value) for all parameter settings is above 20, which is 
still better than the other conventional clustering algorithms. 

 
Recently, Prelic et al. proposed a framework for systematic comparison and evaluation of 

biclustering algorithms, and developed a biclustering analysis toolbox [47]. Besides the 
representative clustering algorithms, we compared PIFP with those biclustering systems 
provided in this toolbox, including OPSM [39], ISA [49], CC [40], xMotifs [50] and BiMax 
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[47]. In addition, another biclustering system, Samba [44], was also included for comparison. 
 
 
 

 
Table 1.4.3.2. Summary of parameter settings and total number of biclusters 

Algorithm Default Parameter Settings Values Used 
Total 

Biclusters 
Samba D=40,N1=4,N2=6,k=20,L=30 default 100 

ISA 
tg =1.8~4.0(step 0.1), tc =2.0,

nr. seeds=20000 
tg =2.0, 

seeds=500 
66 

CC 
α=1.2,δ=lower end of the 
expression value range 

δ≤0.5 100 

OPSM l=100 default 12 

xMotifs 
ns =10,nd=1000, sd =7~10, 
α not given, p-value=10-10, 

max_length not given 

sd =7,α=0.1, 
max_length=0.7m

306 

BiMax 
min no. of genes not given, 
min no. of chips not given 

min_genes=12, 
min_chips=11 

100 

PIFP s=10~20,i=10~25 s=11,i=12 100 
 
 
 

Figure 
1.4.3.3. The proportion of biclusters significantly enriched by GO annotation categories for 
each biclustering algorithm. Different bars in a group represent the results obtained for five 
different significance levels (i.e. α). 
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Table 1.4.3.3. Partial results of Biclusters found by PIFP 
Bicluster Size p-value Annotation 

Bicluster1 228 1.80E-119 cytosolic ribosome (sensu Eukaryota)/80S ribosome 

Bicluster85 166 3.00E-39 ribonucleoprotein complex/RNP 

Bicluster58 58 5.30E-32 Ribosome 

Bicluster41 101 3.90E-26 ribosome biogenesis 

Bicluster7 135 5.80E-24 protein complex 

Bicluster11 120 2.60E-19 RNA metabolism 

Bicluster69 64 5.40E-19 non-membrane-bound organelle 

Bicluster13 128 4.00E-18 physiological process 

Bicluster14 108 2.60E-16 cellular process 

Bicluster76 70 8.00E-14 cytoplasm organization and biogenesis 

Bicluster24 76 5.80E-12 cellular physiological process/cell growth and/or maintenance/cell physiology 

Bicluster64 70 4.40E-11 translation factor activity, nucleic acid binding 

Bicluster77 62 2.40E-10 mitochondrial ribosome 

Bicluster83 33 7.10E-09 generation of precursor metabolites and energy/energy pathways 

Bicluster67 42 1.20E-06 translation initiation factor activity 

Bicluster82 19 7.70E-06 peroxisomal matrix 

Bicluster35 14 9.60E-06 cellular biosynthesis 

Bicluster34 23 3.60E-05 fatty acid elongase activity 

Bicluster95 23 3.80E-05 molecular function unknown 

Bicluster94 32 9.70E-05 binding/ligand 

 
 
We used the same yeast dataset and the same parameter settings as in [47] in our 

experiments to keep the consistency. This dataset contains 2993 genes with 173 different 
stress conditions. The parameter settings and the number of biclusters identified are listed in 
Table 1.4.3.2. Details can be found in [39, 40, 44, 47, 49, 50]. Like Prelic et al., we evaluated 
biclusters by calculating the hypergeometric functional enrichment score with FuncAssociate 
[83] as the quality measure, and the results are also summarized in a histogram as presented in 
Figure 1.4.3.3. The histogram shows at different significance levels for each algorithm the 
fraction of all biclusters found with which one or more GO annotation categories are highly 
correlated. The result demonstrated that PIFP outperforms all the other biclustering 
algorithms. We present partial results of the biclusters found by PIFP in Table 1.4.3.3. 

 
 
 

 
 
 



38 

Table 1.4.3.4. Results of ablation study for PIFP 
Dataset Dataset in BicAT[16] Hughes et al. Dataset[32] 

Algorithm 
PIFP w/o 

enhancement 
PIFP with 

enhancement
PIFP w/o 

enhancement
PIFP with 

enhancement 
No. of 

Biclusters 
36 100 20 98 

GO annotation 9 20 3 9 
Running time 

(Second) 
48 70 443 665 

 
We also did an ablation study for PIFP to demonstrate the effectiveness of the filtering 

and masking procedures. Using the same parameter settings, we tested PIFP with and without 
the filtering and masking procedures on the same dataset to compare their performance. The 
datasets used in the above experiments were again used in the ablation study. Our study 
shows that with the filtering and masking procedures, PIFP does not only produce more 
biclusters than without, but also covers all the biclusters found by the ablated version. The 
comparison results are presented in Table 1.4.3.4, including the number of biclusters found, 
the number of relevant GO annotation categories and the running time. It demonstrates that 
PIFP with the enhancement procedures can produce about three times the number of 
biclusters found by the ablated version with less than twice the computational time. 

 
Most of the available expression analysis tools are based on clustering that try to 

establish either groups of genes which are co-regulated under all the measured conditions, or 
groups of conditions which are conserved across all the measured genes. Although analysis 
methods of this kind have proved useful in several applications, yet their biological validity of 
the global assumptions may be questioned especially when the analysis goal is to identify 
molecular networks [54]. Numerous biclustering algorithms have consequently been proposed 
to mitigate the problem. However, some are limited to finding simple biclusters, e.g. constant 
biclusters, and some, on the other hand, though capable of identifying more complicated 
bicluster structures, are hampered by high computational complexity. In this study, we 
presented a new method for the analysis of gene expression data with the aim to seek the 
balance between the expressiveness of biclusters and the complexity of search strategies. 

 
Based on the framework of market basket analysis, we transform the biclustering 

problem into a frequent itemset finding problem. By extending the FP-growth method to 
develop PIFP, we are able to efficiently and effectively identify interesting biclusters 
described as frequent itemsets whose biological significance has been verified by the domain 
knowledge (i.e. Gene Ontology). To demonstrate PIFP’s performance, we tested it on the 
same datasets that have been widely used by other researchers, and compared the results with 
those of other current biclustering methods. Our experiments showed PIFP outperformed the 
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others. 
 
PIFP can be further extended in several directions. First, the current definition of our 

frequent itemsets can only represent biclusters with coherent values. With a more flexible 
definition, we will be able to identify biclusters with coherent trends as well. Second, along 
the same line of the above issue, it is possible to incorporate domain knowledge or 
user-defined constrains into the finding of frequent itemsets. This will not only accelerate the 
search process, but also enable the search strategy to focus on the desired items if necessary 
even when their support is below the pre-specified threshold. Third, from the frequent 
itemsets found, we can derive the association rules which may reflect the relationships among 
different members within a bicluster. Such relationships can be later generalized into 
transcription modules or even transcriptional regulatory networks if the knowledge of 
transcription factors is available. 

 
 
 

Third Year: 
1.4.4. A Two-stage Approach to Finding Common Structure Elements in 
Unaligned RNA Sequences 

 
Several recent tools were selected for comparison, including MARNA [15], CMfinder 

[14], and RNAshapes [84]. As these algorithms were derived from different design 
philosophies, we followed Yao et al. [14] to test each algorithm on the same input data using 
default parameter settings to conduct a reasonably fair and consistent comparative study. 

 
We picked 7 families of different sizes from the Rfam database as the test data. The seed 

alignment for each family is considered the consensus motif, whose number of hairpins varies 
from one to three among different families. Unlike Yao et al. [14], who included a fixed 
number of genomic sequence bases (e.g. 200 bases), we instead included genomic sequence 
flanking the motif such that the ratio of the motif length to the sequence total length is set 
between 0.1 and 0.6 at random, to reflect the reality that motif positions are usually unknown. 
The smaller the ratio, the larger the length difference between motifs and sequences. The 
average flanking genomic sequence length can then vary from 50 to more than 250 bases for 
different families. As the length of genomic flanking sequences has a larger deviation by our 
setting, the test data are more challenging than Yao et al.’s, and these test datasets are 
summarized in Table 1.4.4.1. 
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Table 1.4.4.1. Summary of Rfam families for testing 
 Max/Min/Avg 

Seq Length 
Avg Motif 

Length 
No. of 

Hairpins in 
Motif 

Total 
Sequences 

 
ctRNA_pGA1 303/299/300 62 2 17 
Entero_CRE 312/212/231 39 1 56 
HepC_CRE 202/152/170 48 2 47 

IRE 181/81/140 28 1 34 
Lin-4 322/320/321 68 1 9 
Purine 201/99/190 72 3 35 
s2m 164/160/163 41 1 38 

 
 
The performance was measured at the base pair level relative to the Rfam annotation. 

We compared the predicted motif against the annotated seed alignment provided in Rfam. Let 
Pt (true positive) denote the number of base pairs that exist in annotated seed alignments and 
are correctly predicted, Pf (false positives) denote the number of base pairs that do not exist in 
annotated alignments but are predicted, and Nf (false negatives) denote the number of base 
pairs that exist in seed alignments but are not predicted. The overall accuracy of a prediction 
is computed as the MCC (Matthews Correlation Coefficient) approximated by the geometric 
mean of sensitivity and positive predictive value [69]. 
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As MARNA has a lower limit on input size, for those families larger than 20 RNAs, we 

randomly picked 20 sequences for testing. The MCC for each method is presented in Table 
1.4.4.2. For a complete comparison, we tested all the methods, except MARNA, on the full 
set of seed sequences in each family, and summarized the results in Table 1.4.4.3. According 
to Table 1.4.4.2 and Table 1.4.4.3, our approach outperformed RNAshapes and MARNA in 
most of the tests, and was comparable to CMfinder. 
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Table 1.4.4.2. Summary of prediction accuracies (MCC) for partial Rfam families 
 MARNA RNAshapes CMfinder Ours 
ctRNA_pGA1 0.890 0.873 0.950 0.959 
Entero_CRE 0.765 0.844 0.954 0.936 
HepC_CRE 0.659 0.911 0.998 0.987 

IRE 0.499 0.569 0.899 0.847 
Lin-4 0.793 0.797 0.795 0.711 
Purine 0.749 0.558 0.900 0.864 
s2m 0.282 0.241 0.855 0.899 

 
 
Table 1.4.4.3. Summary of prediction accuracies (MCC) for complete Rfam seed sets 

 RNAshapes CMfinder Ours 
ctRNA_pGA1 0.790 0.950 0.959 
Entero_CRE 0.816 0.913 0.934 
HepC_CRE 0.805 0.999 0.976 

IRE 0.502 0.970 0.902 
Lin-4 0.796 0.795 0.711 
Purine 0.749 0.923 0.903 
s2m 0.160 0.897 0.923 

 
 

Table 1.4.4.4. Robustness comparison 
 CMfinder Ours 
ctRNA_pGA1 0.950 0.959 
Entero_CRE 0.913 0.934 
HepC_CRE 0.999 0.976 

IRE 0.862 0.871 
Lin-4 0.478 0.660 
Purine 0.923 0.903 
s2m 0.897 0.923 

 
 
To further compare our system with CMfinder in robustness, we added noise to the 

datasets by putting in 15 random non-family RNA sequences. We present the results in Table 
1.4.4.4, and it shows no significant difference in all test datasets except two families, lin-4 
and IRE. Note that the family size of lin-4 is much smaller than that of the others. It contains 
only nine seed sequences. After we added 15 noise sequences, the low signal/noise ratio 
affected CMfinder more significantly than our approach. On the other hand, though compared 
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with the others IRE is not a small family (34 RNAs), yet the IRE motif is relatively small. Its 
size is only 28 nts, which could be easily clouded by noise. Table 1.4.4.4 indicates that our 
system was more robust than CMfinder in these tests. 

 
Given a set of unaligned RNA sequences, the goal is to find the consensus structure 

motifs in these RNAs. In this paper, we proposed a two-stage approach by separating motif 
finding from sequence folding. Within this framework, not only can new folding tools be 
easily added to increase reliability, but other optimization techniques than Gibbs can also be 
applied to improve accuracy. The competitive performance of the new approach was 
demonstrated by testing it on various Rfam families. 

 
In the future work we plan to extend the approach in two directions. First, we will 

increase its applicability to finding characteristic structure motifs in mixed unaligned RNAs 
from multiple families. Second, we will develop an adaptive mechanism for parameter tuning 
of RLD and sim thresholds so the system can adjust the threshold automatically. 
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Chapter 2: 
Protein-DNA interaction 
 
2.1 Introduction  

 
The double-strand DNA within cells is the most important element of living organism. 

The blueprint of cell processes like growth, cell division, and apoptosis are coded in the DNA. 
DNA-binding proteins play a key role in living organisms of many genetic activities such as 
transcription, recombination, rearrangement, DNA replication and repair. Some kind of 
DNA-binding proteins which are also called transcription binding factors (TFs) mediate the 
regulation of various genes. Such regulations play a key role in biological pathway and 
reconstructing the network of pathways is the primary goal of post-genomic era. One or more 
domains of these proteins interact with DNA, and they offer the specificity for direct and 
indirect readout of DNA [85]. To identify the DNA-binding domains is very important for 
understanding the regulation mechanisms. Most of the structural DNA-binding domains can 
be categorized into several classes according to their structures or binding type [86-88]. 
However, some DNA-binding domains can not be well categorized, and for some DNA 
binding domains structural information is unavailable [86, 89]. 
 

Recently, the rapidly increasing crystal data on the protein-DNA complex provide a rich 
source of information about the interactions between amino acids and DNA base pairs [90, 
91]. Furthermore, the growing bioinformatics also help researchers to handle the vast amount 
of data of proteins generated by various approaches. Many easy-to-use databases which 
record important interaction information of protein and DNA are available on the internet. 
There are also many computational-based tools that can help us to predict novel DNA-binding 
proteins, the target sites of DNA-binding proteins, and possible interactions between proteins 
and DNAs. These resources offer a good basis for researchers to study this topic and to 
develop more efficient and accuracy methods for protein-DNA interactions.   
 

The goal of this section is to understand relationship of protein/DNA structure and 
function by our new scoring method to  provides the binding model and interacting amino 
acids and DNA bases of predicted partners. In the past three years, we had published one 
paper as fellow: 
  
1. Y. L. Chang, H. K. Tsai, C.Y. Kao, Y. C. Chen, Y. J. Hu, and J. M. Yang, “Evolutionary 

conservation of DNA-contact residues in DNA-binding domains,” BMC Bioinformatics, 
vol. 9 Suppl 6, pp. S3, 2008.        
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2.2 Motivation  
 
As previous studies, we know DNA-binding domain is the key part for protein-DNA 

bindings. Experimental approaches for finding such pairs usually expensive and 
time-consuming. Rapidly increasing amount of protein-DNA complexes from X-ray 
crystallography and nuclear magnetic resonance (NMR) have enabled the use of 
structural-based approaches for identifying DNA-binding proteins. We propose computational 
approach called “3D-regulogs” to large scale infer protein-DNA binding partners by using the 
concept of regulog and the crystal structures of protein-DNA complex as templates. Such 
method also provides the binding model and interacting amino acids and DNA bases of 
predicted partners.  
 

Our project is proceeded with two parts in three years. The special goals of every year 
will be descried detail as follows.  
 
 
2.2.1 Evolutionary conservation of DNA- contact residues in DNA-binding 
domains 

 
We propose this structure-based threading method by considering evolutionary 

conservation of DNA-contact residues in DNA-binding domains to identify DNA-binding 
domains. We use BLOSUM62 [92], an evolutionary-based scoring matrix for amino acid 
substitutions, to measure the degree of conservation of binding residues. Our method can 
achieve high precision and recall for 66 families of DNA-binding domains, with a false 
positive rate less than 5% for 250 non-DNA-binding proteins. 
 
 
2.2.2 Evolutionary conservation and Interacting preference for identifying 
protein-DNA interactions 

 
We considered both the evolutionary pressure and the protein-DNA interacting 

preferences of contact residues by modifying and enhancing our previous study [93], which 
identified DNA-binding domains using a consensus scoring function. Although the consensus 
scoring function has a good measurement on the evolution pressure of DNA-contact residues 
for identify DNA-binding domains, it can not reflect the binding affinities between proteins 
and DNAs. Here, we introduced a new scoring function combining evolutionary pressure and 
protein-DNA interacting preferences. The combination of these two scores is useful for 
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identifying DNA-binding domains and modeling protein-DNA interactions. 
 
 
 

2.3 Background 
 
Several studies used various computational approaches to predict potential DNA-binding 

proteins by using protein-DNA complexes structure features, such as the overall charges, 
electric moments, and shape of binding sites [94-100]. Since the charge and conformational 
complementarities of binding sites are essential for protein- DNA binding, these features 
provide a reasonable basis to identify DNA-binding proteins. Another trend is to consider the 
degree of conservation of residues [101-103]. Luscombe and Thornton [104] have studied 21 
families of DNA-binding proteins and showed that those amino acids interacting with the 
DNA are better conserved than those not interacting with DNA. Stawiski et al. [105] found 
that electrostatic patches of DNA-binding proteins have a higher percentage of aromatic and 
positive residues. According to the general properties of 20 amino acids, they also showed 
that residues of the patch are conserved at property levels. 
 

Some experimental technologies have been proposed to generate numerous binding data 
for studying the interactions of proteins and DNAs. One approach is the SELEX [106] which 
uses a particular protein to select DNA targets from a randomize oligo-nucleotide pool. The 
phage display [107, 108] is another experimental method which fixes the DNA target and 
randomized the specific position of the protein. One of the most successful cases of these two 
approaches is applied to zinc finger proteins which utilize three specific amino acids to 
recognize three consecutive DNA bases [109, 110]. Recently, the ChIP-on-chip is a 
large-scare technology which was firstly applied to identify binding sites of transcription 
factors in yeast [111-113]. It can large scale identify protein-DNA binding partners in a very 
efficient way and extend to whole genome analysis. In 1976, Seeman et al. proposed some 
recognition interacting patterns (i.e. formation of hydrogen bonds) between amino acid and 
DNA bases [114]. However, the increasing evidences showed that there is no simple code or 
general principle for protein-DNA recognition [115]. Based on the crystal structures of 
protein-DNA complexes, Margalit and co-worker proposed matrix-like parameters for 
quantitatively measuring the contact preferences of amino acids and DNA bases [116]. On the 
other hand, with the growing X-ray crystal structures, more and more computational 
approaches have been proposed for studying protein-DNA interactions. These scoring 
approaches can be roughly classified into two categories. One is to develop statistic-based or 
knowledge-based methods to predict the binding affinities of proteins-DNA targets. For 
example, Kono and Sarai [117] threaded DNA sequences into a protein-DNA complex 
structure and then a knowledge-based function was used to evaluate the affinity of the 
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threading sequences. They successfully predicted the DNA binding sites of a regulatory 
protein using this approach. Further, Liu et al. proposed another knowledge-based function 
which considered the distance between protein residues and DNA triplets to evaluate the 
protein-DNA interactions [118]. They achieved high accuracy in predicting binding free 
energies of zinc finger proteins and 48 public protein-DNA complexes. The second category 
utilizes energy-based functions to model the binding affinities between proteins and DNA. 
Baker and co-workers developed and parameterized a physical model for predicting 
protein-DNA interfaces and redesign and binding sites prediction [119]. They also predicted 
the position weight matrix (PWM) of several transcription factors on DNAs [120]. However, 
such atom-based approach also has challenged for homology modeling [120]. 
 
 
 

2.4 Methods 
 
According to our different aims, our experiments are also carried on two steps. The 

detail procedures are described in proper order as bellow. 
 
 
 
2.4.1 Evolutionary conservation of DNA-contact residues in DNA-binding 
domains 

 
Figure 2.4.1.1 shows the flowchart of our proposed method. We quantitatively evaluated 

whether a given protein domain M has a similar DNA-binding function to a known crystal 
protein-DNA structure. For each crystal structure of protein- DNA complex in Protein Data 
Bank (PDB), we first identified the DNA-contact domain (D) using geometry information and 
domain definitions from Structure Classification of Proteins (SCOP, version 1.71) [121]. The 
structures and sequences of both protein-DNA complexes and their DNA-contact domains 
were collected in the template library. For a given protein sequence/structure M, we used 
sequence/structural alignment tools to find the homologous DNA-contact domain D from the 
template library. Finally, we proposed a score method to evaluate the similarity between M 
and D based on the BLOSUM matrix. Detailed descriptions are as follows. 
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Figure 2.4.4.1. Flowchart of proposed method. 
 
 
 
 
Template library 

 
We first collected protein-DNA complexes from PDB and each complex should contain 

at least one protein chain and a double-strand DNA. As in Luscombe et al. [122], a complex 
was excluded if its DNA is single-stranded or the length of the DNA is less than 4 bases. For 
each protein-DNA complex, we then identify contact residues and contact domains of this 
protein. Contact residues, whose heavy atoms are within a distance (distance ≤ 4.5 Å) of any 
heavy atoms of the bound DNA, are considered as the core parts of the contact domain in a 
complex [120]. For each protein-DNA complex, we identified its DNA-contact domains 
according to contact residues and the definition of the SCOP database. Each domain must 
have more than 5 contact residues and the number of residues of this protein is more than 50 
to make sure that the contact between the protein and DNA was reasonably extensive. Finally, 
230 contact DNA-binding domains were identified and collected in the template library. 
 
Homologous proteins searching 

 
For a given protein sequence/structure M, we found a homologous DNA-binding protein 

from the template library using alignment tools. If M is a 3D-structure, we used a structure 
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alignment (i.e. CE [123]) to align M to all contact domains. The CE will return a Z score for 
each alignment representing the structure similarity of the two aligned structures. 
DNA-binding proteins are considered as homologous proteins of query M if CE Z scores of 
exceed 3.7 based on CE's statistical model. On the other hand, if M is a protein sequence, we 
used sequence alignment (i.e. FASTA [124-126]) to search the template library. Here, a 
DNA-binding protein is considered a homologous protein of M if the sequence identity 
exceeds 25% according to observations of previous studies [66, 127-131].  

 
Scoring method 

 
For an alignment of the query domain (M) and a contact domain (D) that satisfies the 

above criterion, we calculate the alignment score for the aligned contact residues by using the 
BLOSUM62 matrix. The scoring method is defined as: 

 

                     ,
residuescontact #

)m,BLOSUM62(d 
  S CRi

ii

M

∑
∈=             (Eq. 2.4.1.1) 

 
where CR is the set of the contact residues between D and M; di and mi denote the 

corresponding ith contact residue of D and M, respectively. Here, the score of a misaligned 
residue is -4 which is the smallest in the BLOSUM62 matrix. 
 
 
2.4.2 Evolutionary conservation and interacting preference for identifying 
Protein-DNA interactions 

 
Figure 2.4.2.1 shows the scheme of our proposed scoring function for identifying 

DNA-binding domains and predicting protein-DNA interactions. We first compiled 1204 
protein-DNA complex structures from the Protein Data Bank (PDB) [91]. Protein-DNA 
complex structures were then used as templates to identify potential DNA-binding proteins 
/domains. Third, the DNA-contact residues of these complexes are identified by using 
geometry information of the structures. For a given template structure T and a protein 
sequence/structure P, we obtained the alignment of T and P by using sequence/structure 
alignment tools. We then proposed a scoring function to quantitatively evaluate the function 
similarity between T and P based on conservation score of the DNA-contact residues and the 
interacting scores between contacted residues (protein side) and bases (DNA side) of the 
template T. Detailed descriptions are described as the following subsections. 
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Figure 2.4.2.1. The scoring schema using the evolutionary conservation and interacting 
preference. 
 
Template preparation  

 
Protein-DNA complex structures solved by X-ray crystallography (resolution > 3.0 Å) 

and NMR were obtained from the December 2007 release of the PDB. According to the work 
proposed by Luscombe et al. [122], we selected 1043 complexes by excluding complexes 
which are single-strand binding complexes or the numbers of DNA bases are less than 4. For 
each protein-DNA complex in this selected set, we identified the contact residues, whose 
heavy atoms are within a distance (distance ≤ 4.5 Å) of any heavy atoms of the bounded DNA, 
of the DNA-binding protein. The DNA-contacting residues are considered as the core part of 
a DNA-binding protein. To obtain reasonably extensive interface of a protein-DNA complex, 
a DNA-binding protein is required to have more than five contact residues and the number of 
residues of this protein is more than 50. The residue-DNA bases interacting pairs were also 
obtained from the protein-DNA complex. A residue R and a DNA base B are defined as an 
interacting pair if any heavy atoms of R and any heavy atoms of B are within a distance 4.5 Å. 
 
Alignment Tools 

 
For a given protein template T and a query protein sequence/structure P, we obtained the 

alignment by the following steps: If P is a protein structure, we used a structure alignment 
tool CE [132] to align T and P. The CE will return a Z score for the alignment representing 
the structure similarity of these two structures. The P is considered as a homologous protein 
of T if the Z score exceeds 3.7 based on CE’s statistical model. On the other hand, if P is a 
protein sequence, we applied the sequence alignment tool FASTA [126] to align the two 



50 

proteins (i.e. T and P). The P is considered as a homologous protein of T if the sequence 
identity exceeds 25% according to the observations of previous studies [66, 128, 130]. 
 
Scoring function 

 
For a homologous protein P of a template T (i.e. the alignment of P and T satisfies above 

two criteria), we used three scoring methods to calculate the score of P based on aligned 
contact residues of T. These methods, including consensus score, interaction score, and 
combination score, are described in the following subsections. 
 
 
 
Consensus Score 

 
We calculate the consensus scores of P based on aligned contact residues of T. The 

BLOSUM62 matrix [92] is applied here to evaluate the change of contact residues. The 
consensus scoring function is defined as  

 

                     ,
residuescontact  of#

)p,BLOSUM62(t 
  S CRi

ii

cons

∑
∈=             (Eq. 2.4.2.1) 

 
where CR is the set of the contact residues between T and P; ti and pi denote the ith contact 
residue of T and its corresponding aligned residue of P, respectively. Here, the score of a 
misaligned residue is -4, which is the smallest value in the BLOSUM62 matrix. 
 
Interaction Score 

 
The interaction score is obtained by the following steps. For all contact residue-base 

pairs between protein and DNA, respectively, in template T, we first replace the residues of 
those pairs with aligned residues in P. We used the knowledge-based scoring matrix M, which 
was proposed by Margalit and co-worker [116] to measure the preference of residues and 
DNA bases, to score the binding affinity between the target protein P and DNA based on 
template T (Figure 2.4.2.1). Finally the interaction score is given as 

 

                        ,
pairscontact #

)M(R 
  S i

i

int

∑
=                  (Eq. 2.4.2.2) 

 
where M(Ri) is preference in matrix M and Ri is the ith contact pair in P. When a contact 

residue is aligned to gap, we used the smallest score (-3.93) in M to be the score. 
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Combination Score 

 
The combination score, which is the linear combination of the consensus score and the 

interaction score, is given as 
 

                      int2cons1ncombinatio S    S   S ⋅+⋅= ωω              (Eq. 2.4.2.3) 

 
where w1 and w2 is the weight of the consensus and interaction scores, respectively. Here, we 
set both w1 and w2 to 1. 
 
 
 

2.5 Result 
2.5.1 Evolutionary conservation of DNA-contact residues in DNA-binding 
domains 

 
Given a query domain, our method identified similar DNA-binding structures or 

homologous protein sequences from the template library. To evaluate the performance of our 
method, for each DNA-contact domain (D) in the template library we generated its 
corresponding positive and negative sets. The members in the positive set contain the 
domains similar to domain D based on SCOP, while domains in the negative set do not. By 
applying our method on these two sets, we found that the scores of the domains in the positive 
set are significantly higher than those of domains in the negative set. We further determined a 
threshold to achieve high precision and recall. Combining with the threshold, we applied our 
method on 66 known SCOP families of DNA-binding domains and 250 non-DNA-binding 
proteins to examine the performance. 
 
Positive and negative set for each contact domain 

 
We collected DNA-binding contact domains from SCOP database, the detail is described 

in Method. To remove redundant contact domains, domains with highly similar sequences 
(identity > 90%) are grouped using the NCBI software BLASTCLUST. In each group, the 
one with the maximal number of contact residues is chosen as the representative domain of a 
group. For a representative domain R, these protein domains in the same SCOP family are 
considered as the member of R according to SCOP95 (members whose similarity greater than 
95% are excluded). Each member of R was aligned to R using the CE. We define a residue of 
R as misaligned if it is aligned to a gap. A family member is discarded if more than 20% 
contact residues of R are misaligned between R and this member. Family members that satisfy 
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the above criteria are considered to be in the positive set. If there are less than five members 
in the positive set of R, the entire family of R is discarded. We finally yielded 66 
representative domains with corresponding positive sets. For each R, we artificially generated 
1000 domains to be the negative set. To do this, for each artificial domain, we replicate its 
residues from R. Then we randomly mutated the residue type of each contact residue of R.  
 
Determining the threshold of similar DNA-binding function of a contact domain 
 

For each representative domain R, each member in the positive and negative sets was 
scored by the method we developed. Ideally, the scores of domains in the positive set should 
be on average significantly higher than those of the negative set. We used the 
Kolmogorov-Smirnov (KS) test to examine the above criterion. The KS test is a 
nonparametric test to determine if two distributions differ significantly. According to our 
results, the scores are significantly different for the positive set and the negative set in most 
domains (97% of 66 sets have a p value less than 0.05).  

 
Further, given a contact domain, we would like to determine a threshold for determining 

which domains have a similar DNA-binding function. For the two sets (positive and negative) 
of a representative domain, we separately transform all members' scores to z-scores by 

                                     δ
μ−

=
sZ

 ,                        
(Eq. 2.5.1.1) 

where s is the score of a member, μ is the mean score of the these two sets, and δ is the 
standard deviation. Figures 2.5.1.1(A) and (B) show the precision (ratio of the number of 

retrieved true positive data to all retrieved data) and the recall (ratio of the number of 
retrieved true positive data to all true positive) with various z-score thresholds, respectively. 
As shown in Figure 2.5.1.1(A), when we set the threshold greater than two, the precisions of 

using different thresholds are very similar (>90%).  
 

If we set the z-score threshold to one, only 60% of families are with high precision. The 
results imply that larger thresholds will yield higher precisions, but the benefit is limited 
when the threshold is larger than two. Oppositely, as shown in Figure 2.5.1.1(B), larger 
thresholds will reduce the recall. According to these results, we take the z-score threshold as 
2.0 and the domains with a z-score higher than the threshold will be considered as putative 
DNA-binding domains. 
 

 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2423444&rendertype=figure&id=F1�
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Figure 2.5.1.1. Precision and recall on different z-score thresholds. Our method results on 
different z-score thresholds for 66 representative domains. The distributions of the numbers of 
the families for (A) precisions and (B) recalls. 

 
 

Non-DNA-binding proteins 
 
We further apply our method to 250 non-nucleic-acid binding (non-DNA-binding) 

proteins, which were initially studied by Hobohm and Sander [133] and further specified by 
Stawiski et al. [105]. We align all non-redundant contact domains to those non-DNA-binding 
proteins using CE. Alignments whose z-scores (defined by CE) are greater than 3.7 with the 
misalign rate of contact residues less than 20% are chosen as non-DNA-binding domains. 177 
non-DNA-binding domains pass the constraints among 250 proteins. We applied our method 
on these non-DNA-binding domains and transformed their scores to z-scores. Figure 2.5.1.2 
shows the distribution of z-scores of non-DNA-binding domains. The scores approximately 
follow a normal distribution and the peak of the density occurred at Z = -1~0. Given a z-score 
threshold, the false positive rate is the ratio of number of domains whose z-score are beyond 
the threshold to the total non-DNA-binding domains. According to our previous analysis, we 
set the threshold to 2.0 and the false positive rate is less than 0.05. It shows that for 
non-DNA-binding domains, our method can recognize their non-binding with high accuracy.  
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Figure 2.5.1.2. Distribution of z-score values of 177 non-DNA-binding domains. 
 
 
2.5.2 Evolutionary conservation and interacting preference for identifying 
Protein-DNA interactions 
 
Identifying DNA-binding domains 

 
Proteins operate in biological processes by using their functional domains and the 

domains of the same families usually have similar functions. We applied our scoring 
functions to identify family members of a DNA-binding protein/domain. For each crystal 
structures of protein-DNA complex, we identified DNA-binding domains based on the 
domain definition of Structure Classification of Proteins (SCOP, version 1.71) [121]. To 
create a non-redundant and reasonable DNA-binding set for evaluation, we first select the 
domains, which have at least 50 residues and more than five contact residues. To remove the 
redundant DNA-binding domains, we applied the NCBI software BLASTCLUST to cluster 
highly similar sequences (sequence identity >90%) into one group. In each group, a 
DNA-binding domain which has maximal contact residue in this group is selected as the 
representative domain. We finally yield 69 representative DNA-binding domains.  

 
 
The family members (according to the classification of the SCOP database) are aligned 

to their representative domain. Two protein-DNA interfaces are often different if their 20% 
contact residues are misaligned based on our observations. Here, we discarded the members if 
more than 20% misaligned contact residues. Each aligned member is scored by our scoring 
methods.  

 
To show the statistical significance of the scores, we create 10,000 random domains for 

each representative domain by randomly mutating all contact  residues  of  the  
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representative domain. We then translate the scores of the family members to Z-scores by  
 

                                δ
μ−

=
sZ

,                   
(Eq. 2.5.2.1) 

 
where s is the score of a member, μ and δ are the mean and the standard deviation, 

respectively, of 10,000 random domains. Figure 2.5.2.1 shows the distribution of Z scores in 
our scoring method. It shows that more than 80% members have statistic significant Z > 2 
against random sets. This result indicates that the combination of the consensus and the 
interaction scoring function provides statistic meaning. 
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Figure 2.5.2.1. The distribution of Z-score of our scoring method. 
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Figure 2.5.2.2. The ROC curves of Z-score on our scoring methods. 
 
 

We further test the capability of the scoring methods to identify DNA-binding domains. 
The family members of all representative domains are used to be the positive set and the total 
number is 811 based on the SCOP database. The negative set was obtained by following steps. 
All representative domains are aligned to 250 public non-DNA-binding proteins [134] by 
using CE. An aligned domain of non-DNA-binding proteins is used to be a negative domain if 
the returned z value (defined by CE) of the alignment exceeds 3.7 and the misalign rate of 
contact residues is less than 20%. We totally obtained 196 negative cases. The overall 
performance is shown in Figure 2.5.2.2 by using ROC curves. The results show that the 
consensus score is the best and the interaction score is the worst to identify DNA-binding 
domains. It showed that the combination of the consensus and the interaction scoring function 
is acceptable to identify DNA-binding domains.  

 
Free energy prediction between protein and DNAs 

 
The hot spots of a protein are a set of individual residues which contributed the most 

binding free energy when interacting with other molecules [135] . The alanine scanning 
mutagenesis [136], which mutates a residue to alanine and measures the free energy change 
(ΔΔG) of the mutation, is usually used to detect hot spots. To evaluate the capability of the 
scoring function on modeling the ΔΔG, we obtained the point-mutation data of residues from 
the alanine scanning energetics database (ASEdb) [137]. Unfortunately, there are only two 
protein-DNA complexes (PDB code 1MNM and 1BDT) in ASEdb. We gathered all mutation 
data, which consists of 23 mutations of residues (non-DNA-contact residues are filtered out), 
from the two complexes.  
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For applying the scoring functions to these 23 mutation data, the protein of wild type 

complex is used as the template. We firstly align a protein sequence which is identical with 
the template to yield the wild type score Swt. The one-point mutation protein sequence is then 
aligned to the template and obtain the mutation score Smt. We used the energy gap (ΔS) 
between the wild-type (Swt.) score and the mutation-type score (Smt) to model the ΔΔG (i.e. 
Smt-Swt). 

 
Figure 2.5.2.3 shows the correlation between experimental energies (ΔΔG) and predicted 

energies (ΔS). The correlations of consensus and combination scoring methods are 0.38 and 
0.6. This result indicates that the evolutionary conservation on DNA-contact residues is not 
sufficient to model the binding free energy between proteins and their binding DNAs. The 
interacting preference significantly improved the performance of only conservation score. 
These experimental results show that both evolutionary conservation and binding preference 
of DNA-contact residues play the key role for interactions between proteins and DNAs. 
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Figure 2.5.2.3. The correlation between ΔΔG and ΔS (A) Consensus (B) Combination. 

 
2.6 Discussion 
 
 
2.6.1 Compare the same SCOP family of homeodomain 1B8I-A 

Figure 2.6.1.1 shows an example, which is the ultrabithorax homeodomain (Ubx) from 
Drosophila melanogaster (PDB entry 1B8I-A [138]) selected from 66 representative domains 
to described the characteristics of our method. The DNA is represented in green. 18 
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DNA-contact residues are presented as yellow stick and other residues are denoted as blue. 
The protein sequence is also presented and a contact residue is marked with an asterisk. For 
the alignment of the representative domain (1B8I-A) to the domains of its member, Figure 
2.6.1.1 presents a nice case (PDB entry 1PUF-A), which is a homeobox protein hox-a9 from 
mouse [139]. We found that the contact residues is highly conserved in the aligned amino 
acids of the two domains and our scoring method shows this high z-score (z-score = 11.92). 
On the other hand, if we align 1B8I-A to 250 non-DNA-binding proteins, our method is able 
to discard the similar protein structures whose contact residues are not conserved (z-score = 
0.58). Figure 2.6.1.1 shows an example of aligning 1B8I-A to 1BOB, which is histone 
acetyltransferase hat1 from S. cerevisiae in complex with acetyl coenzyme [140]. 

 

Figure 2.6.1.1. Searching results of the ultrabithorax homeodomain protein. Searching 
results using the homeotic Ubx/Exd/DNA ternary complex (PDB entry 1B8I-A) from 
Drosophila melanogaster as the query. (A) The contact residues of 1B8I-A complex are 
presented as stick (yellow). The sequence of 1B8I-A is shown and contact residues are 
marked with asterisks. (B) Structure alignment of 1B8I-A (blue) and 1PUF-A (green). The 
score is 4.78 and Z-score is 11.92 by our scoring method. (C) Structure alignment of 1B8I-A 
(blue) and non-DNA-binding protein 1BOB (green). Only the aligned structure/sequence of 
1B8I-A and 1BOB are shown. We obtained score = -0.72 and Z-score = 0.58. 
 
 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2423444&rendertype=figure&id=F3�
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Figure 2.6.1.2. Comparison of bound DNA sequences of homologous proteins. The 
alignments of the bound DNA sequences of homologous proteins by using the homeotic 
ubx/exd/DNA ternary complex (PDB entry 1B8I-A) as the query. (A) The z-score values and 
the bound DNA sequences of the complex 1B8I (PDB entry 1B8I-C and 1B8I-D), 1PUF 
(PDB entry 1PUF-D and 1PUF-E), and 1O4X (PDB entry 1O4X-C and 1O4X-D). All 
sequences are from 5' to 3'. (B) Alignments of bound DNA sequences of the complexes 1B8I 
and 1PUF. A colon denotes an identical pair and an asterisk denotes a contact nucleotide 
(asterisks are marked above/below alphabets on the upper/lower sequence of the alignment, 
respectively). (C) Alignments of bound DNA sequences of the complexes 1B8I and 1O4X. 

 
 
The z-score of DNA-binding domains in the same SCOP family may be variable for 

several representative domains (Figure 2.6.1.2(A)). The 1PUF-A and 1O4X-A1 (Oct-1 POU 
homeodomains from Homo sapiens [141]) are the members of the 1B8I-A representative 
domain. The z-scores are 11.92 (1PUF-A) and 4.4 (1O4X-A1) when 1B8I-A was used as the 
query (Figure 2.6.1.2(A)). The z-scores indicated that the contact residues between 1PUF-A 
and 1B8I-A are more conserved than the ones between 1O4X-A1 and 1B8I-A on contact 
residues interacting to the bases of the core binding site in the DNA. 
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To investigate variation of contact residues of DNA-binding domain in the same SCOP 

family, we compared the bound DNA sequences of two DNA-binding domains by aligning 
the double-strand sequences to each other. 1B8I-A binds two DNA sequences (i.e. PDB entry 
1B8I-C and 1B8I-D) and 1O4X-A1 binds another two DNA sequences (PDB entry 1O4X-C 
and 1O4X-D). First we generated four pairing alignments: 1B8I-C and 1O4X-C; 1B8I-C and 
1O4X-D; 1B8I-D and 1O4X-C; and 1B8I-D and 1O4X-D. We do not allow any gap insertion 
when aligning a-pairing DNA sequences. The alignments are obtained by sliding two 
sequences against each other until the best match is found. The alignment with the maximum 
number of identical aligned pairs is chosen, and as a result the alignment between 1B8I-C and 
1O4X-C is the one chosen (Figure 2.6.1.2(C)). Then we adjust the alignment of the other 
DNA strand pairs (i.e. 1B8I-D and 1O4X-D) according to this best alignment (1B8I-C and 
1O4X-C). 

 
Figure 2.6.1.2(B) and Figure 2.6.1.2(C) show that the number of identical nucleotides 

between 1B8I-C and 1PUF-E [142] as well as 1B8I-D and 1PUF-D [142] is much higher than 
those of 1B8I-C and 1O4X-C [143] as well as 1B8I-D and 1O4X-D [144] for whole DNA 
sequences. At the same time, 11 identical contact nucleotides are obtained from the 
alignments of 1B8I-C and 1PUF-E as well as 1B8I-D and 1PUF-D; but two identical contact 
nucleotides are yielded from the alignments of 1B8I-C and 1O4X-C as well as 1B8I-D and 
1O4X-D (the contact nucleotides are the nucleotides that interact with contact residues of 
protein). With respect to 1B8I-A, 1PUF-A and 1O4X-A1 are different not only in the DNA 
sequences they bind to but also in their DNA-binding sites. These results show that the 
members in the same SCOP family may have different DNA-binding models and that our 
method is able to detect the different Protein-DNA interactions based on the evolutionary 
conservation of DNA-contact residues. 

 
We produced multiple protein sequence alignments of 13 homeodomains (Figure 2.6.1.3) 

selected from SCOP 1.71 using a multiple structure alignment tool, MUSTANG [145]. These 
domains were ranked by z-scores calculated by using our scoring method and the sequence of 
1B8I-A as the query. According to z-scores, these 13 domains can be roughly divided into 
two groups, including the Ubx-like homeodomain colored in blue (e.g. PDB entry 9ANT-A 
(12.77), 1AHD-P (12.19), and 1SAN (11.96)) and the Oct-1 POU homeodomain colored in 
red (e.g. PDB entry 1E3O-C1 (6.40), 1GT0-C1 (6.38), and 1O4X-A1 (4.40)). Figure 2.6.1.3 
shows that all Ubx-like homeodomains are significantly more conserved than Oct-1 POU 
homeodomains on contact residues (green). The Ubx homeodomain binds together with the 
extradenticle homeodomain (Exd) to recognize four DNA bases (ATAA) [138] based on four 
residues that are Ile47, Gln50, Asn51, and Met54, locating at α3 helix in the Ubx (gray 
columns in Figure 2.6.1.3). The z-scores of the domains are higher if they are conserved on 
these four residues, such as three antennapedia homeodomains and two homeobox protein 



61 

hox. These results show that contact residues interacting with bases in the DNA sequences are 
often conserved. This result is consistent to previous results [146] in which the homeodomain 
family was considered as a multi-specific family that consists of some subfamilies. This work 
concluded that members in the same subfamily bind DNA specifically but the members in 
different subfamilies recognize different DNA targets. In summary, we demonstrated the 
conservation of DNA-contact residues in DNA-binding domains. 

 

 

Figure 2.6.1.3. Multiple structure alignment of 13 homeodomain structures. The domains 
with similar DNA-binding specificities with 1B8I-A are shown in blue and others are red. The 
contact residues of 1B8I-A are marked green. The contact residues interacting to the bases of 
the core binding site in the DNA (ATAA) major groove are indicated gray. 
 
 

2.6.2 Hormone receptor family 
 
A hormone receptor is a receptor protein that binds a specific hormone and modulates 

numerous regulatory pathways [147, 148]. Based on the DNA-binding specificity of a protein, 
the hormone receptor family is classified into multi-specific families, which contain several 
subfamilies, by Luscombe et al. [146]. The members of a subfamily bind to specific DNA 
sequences; conversely, the members of different subfamilies target different DNA sequences. 
As shown in Figure 2.6.2.1, the hormone receptor family has two subfamilies that 50 
members of Subfamily-1 target the sequence AGGTCA and 8 members of Subfamily-2 target 
the sequence AGAACA.  
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Subfamily 2

Subfamily 1

5'—AGGTCA— 3'

5'—AGAACA— 3'

Hormone receptor family

2NLL-B

…
…

Number = 8

Number = 50

 
 

Figure 2.6.2.1. The target DNA sequences of two subfamilies in the hormone receptor family. 
The complex (2NLL-B) is selected to be the template. 

 
 
All members of both subfamilies were obtained from PDB and SWISSPROT through 

homology searching by a representative protein (the detail was described in Luscombe et al 
[146]). To see how the contact residues affect the binding specificity of the hormone receptor 
family, we applied our combined scoring function to the family. First, we used the 
protein-DNA complex of thyroid hormone receptor β (PDB code 2NLL chain B) [149] from 
the Subfamily-1 to be a template. The members of the two subfamilies were then aligned to 
the template. Our combined scoring function is used to score each aligned contact residue. 
Finally, for each position of contact residues in the two subfamilies, Figure 2.6.2.2 shows the 
average scores of the Subfamily-1 (blue) and Subfamily-2 (red). The x-axis presents the 
contact residue with its residue number (in PDB) of the template.  
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Figure 2.6.2.2. (A) The average score of each contact residues in two subfamilies. (B) The 
conservation of each contact residue in two subfamilies. The logo was created by WebLogo 
[150]. 

 
 
We observed three things. First, Subfamily-1 obtained higher overall score (by summing all 

scores of each contact residue) than Subfamily-2, indicating that the template is more similar 
with the members of Subfamily-1 than the members of Subfamily-2. Second, the scores of 
more than half contact residues are roughly equal. We found that these DNA-contact residues 
are conserved in both subfamilies of the hormone receptor family. Third, the score of 
Subfamily-1 and Subfamily-2 is obviously different at the contact residue Glu321. As shown 
in Figure 2.6.2.1 the Glu321 accepts a hydrogen bond from cytosine which is base-paring 
with the third base in the target sequence (AGGTCA) (Figure 2.6.2.3). However,  the 
residue 321 in the members of Subfamily-2 is glycine which do not interact with any bases 
[146]. The target DNA sequences of these two subfamilies (Subfamily-1: AGGTCA; 
Subfamily-2: AGAACA) are different. These results demonstrate that our combination 
scoring function is able to reflect binding specificity of the hormone receptor to discriminate 
these two subfamilies. 
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Figure 2.6.2.3. The hydrogen bond between Glu321 and DNA 
 

 
 

2.7 Conclusion 
 
3D-regulog based approach is proposed for modeling protein-DNA interactions and 

binding model. We proposed a structure template-based method which used a novel scoring 
function to identify potential protein-DNA interactions, such method has the advantage of 
increasing crystal structures of protein-DNA complexes. Furthermore, the method also 
reveals the structure information of identified protein-DNA binding partners, we found that 
the feature, evolutionary conservation of DNA-contact residues, is helpful to identify 
DNA-binding domains. By using the scoring function based on such a feature, we 
successfully identified 66 DNA-binding domain families, also identify the different 
DNA-binding behaviors of proteins in the same SCOP family.  

 
The proposed scoring method which combined consensus information of DNA-contact 

residues and the preference of amino acid and DNA-bases is showed good performance in 
modeling protein-DNA interactions and good correlations between the scores and the binding 
free energy of protein-DNA complexes. The proposed method which is a residue-based 
approach has more potential than other atom-based approach for homology modeling of 
proteins.  

2.8 Future work 
 

For measuring the evolutionary conservation of DNA-contact residues, a position 
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specific scoring matrix (PSSM) which obtained by homological proteins of a template 
proteins should be used to improve the accuracy. The information of water-mediated bond 
and electrostatic interactions between amino acids and nucleotides will be incorporated into 
the knowledge-based scoring matrix. For detecting possible transcription factor binding sites, 
more transcription factors which have crystal structures of protein-DNA complexes will be 
used to as the template. The high-score region predicted by our scoring method in promoter 
regions will be further verified. The proposed method could be applied to predict the position 
weight matrix (PWM) of a template protein, selecting high-score DNA sequences using the 
scoring function, the PWM could be constructed by selected sequences.    
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Chapter 3: 
Protein-RNA docking 
 
3.1 Introduction 

 
RNA is often used as an efficient drug target for some pathogenic therapies. For example, 

some antibiotics target RNA in the bacterial ribosome while treating bacterial diseases 
clinically and experimentally [151]. In addition, there are at least three advantages [152] to 
target RNA instead of proteins: 1) Inhibitors of RNA often have less side effects. Proteins that 
have similar substrates are difficult to be inhibited specifically (e.g. ATP); 2) RNA has more 
accessible sites for interacting with inhibitors; 3) Inhibitors of RNA usually have less drug 
resistance, because functional domains of RNA are often more highly conserved than active 
sites of proteins.  

 
Various scoring functions have been developed for finding inhibitors of protein targets, 

including knowledge-based [153, 154], empirical [155, 156], physics-based [157, 158], and 
solvent-based scoring functions [159]. Most of scoring functions are designed for protein 
targets and do not consider properties of RNA. It is difficult to predict reliable conformations 
of ligands if we dock ligands into RNA targets by using these scoring functions. Therefore, a 
reliable scoring function is required to find novel inhibitors of RNA targets.  

 
GEMDOCK is a docking/screening tool which achieved high accuracies on some 

benchmarks [160-162] and successfully identified novel substrates or inhibitors for some 
targets [163, 164]. The GEMDOCK used a soft energy function and a generic evolutionary 
method for flexible docking. The GEMDOCK energy function consists of electrostatic, steric, 
and hydrogen-bonding potentials. The latter two terms use a linear model that is simple and 
recognizes potential inhibitors rapidly. Based on these advantages, we selected GEMDOCK 
as the program for docking ligand into RNA targets. In this study, we added the atom types 
that are specific to nucleotides in the scoring function of GEMDOCK. The new scoring 
function is termed as “GemRNA”. We tested the performance of GemRNA on the public set 
(38 RNA-ligand complexes). The results show that GemRNA could model RNA-ligand 
binding reliably. 
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3.2 Method 
 
3.2.1 GEMDOCK Parameters 
 

Table 3.2.1.1 indicates the setting of GEMDOCK parameters, such as initial step sizes, 
family competition length (L = 2), population size (N = 300), and recombination probability 
(pc = 0.3) in this work. The GEMDOCK optimization stops when either the convergence is 
below certain threshold value or the iterations exceed a maximal preset value which was set 
to 70. Therefore, GEMDOCK generated 1200 solutions in one generation and terminated 
after it exhausted 84000 solutions in the worse case. These parameters were decided after 
experiments conducted to recognize complexes of test docking systems with various values. 

 
Table 3.2.1.1. Parameters of GEMDOCK 

Parameter Value of parameters 
Initial step sizes  σ = 0.8, ψ = 0.2 (in radius) 

Family competition length  L = 2 

Population size  N = 300 

Recombination rate  pc =0.3 

# of the maximum generation 70 

 

 
3.2.2 Scoring Function for RNA-ligand Docking 
 
    In this work, we used an empirical scoring function given as 

                  Etot = Einter + Eintra + Epenal                    (Eq. 3.2.2.1) 
(3.2.2.1) 

where Einter and Eintra are the intermolecular and intramolecular energy, respectively, Epenal is a 
large penalty value if the ligand is out of range of the search box. Epenal is set to 10000. 

    The intermolecular energy is defined as 

( )∑∑
= =

+=
lig

i

RNA

j ij

jiB
ij r

qq
FE r ij

1 1
]

4
0.332[inter               (Eq. 3.2.2.2) 

where rij is the distance between the atoms i  and j ; iq  and jq  are the formal 
charges and 332.0 is a factor that converts the electrostatic energy into kilocalories per mole. 
The lig and RNA denote the numbers of the heavy atoms in the ligand and RNA, respectively. 

The formal charge of a receptor and ligand atom is indicated in Table 3.2.2.1. 
( )r ijB

ijF
 is a 

simple atomic pair-wise potential function (Figure 3.2.2.1) modified from previous works 
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[155, 165] and given as 
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r ijB
ij is the distance between the atoms i and j with the interaction type ijB  forming by 

the pairwise heavy atoms between ligands and RNAs where ijB  is either a hydrogen bond or 

a steric state. In this atomic pair-wise model, these two potentials are calculated by the same 
function form but with different parameters, 1V ,…, 6V  given in Figure 3.2.2.1. The energy 

value of a hydrogen bond should be larger than the one of the steric potential. In this model, 
the atom is divided into four different atom types (Table 3.2.2.1): donor, acceptor, both, and 
nonpolar. A hydrogen bond can be formed by the following atom-pair types: donor-acceptor 
(or acceptor-donor), donor-both (or both-donor), acceptor-both (or both-acceptor), and 
both-both. Other atom-pair combinations are to form the steric state. 

The intramolecular energy of a ligand is 

    ( ) ( )[ ]∑∑ ∑
== +=

−−+=
dihed
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k

lig

i

lig

ij

B
ij mAFE r ij

1
0

1 2

cos1 θθintra              (Eq. 3.2.2.4) 

where ( )r ijB
ijF  is defined as Equation 4 except that the value is 1000 to discard unreasonable 

conformations when r ijB
ij ＜  2.0 Å and dihed  is the number of rotatable bonds. We 

followed the work of Gehlhaar et al. [155] to set the values of A , m , and 0θ . For the 
33 spsp −  bond A , m , and 0θ  are set to 3.0, 3, and π ; and A  = 1.5, m  = 6, and 0θ  = 

0 for the 23 spsp −  bond 
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Table 3.2.2.1. Atom formal charge of GEMDOCK 
Formal charge  Atom name 

Receptor:  

0.5 

0.5 

N atom in His (ND1 & NE2) and Arg (NH1 & NH2) 

O atom in RNA (OP1&OP2) 

-0.5 O atom in Asp (OD1 & OD2) and Glu (OE1 & OE2) 

1.0 N atom in Lys (NZ) 

2.0 metal ions (MG, MN, CA, ZN, FE, and CU) 

0 other atoms 

Ligand:  

0.5 N atom in +− 22 )C(NH  

-0.5 O atom in –COO–, −− 2PO , −− 3PO , −− 3SO , and −− 4SO  

1.0 N atom in +− 3NH and 33)(CHN+−  

0 other atoms 

 

 

 

Figure 3.2.2.1. The linear energy function of the pair-wise atoms for the steric interactions 
and hydrogen bonds in GEMDOCK (bold line) with a standard Lennard-Jones potential (light 
line). 

 

 

3.2.3 GEMDOCK algorithm details 
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In the following subsections, we present the details of our approach for molecular 

docking (Figure 3.2.3.1). The core idea of our evolutionary approach was to design multiple 
operators that cooperate using the family competition model which is similar to a local search 
procedure. We designed a new rotamer-based mutation operator for reducing the search space 
of ligand structure conformations, and used a differential evolution operator[166] for reducing 
the disadvantages of Gaussian and Cauchy mutations. GEMDOCK is a nearly automatic 
docking tool for generating all experimental variables, and may serve as a flexible or hybrid 
docking program. First we specified the coordinates of ligand and RNA atoms, the ligand 
binding area, atom formal charge (Table 3.2.2.1), and atom types (Table 3.2.3.1). Crystal 
coordinates of the ligand and RNA atoms were taken from the Protein Data Bank, and were 
separated into different files. GEMDOCK then automatically determined the center of the 
receptor and the search cube of a binding site according to the maximum and minimum of 
coordinates of these selected RNA atoms. 

 
Table 3.2.3.1. Atom types of GEMDOCK 

Atom type Atom name of PDB 

Donor     N atoms in U(N3) and G(N1)  

Acceptor 

  

 

O atoms in all RNA ribose 

(OP1&OP2&O5&O4&O3),C(O2), 

U(O2&O4),G(O6)  

N atoms in A(N1&N3&N7), C(N3),G(N7&N3) 

Both      

 

O atoms in all RNA ribose(O2)  and N atoms in A(N6), 

C(N4),G(N2) 

Nonpolar  other atoms (such as carbon and phosphorus) 

 
 

After GEMDOCK prepares the ligand and RNA, GEMDOCK works as follows: 
Randomly generate a starting population with N solutions by initializing the orientation and 
conformation of the ligand relating to the center of the receptor. Each solution is represented 
as a set of three n-dimensional vectors ( )iiix ψσ ,, , where n  is the number of adjustable 

variables of a docking system and i  = 1,…, N  where N  is the population size. The vector 
x  represents the adjustable variables to be optimized in which 1x , 2x , and 3x  are the 
3-dimensional location of the ligand; 4x , 5x , and 6x  are the rotational angles; and from 7x  

to nx  are the twisting angles of the rotatable bonds inside the ligand. σ  and ψ  are the 

step-size vectors of decreasing-based Gaussian mutation and self-adaptive Cauchy mutation. 
In other words, each solution x  is associated with some parameters for stepsize control. The 
initial values of 1x , 2x , and 3x  are randomly chosen from the feasible box, and the others, 
from 4x  to nx , are randomly chosen from 0 to π2  in radians. The initial step sizes σ  is 
0.8 and ψ  is 0.2. After GEMDOCK initializes the solutions, it enters the main evolutionary 
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loop which consists of two stages in every iteration: decreasing-based Gaussian mutation and 
self-adaptive Cauchy mutation. Each stage is realized by generating a new quasi-population 
(with N  solutions) as the parent of the next stage. As shown in Figure 14, these stages apply 
a general procedure “FC_adaptive” with only different working population and the mutation 
operator. 

GEMDOCK can be a flexible docking method or a hybrid docking method which evolves 
simultaneously both flexible and rigid conformation solutions of a ligand. GEMDOCK is a 
flexible docking tool if it evolves the conformation variables ( 7x ,…, nx ) of each solution in a 

population. On the other hand, GEMDOCK is a hybrid approach if the conformation variables 
of part of solutions (e.g., Nη  solutions) are fixed and set to the values of a native binding 
state. In this work, η  is 0.2 when GEMDOCK is a hybrid method which simultaneously 

evolves fix and flexible ligand conformations by the recombination operators. 

The FC_adaptive procedure (Figure 3.2.3.1) employs two parameters, namely, the 
working population (P, with N solutions) and mutation operator (M), to generate a new 
quasi-population. The main work of FC_adaptive is to produce offspring and then conduct the 
family competition. Each individual in the population sequentially becomes the “family 
father.” With a probability pc, this family father and another solution that is randomly chosen 
from the rest of the parent population are used as parents for a recombination operation. Then 
the new offspring or the family father (if the recombination is not conducted) is operated by 
the rotamer mutation or by differential evolution to generate a quasi offspring. Finally, the 
working mutation is operates on the quasi offspring to generate a new offspring. For each 
family father, such a procedure is repeated L times called the family competition length. 
Among these L offspring and the family father, only the one with the lowest scoring function 
value survives. Since we create L children from one “family father” and perform a selection, 
this is a family competition strategy. This method avoids the population prematureness but 
also keeps the spirit of local searches. Finally, the FC_adaptive procedure generates N  
solutions because it forces each solution of the working population to have one final 
offspring. 

In the following, genetic operators are briefly described. We use ( )aaaxa ψσ ,,=  to 
represent the “family father” and ( )bbbxb ψσ ,,=  as another parent. The offspring of each 
operation is represented as ( )cccxc ψσ ,,= . The symbol s

jx  is used to denote the j th 

adjustable optimization variable of a solution s , { }nj ,...,1∈∀ . 
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Figure 3.2.3.1. The main steps of GEMDOCK for molecular docking. 

 
 
3.2.4 Recombination Operators 
 

GEMDOCK implemented modified discrete recombination and intermediate 
recombination. [167] A recombination operator selected the “family father (a)” and another 
solution (b) randomly selected from the working population. The former generates a child as 
follows: 
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               (Eq. 3.2.4.1) 

    The generated child inherits genes from the “family father” with a higher probability 0.8. 
Intermediate recombination works as: 

 

( ) 2/a
j

b
j

a
j

c
j ωωβωω −+= ,              (Eq. 3.2.4.2) 

 

    where ω  is σ or ψ  based on the mutation operator applied in the FC_adaptive 
procedure. The intermediate recombination only operated on step-size vectors and the 
modified discrete recombination was used for adjustable vectors (x). 
 
 
3.2.5 Mutation Operators 
 

1. Initial the protein and the ligand as follows: 
(a) Determining the size and location of the ligand binding site and 

removing the structure water molecules. 
(b) Assigning the atom type (Table 12) and the atom formal charge (Table 

11) of a ligand and a protein. 
2. Fix the location of the receptor and Let g = 1. Randomly generate initial 

population, P(g), with N solutions by initializing the orientation and 
conformation of a ligand related to the receptor. 

3. Evaluate the scoring fitness of each solution in the population P(g). 
4. Generate a new quasi-population, P1(g), with N solutions by applying 

FC_Adaptive with P(g) and decreasing-based Gaussian mutation (Mdg). 
5. Generate a new quasi-population, Pnext, with N solutions by applying 

FC Adaptive with P1(g) and self-adaptive Cauchy mutation (Mc). Let g = 
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After the recombination, a mutation operator, the main operator of GEMDOCK, is 
applied to mutate adjustable variables (x). 
 
Gaussian and Cauchy Mutations: Gaussian and Cauchy Mutations are accomplished by 
first mutating the step size ( )ω  and then mutating the adjustable variable x: 

     ( )⋅′=′ Ajj ωω ,                    (Eq. 3.2.5.1) 

     ( )⋅′+= Dxx jj
'
j ω ,                 (Eq. 3.2.5.2) 

 

where jω  and xj are the i th component of ω  and x, respectively, and jω  is the respective 

step size of the xj where ω  is σ or ψ . If the mutation is a self-adaptive mutation, ( )⋅A  is 
evaluated as exp ( ) ( )[ ]1,01,0 jNN ττ +′  where ( )1,0N  is the standard normal distribution, 

( )1,0jN  is a new value with distribution ( )1,0N  that must be regenerated for each index j. 

When the mutation is a decreasing-based mutation ( )⋅A  is defined as a fixed decreasing rate 
95.0=γ . ( )⋅D  is evaluated as ( )1,0N  or ( )1C  if the mutation is, respectively, Gaussian 

mutation or Cauchy mutation. For example, the self-adaptive Cauchy mutation is defined as 

a
j

c
j ψψ = exp ( ) ( )[ ]1,01,0 jNN ττ +′ ,                (Eq. 3.2.5.3) 
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j ψ+= .                        (Eq. 3.2.5.4) 

We set τ  and τ ′  to ( ) 1
2

−
n  and 

1

2
−

⎟
⎠
⎞⎜

⎝
⎛ n , respectively, according to the suggestion of 

evolution strategies. [167] A random variable is said to have the Cauchy distribution ( )( )tC  

if it has the density function: ( ) 22

/;
yt

ttyf
+

=
π , ∞− ＜ y ＜∞ . In this paper t is set to 1. Our 

decreasing-based Gaussian mutation uses the step-size vector σ with a fixed decreasing rate γ 
= 0.95 and works as 

ac γσσ = ,                              (Eq. 3.2.5.5) 
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Differential Evolution: An offspring of differential evolution is generated as 
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and 
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 ( )c
j

b
j

a
j

m
j xxKxu −+= ,                  (Eq. 3.2.5.8) 

where a is the “family father”; b and c are two solutions randomly selected from the 
working population subjected to cba ≠≠ . In this work, K and CR are set to 0.5 and 0.9, 
respectively. 

 
Rotamer-Mutation: This operator is only used for x7 to xn to find the conformations of the 
rotatable bonds inside the ligand. For each ligand, this operator mutates all of the rotatable 
angles according to the rotamer distribution and works as: 

kijx γ=  with probability kip ,             (Eq. 3.2.5.9) 

where kiγ  and kip  are the angle value and the probability, respectively, of ith rotamer of kth 
bond type including 33 spsp −  and 23 spsp −  bond. The values of kiγ  and kip  are based 

on the energy distributions of these two bond types. 
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3.3 Results and Discussion 
 
 
3.3.1Test data set and docking protocols 

 
To evaluate the strengths and limitations of GEMDOCK, we tested the program on a 

highly diverse dataset of 38 RNA-ligand complexes (Tables 3.3.1.1 and 3.3.1.2) Detering and 
Varani [168]. 14 of them are NMR structures, and the remaining complexes are 
crystallographic structures. Crystal coordinates of the ligands and RNA atoms were taken 
from the Protein Data Bank (PDB), and were separated into different files. The ligands 
consist of small, flexible, and cyclic molecules (30-40 heavy atoms, 3-4 rings). For the NMR 
structures, we selected the ligands of the first model as the native conformation unless a 
different structure was specified as the minimum energy structure in the PDB file.  

 
Our program then assigned the atom formal charge and atom type (i.e., donor, acceptor, 

both, or nonpolar) for each atom of both the ligand and RNA. The bond type (sp3－sp3, sp3
－sp2, or others) of a rotatable bond inside a ligand was also assigned. These variables were 
used in Equation 3.3.2.1 to calculate the scoring value of a docked conformation (see 
Materials and Methods).  

 

When preparing the RNA receptors, the size and location of the ligand binding site was 
determined by considering the RNA atoms located ＜ 10 Å from each ligand atom. The 
metal atoms in the active site were also retained. We duplicated Jones’ work [169] in that all 
structure water molecules were removed. GEMDOCK then automatically decided the search 
cube of a binding site based on the maximum and minimum values of coordinates among 
these selected RNA atoms. 

Table 3.3.1.1.  PDB codes with ligand names of the 38 test complexes 
1AJU(ARG), 1AM0(AMP), 1BYJ(GET), 1EHT(TEP), 1EI2(NMY), 1FIT(ROS), 1F27(BTN), 1FJG(PAR), 

1FJG(SCM), 1FJG(SRY), 1FMN(FMN), 1HNW(TAC), 1HNX(PCY), 1HNZ(HYG), 1J7T(PAR), 1JZX(GLY), 

1JZY(ERY), 1JZZ(ROX), 1K01(CLM), 1K8A(CAI), 1K9M(TYK), 1KD1(SPR), 1KOC(ARG), 1KOD(CIR), 

1LC4(TOY), 1LVJ(PMZ), 1M90(SPS), 1MWL(GET), 1NEM(BDG_NEB_BDR_IDG), 1NJM(SPS), 

1NJN(SPS), 1NJO(PPU), 1NWY(ZIT), 1OND(TAO), 1PBR(PA1_PA2_PA3_IDG), 

1QD3(RIB_IDG_BDG_CYY), 1TOB(TOA_TOC_TOB), 2TOB(TOA_TOC_2TB) 
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Table 3.3.1.2. GEMDOCK results of 38 complexes 
RMSD (Å) PDB codes with ligand names 

0.5≤  1FIT(ROS), 1FJG(SCM) 

0.1,5.0 ≤>  
1BYJ(GET), 1FJG(SRY), 1F27(BTN) 1QD3(RIB_IDG_BDG_CYY) 

2TOB(TOA_TOC_2TB) 

5.10.1 ≤>  

 

1FJG(PAR), 1LC4(TOY) 1KOD(CIR) 1MWL(GET) 1J7T(PAR) 1NJO(PPU) 

1AM0(AMP) 1JZX(GLY) 
0.2,5.1 ≤>  1HNZ(HYG) 1HNW(TAC) 
5.2,0.2 ≤>  1PBR(PA1_PA2_PA3_IDG) 1FMN(FMN) 
0.3,5.2 ≤>  1EHT(TEP) 

0.3>  

1K01(CLM) 1K8A(CAI) 1LVJ(PMZ) 1KD1(SPR) 1NWY(ZIT) 1HNX(PCY) 

1NEM(BDG_NEB_BDR_IDG) 1JZY(ERY) 1TOB(TOA_TOC_TOB) 1EI2(NMY) 

1JZZ(ROX) 1OND(TAO) 1K9M(TYK) 1M90(SPS) 1NJM(SPS) 1NJN(SPS) 

1AJU(ARG)  

 
 
The root mean square deviation (RMSD) of heavy atom positions between the docked 

conformation and the crystal structure was used to assess the accuracy of docking predictions. 
The successful percentage (the proportion of docking experiments that found a solution 
within 2.5 Å RMSD) was determined to evaluate the robustness of a docking method. The 
RMSD commonly used in previous studies [169, 170] is defined as 
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where M is the heavy atom number of a ligand; ( )iii ZYX ,,  and ( )iii zyx ,,  are the 
coordinates of the ith atom of X-ray crystal and docked structures, respectively. And an 
arbitrary value of a 2.5Å rmsd from the experimental structure was chosen to separate 
successful and unsuccessful docking poses [168]. 

 
 

3.3.2 Overall accuracy on 38 complexes 
 
The overall accuracy of GEMDOCK in predicting the docked ligand conformations of 

38 test complexes is shown in Table 3.3.2.1. All results are derived from 20 independent 
docking runs, and the docked lowest-energy structure was considered for each test case. On 
average, GEMDOCK took 305 seconds for a docking run on a Pentium 1.4 GHz personal 
computer with a single processor. 

In the test set, we found the docking poses of 20 compounds were near that of native 
ligands (≦ 2.5 Å). GemRNA achieved 53% success in identifying the experimental binding 
model (Table 3.3.2.1) The successful rates of the successful cases were shown in Figure 
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3.3.2.1, 2 of them (1F27 and 1FJGscm) exceed 50%, 3 of them are between 20% and 40%, 
and the others are less than 20%. The case that has the highest successful rate was shown in 
Figure 3.3.2.2. 

 
Table 3.3.2.1. Features describing the properties of RNA, ligand, and interactions between 
RNA and ligands 

Feature 

Number of metal ions around native ligand within 4.5 Å 

Number of water atoms around native ligand within 4.5 Å 

Number of atoms of native ligand 

Number of rotatable bonds of native ligand 

Number of hydrogen-bonds between RNA and native ligand 

Number of atoms around native ligand within 4.5 Å 

 

 

Figure 3.3.2.1. The successful rates of the successful cases. 2 of them (1F27 and 1FJGscm) 
exceed 50%, 3 of them are between 20% and 40%, and the others are less than 20%. 

For analyzing what factors affect the docking results, we generated 6 features describing 
the properties of RNA, ligand, and interactions between RNA and ligands (shown in Table 
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3.3.2.1). 38 complexes were divided into 2 classes, successful cases and unsuccessful cases, 
according to the 2.5 Å cutoff. The decision tree method [171] was applied to select the most 
discriminative feature for discriminating successful cases and unsuccessful cases (Figure 
3.3.2.3). In Figure 3.3.2.3, the decision model shows that the most discriminative feature is 
the number of atoms around the native ligand within 4.5 Å and the threshold is 110. The 
distribution of this feature of the 38 complexes was shown in Figure 3.3.2.4 The cases whose 
number of this feature is less than 110 failed in docking (i.e. 1NJN, 1NJM, 1AJU, 1JZY, 
1NWY, 1OND, and 1K01). Based on the observations, we could find that the native ligands 
that bind RNA weakly and have few interactions with RNA often failed in docking. An 
example was shown in Figure 3.3.2.5. In these cases, the docking poses often preferred the 
conformations that formed stable interactions with RNA. 

 

 
Figure 3.3.2.2. A successful case. The RMSD value between the native conformation (green) 
and the docked conformation (yellow) is 0.39Å. The ligand contains 23 heavy atoms, 6 single 
bonds, and 172 atoms around the native ligand within 4.5 Å, and has the highest successful 
rate of docking (78%).  

 

 

Except for these weak binders, GemRNA performance was somewhat influenced by 
ligand parameters such as size and flexibility. In Figure 3.3.2.3, 4 cases whose numbers of 
atoms of native ligands exceed 50 failed in docking due even if their native ligands have 
stable interactions with RNAs. For the large and flexible ligands, GemRNA failed to identify 
correct conformations (i.e. 1JZZ, 1K8A, 1KD1, and 1K9M). All of these complexes have 
more than 27 rotable bonds, and an example was shown in Figure 3.3.2.6. 
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Number of atoms around 
native ligand ≦ 110

O : 0
X : 7

Number of atoms 
of native ligand < 50

O : 20
X : 7

O : 0
X : 4

 
Figure 3.3.2.3. The decision tree model. O and X indicate the successful cases and 
unsuccessful cases, respectively. The fist rule for discriminating successful and unsuccessful 
cases is the number of atoms around native ligand, and the second rule is the number of atoms 
of native ligand.  
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Figure 3.3.2.4.The distribution of the number of atoms around native ligand. The cases 
whose number of this feature is less than 110 failed in docking. 
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Figure 3.3.2.5. A case that has few interactions with RNA. The RMSD value between the 
native conformation (yellow) and the docked conformation (green) is 11.63Å. The native 
ligand has only 20 atoms within 4.5 Å and none of the 20 runs succeed in docking. 
 
 

 
Figure 3.3.2.6. A example of the large ligands. The RMSD value between the native 
conformation (yellow) and the docked conformation (green) is 5.62Å. The native ligand has 
57 heavy atoms and 26 rotable bonds, and none of the 20 runs succeed in docking. 
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3.3.4 Conclusion 
 

In this study, we added the atom types that are specific to nucleotides in the scoring 
function of GEMDOCK, and the new scoring function is termed as “GemRNA”. GemRNA 
was applied to 38 RNA-ligand complexes which are proposed by Detering and Varani [168], 
and the successful rate of the 38 complexes is 53%. GemRNA shows good performances in 
RNA-ligand docking except for those ligands that bind RNA weakly and are large. In addition, 
GEMDOCK generated docked poses of ligands rapidly. On average, GEMDOCK took 305 
seconds for a docking run on a Pentium 1.4 GHz personal computer with a single processor. 
These results demonstrate that the GemRNA is useful to predict conformations of ligands and 
fast. We believe that the GemRNA is useful for molecular recognition and virtual screening in 
large compound databases. 
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Chapter 4: 
Self-evaluation of the project achievements 

 
The goal of this project is to understand protein, RNA and DNA interaction based on 

sequence and structure information. In the past three years, we have studied protein/RNA 
structure prediction, clustering, protein-DNA interaction and protein-RNA docking. We have 
published five papers for the project and still work hard in studying interaction of protein, 
RNA and DNA. The five published papers are as below: 
1. Y. Hu, “RNA Clustering and Secondary Structure Prediction”, International Conference 

on Mathematics and Engineering Techniques in Medicine and Biological Science, 2005. 
2. S. Ku and Y. Hu, “A Multistrategy Approach to Protein Structural Alphabet Design”, 

Biocomp 2006. 
3. K. Chen and Y. Hu “Bicluster Analysis of Genome-wide Gene Expression”, IEEE 

Symposium on Computational Intelligence in Bioinformatics and Computational 
Biology, 2006  

4. C. Huang and Y. Hu “A Two-stage Approach to Finding Common Structure Elements 
in Unaligned RNA Sequences”, Biocomp 2007 

5. Y.-L. Chang, H.-K. Tsai, C.-Y. Kao, Y.-C. Chen, Y.-J. Hu, and J.-M. Yang*, 
"Evolutionary conservation of DNA-contact residues in DNA-binding domains," BMC 
Bioinformatics, vol. 9 (S6), pp. S3.1~S3.9, 2008 

 
In the first year (2005), we have proposed a new adaptive method that conducts structure 

prediction and clustering simultaneously, since some current approaches can now identify 
common structure motifs from a set of RNAs, they typically assume the given set forms a 
single family, which is not necessarily correct. The performance of this study is demonstrated 
on several real RNA families, and showed very promising results. In the other hand, we have 
proposed a structure template-based method which used a novel scoring function to identify 
potential protein-DNA interactions, such method has the advantage of increasing crystal 
structures of protein-DNA complexes. Furthermore, the method also reveals the structure 
information of identified protein-DNA binding partners, we found that the feature, 
evolutionary conservation of DNA-contact residues, is helpful to identify DNA-binding 
domains. By using the scoring function based on such a feature, we successfully identified 66 
DNA-binding domain families, also identify the different DNA-binding behaviors of proteins 
in the same SCOP family.  

In the second year (2006), we demonstrated how the structural alphabet can be used with 
conventional 1D sequence alignment algorithms and presented its results. A comparative 
study of our alphabet with one of recently developed structural alphabets also showed a 
competitive result. Moreover, we proposed a new biclustering method based on the 
framework of market basket analysis in which a bicluster is described as a frequent itemset. 
As a feasibility test, we compared it with several standard clustering algorithms on a 
genome-wide yeast microarray dataset, and it showed very promising results. In the other 
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hand, we have proposed template-based alignment with a new scoring function which 
combined the evolutionary conservation and protein-DNA interacting scores of DNA-contact 
residues. We have showed that the combined scoring function is better to model the 
protein-DNA interactions than applying only one. Our method achieved high accuracy in 
identifying DNA-binding domains of 69 representative families and with the correlation 0.6 
in predicting the binding free energy of the alanine scanning data. 

In the third year (2007), unlike some methods that find consensus structures from a 
multiple sequence alignment if available or others that align sequences and structures 
simultaneously, we have developed an approach which separates consensus motif finding 
from sequence folding. After applying RNA folding algorithms to each sequence of given 
RNAs as a preprocess, we then combine structure decomposition and Gibbs sampling 
techniques to identify common structure motifs in unaligned RNA sequences. To demonstrate 
the performance, we tested it on several RNA families in Rfam. The experimental results 
show our new approach is competitive with other current prediction systems. Moreover, we 
have selected GEMDOCK as the program for docking ligand into RNA targets. We added the 
atom types that are specific to nucleotides in the scoring function of GEMDOCK. The new 
scoring function is termed as “GemRNA”. We tested the performance of GemRNA on the 
public set (38 RNA-ligand complexes). The results show that GemRNA could model 
RNA-ligand binding reliably. 

In summary, we believe that we have achieved fruitful results in this project. This project 
covers research areas from molecular interactions to regulatory networks of a biological 
system. We consider that the achievements in this project will be advantageous and valuable 
to researchers to study sequence-structure-function relationships and molecular interactions. 
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一、參加會議經過 

於 07/13 辦理註冊報到，隔日隨即參加開幕演說，於 07/14-07/17 期間，

參加與會學者之論文發表，並與多位國外學者討論相關研究議題。會議中

不乏中國大陸籍學者之論文，對於我國內生物資訊的發展，應可產生良性

刺激，提供非常多的助益與新的發展方向。 
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根據議程中部分美國研究學者所述，由於經濟壓力上升，美國 NIH 已將研

究主軸放在 translational research，希望藉由在實驗室的研究成果實際

應用於人類醫學。本次參加人數及國家眾多，其研究領域更包括計算機科

學、醫學、生物學等之應用，藉由討論及論文發表，獲得寶貴經驗，對於

未來研究提供了新的方向。其中更結識他國友人，經由研討，可明白其他

國家的發展經驗。從這次與會學習的經驗，我們可以得知國外研究之重點，
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Using Protein Structural Alphabet to Characterize Local Structure Features  
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Abstract - As the number of available 3D protein structures 
increases rapidly, a wider variety of studies can be conducted 
more efficiently, among which is the design of protein 
structural alphabet. With the structural alphabet, not only can 
we describe the global folding structure of a protein as a 1D 
sequence, but we can also characterize local structures in 
proteins. Previously, we applied a combinatorial approach to 
protein structural alphabet design. In our previous work, we 
verified the usefulness of our structural alphabet by 
demonstrating the competitive accuracy in protein alignment, 
compared with alphabets. Here we took a further step by 
applying motif finding tools to our alphabet with the aim to 
characterize protein structure local features. Two structure 
domains, TIM and EGF, were used to evaluate the 
performance of our structural alphabet. Our method 
successfully recovered their sub-domains as common motifs in 
our structural alphabet.  

Keywords: protein structure, structural alphabet, motifs 

 

Introduction 
  As all proteins have a certain degree of 

structural similarities to other proteins, and they 
probably share a common ancestor in evolution. 
Based on evolutionary relationships and the 
principles governing the 3D structures, a protein 
structure hierarchy, SCOP, was constructed 
mainly by visual inspection with the assistance of 
various automatic tools to compare protein 
structures. The original aim of SCOP was to serve 
as a tool for understanding protein evolution 
through the relationships between sequences and 
structures [1].  

The conservation in local active sites may 
reflect biological meanings, and their structural 
patterns can be used to predict protein functions 
[2], e.g., the binding sites for metal-binding proteins [3]. The 
conserved local structural features can be 
identified in various ways and described in 
different representations. For example, some have 
attempted to investigate the relationships between 

local sequences and structures by identifying 
common structural motifs first, then characterizing 
amino acid preferences [4-6]. Others instead have 
adopted the inverse approach by examining 
structural correlates from recurring sequence 
patterns found to obtain sequence-structure motifs 
[7,8]. 

Unlike those works above on correlations 
between protein local structures and sequence 
patterns, we first convert protein 3D structures 
into 1D structural alphabet letters, and then 
identify and represent conserved local features as 
1D structural alphabet sequence motifs. Besides, 
our goal is to mine the protein families for 
conserved local characteristics rather than to 
predict 3D structures of novel proteins as those 
studies mentioned above. There are several 
advantages of 1D structural alphabet over 3D 
co-ordinates representations. First, 1D 
representation of protein structures is more 
efficient in comparison and more economical in 
storage. Second, many previously designed and 
widely used 1D sequence alignment tools can be 
directly applied to protein structures as well as 
sequences. Third, conserved protein local 
structural features can be described as 1D 
sequence motifs and be identified by various 
well-developed sequence motif-finding tools. Four, 
this type of 1D-based approaches can serve as a 
pre-processor to filter out remotely related or 
irrelevant proteins before we apply other more 
accurate but more computationally intensive 
structure analysis tool. 

Previous analysis of protein structures has 
shown the importance of repetitive secondary 
structures, in particular, α-helix and β-sheet. 
Together with variable coils, they constituted a 
basic standard 3-letter structural alphabet. In spite 
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of the increase in predictive accuracy, the 
approximation of 3D structures with only a 
3-letter alphabet is apparently too crude for the 
more refined 3D reconstruction [9-13]. Various 
more complex structural alphabets have been 
developed by taking into account the 
heterogeneity of backbone protein structures 
through sets of small protein fragments frequently 
observed in different protein structure databases 
[14-21]. Unlike most other works, we developed a 
multi-strategy method for structural alphabet 
design, which combined self-organizing maps, 
minimum spanning tree algorithm and k-means 
algorithm [22]. The performance of our alphabet 
was demonstrated by the competitive accuracy in 
all-alpha protein search within SCOP using the 
standard 1D sequence alignment tool, FASTA 
[23].  

In this paper, we introduced an improved 
version of our alphabet design pipeline, to which 
we added a substitution matrix self-trainer. The 
substitution matrix used in aligning proteins 
represented by structural alphabets affects the 
accuracy of alignment. In our earlier work, we 
applied the identity matrix in the alignment [22]. 
Though the preliminary results successfully 
demonstrated the feasibility of our alphabet, yet a 
more appropriate matrix will further improve its 
applicability. The substitution matrix is a crucial 
factor in the successful application of 1D sequence 
alignment tools to search for similar 3D structures. 
We thus developed an automatic matrix training 
framework that can generate appropriate 
substitution matrices for new alphabets when 
applied in standard 1D sequence alignment 
methods, e.g. FASTA. Based on the alphabet we 
constructed, we can transform proteins into 1D 
structural alphabet representations. To identify 
protein local structure features, we applied the 
motif-finding tool MEME [24] to detect the 
common motifs. We tested two protein families in 
SCOP, TIM and EGF. The results showed our 
method successfully recovered their structure 
domains.  

 
Materials and Methods 

  
The simplest substitution matrix to use is the 

identity matrix, but it ignores possible acceptable 
alphabet letter substitutions, which significantly 
limits its applicability. Some authors applied 
HMM approach to define the matrix [25], while 
others adopted a similar approach in the 
development of BLOSUM matrices [26,27]. Most 
of these approaches to constructing substitution 
matrices required the alignments of known 
proteins [27-29]. As the alignments may be 
unavailable or even questionable, we took a 
self-training strategy to build a substitution matrix 
for our new structural alphabet. This training 
framework is a flexible and modular design, and it 
does not rely on any pre-alignment of protein 
sequences or structures. This matrix training 
procedure can be applied regardless of how the 
alphabet is derived. Different training data or 
alignment tools available can be incorporated in 
this framework to generate appropriate matrices 
under various circumstances.  

There are three components in the matrix 
training framework, an alignment tool with a 
substitution matrix, training data, and a matrix 
trainer. We used FASTA as the alignment tool, 
and the non-redundant proteins in SCOP1.69 with 
sequence similarity less than 40%, excluding the 
families of size smaller than 5 proteins, as the 
training dataset. We started by using the identity 
matrix as the initial substitution matrix where the 
score is 1 for a match, 0 for a mismatch. Each 
protein in the training dataset was iteratively used 
as a query for FASTA to search the rest of the 
dataset for similar proteins. If a protein returned 
by FASTA belonged to the same family as the 
query, we considered the case as a positive hit; 
otherwise, a negative hit. Those proteins not 
returned by FASTA but in the same family as the 
query were considered as misses. For all positive 
hits and misses, we gathered their alignments with 
the query produced by FASTA. Based on the 
alignments, we computed the log-odd ratios 
defined in the same way as in the BLOSUM 
matrices [28] to build the positive matrix. 
Similarly, with the alignments of negative hits, we 
constructed the negative matrix.  The matrix 
trainer updated the current substitution matrix S(t) 
to S(t+1) as the following. 
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where P and N are the positive and the negative 
matrix respectively, τ is the learning rate (similar 
to the learning rate in neural networks), and Wp 
and Wn are the weights. They were defined as the 
proportion of the total number of positive hits and 
misses to the training data size and the ratio of the 
number of negative hits to the training data size, 
respectively. We repeated the update process to 
train the substitution matrix until there was no 
change in the matrix, i.e. the number of both the 
positive and the negative hits remain constant. The 
converged matrix was our final substitution matrix 
which we combined with FASTA as a new 
alignment tool to demonstrate the applicability of 
our new alphabet and matrix. We compared our 
alignment tool with other similar ones on 
database-scale search tasks. The results were 
detailed in the next section. The matrix training 
framework was presented in Figure 1.  

Currently, we used the non-redundant proteins 
in SCOP1.69 with sequence similarity less than 
40% for training. We defined the positive hit rate 
of a query as the ratio of the number of positive 
hits to the size of the family the query belonged to. 
As we iterated over each training protein (as a 
query), we refined the matrix till we could no 
longer increase the average positive hit rate of all 
the proteins. One learning example was presented 
in Figure 2. We tried different learning rates from 
0.25 to 1.00. The final average positive hit rates 
under different learning rates were similar, 
between 0.9112 and 0.9153. We selected the 
converged matrix with the maximum positive hit 
rate when learning rate set 0.50. We named this 
matrix TRISUM-169 (TRained Iteratively for 
SUbstitution Matrix-SCOP1.69) as shown in 
Figure 3. 
 

Experimental Results 
  
Several protein structure search tools based on 

1D alignment algorithms have been developed, 
including SA-Search [25], YAKUSA [30], 
3D-BLAST [27], but few were evaluated on the 
performance of database-scale search. To keep the 
consistency, we used the same 50 proteins 
selected from SCOP95-1.69 as used in Yang & 
Tung’s experiment to compare our alignment tool 
with 3D-BLAST, PSI-BLAST, YAKUSA 
MAMMOTH and CE in search time, predictive 
accuracy and precision. There are some other 
search tools, e.g. PBE [31], SA-Search [30], 
Vorolign [32] and so on. Because they either 
could not be tested on the SCOP database directly 
(e.g. only PDB available in SA-Search) or the 
version of their databases provided was older (e.g. 
ASTRAL in PBE derived from SCOP-1.65, 
Vorolign server only scans SCOP40-1.69), these 
tools were not chosen for comparison. We 
summarized the results in Table 1. It showed that 
our tool outperformed the other two BLAST-based 
search tools (i.e. 3D-BLAST and PSI-BLAST) 
and another structure search tool that also 
described structures as 1D sequences (i.e. 
YAKUSA) in predictive accuracy and precision. 
Compared with the structural alignment tools (i.e. 
MAMMOTH and CE), our tool obtained a bit 
worse but comparable accuracy as well as 
precision. As for search time (using one Intel 
Pentium 2.8GHz processor and 512Mbytes of 
memory), Table 1 clearly indicated that our 
alignment tool was far more efficient than the 
structural alignment tools, MAMMOTH and CE.  
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Fig 1. System architecture of the matrix training 
framework. 
 

 
Fig 2. An example of the learning curve of matrix training. 
The average positive hit rate converged at 0.9153 with the 
learning rate set 0.5. 
 

To demonstrate the ability of our structural 
alphabet to describe protein local structure 
features, we used MEME [24] to detect common 
motifs in the top 100 hits found by our alignment 
tool. These motifs could be well mapped to the 
eight β/α barrel strands of TIM barrel domains. 
Figure 4(a) showed the structure of archaeon 
pyrococcus woesei  (PDB 1hg3a). In Figure 4(b), 
we highlighted the identified motif in PDB 1hg3a, 
and Figure 4(c) illustrated the motif structure. The 
structural alphabet letter sequence of this motif 
and the corresponding amino acids were shown in 
Figure 4(d). In addition to TIM barrel structures, 
we also used the EGF/EGF-like domain as another 
study case. Epidermal growth factor (EGF) 

domains are extracellular protein modules 
typically described by 30-40 amino acids 
primarily stabilized by three disulfide bonds. 
Compared with TIM barrel structures, EGF are 
much smaller domains. We used it to evaluate 
how well a structural alphabet could define the 3D 
structures of small proteins. Many proteins contain 
the regions of homology to EGF, and the cysteine 
residues at similar positions. The homologies and 
available functional data suggest that these 
domains share some common functional features. 
If we number the cysteine residues as Cys1 to 
Cys6, where Cys1 is the closest to the N-terminus, 
the regularity of cysteine spacing defines three 
regions, A, B and C. Based on the conservation in 
sequence and length of these regions, the 
homologies have been classified into three 
different categories [33]. We described the 227 
proteins in the EGF-type module family of SCOP 
1.69 in our alphabet, Yang & Tung’s [27] and de 
Brevern et al.’s [15,26,31], respectively. We then 
used MEME to identify the common motifs 
corresponding to the sub-domains, A, B and C. 
According to InterPro [34], 24 of these proteins 
were exclusively of EGF Type-1, 74 were of 
EGF-like Type-2, and 117 belonged to EGF-like 
Type-3 only. We classified the remaining 12 
proteins as Others. 

 

 
Fig 3.  Substitution matrix TRISUM-169. 
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Type-1 and 2, sub-domain B usually contains 
10-11 residues in Type-1, but consistently three 
residues shorter than in Type-1, sub-domain C is 
conserved in length with four or five specific 
residues in Type-1 and 2 [33]. We used 8, 10 and 
15 respectively as the motif width and ran MEME 
to find motifs. A motif found was considered as 
corresponding to a sub-domain correctly if more 
than half of the residues in the sub-domain were 
included in the motif. If any single motif of width 
8, 10 or 15 alphabet letters correctly corresponded 
to a sub-domain, we claimed this sub-domain was 
recovered successfully (i.e. a hit). We summarized 
the results of the motifs found in Table 2. It 
showed that with our structural alphabet MEME 
was able to identify more EGF sub-domains than 
using Yang & Tung’s or de Brevern et al.’s 
alphabets. 

 
Fig. 4. Common motif found by MEME in PDB 1hg3a. (a) 
TIM barrel structure of PDB 1hg3a (b) motif highlighted in 
green (c) motif structure (d) PDB 1hg3a described in amino 
acids (AA) and structural alphabet (SA), respectively, where 
motif underlined. (Note. Images are shown in grey scale.) 
 
4  Discussion 

The protein structure data we used to build the 
alphabet were from the non-redundant PDB 
database instead of some specialized databases, 
e.g. Pair Database [27] and PDB-SELECT [29], 

with the aim to ensure the generality of our 
alphabet. We also proposed an automatic matrix 
training framework to construct an appropriate 
substitution matrix for the alphabet. This training 
strategy did not need any information of known 
alignments that most previous works required. 
Using different training data and update rules, the 
self-training methodology can be applied to 
various alphabets. 

To demonstrate the performance of our 
alignment tool, we systematically compared it 
with other search tools. The results showed that 
our new tool was very competitive in predictive 
accuracy and alignment efficiency for 
database-scale search. We further evaluated the 
potential of using motif-finding tools, e.g. MEME, 
to detect structure domains/sub-domains 
represented in our structural alphabet. Two 
examples of different protein classes, TIM in α/β 
and EGF in small proteins, have been tested. The 
results indicated that the identified motifs mapped 
well to the known structure sub-domains.  

We can extend the work in several directions. 
First, we can use a more complete datasets for 
substitution matrix training to increase sensitivity 
and selectivity in database search. Second, besides 
FASTA, we can combine other alignment tools 
with our substitution matrix, and evaluate the 
performance of different combinations. Third, 
currently we use MEME to detect motifs, and we 
have demonstrated it is able to recover some 
structure sub-domains described in our structural 
alphabet. MEME was originally designed to find 
motifs in amino acid and nucleic acid sequences. 
To increase the performance in structural motif 
detection, we can either modify MEME or develop 
a new motif-finding tool specifically for our 
structural alphabet. Finally, several structural 
alphabets have been developed based on different 
protein structural characteristics. It is worthwhile 
to conduct a thorough comparative study and 
evaluate the feasibility of combining different 
alphabets. The combination of structural alphabets 
that complement each other will increase their 
overall applicability and characterize 3D protein 
structures more completely. 

 

(a)                (b)               (c) 

     

 

(d) 
1        10        20        30        40        50 
|--------|---------|---------|---------|---------|  

(AA) AKLKEPIIAINFKTYIEATGKRALEIAKAAEKVYKETGVTIVVAPQLVDL 
(SA) NNEACWNEEEMRQSFRQSFRQTTTTTTTTTTTTTSLKGHNEEEEEARQPT 

51        10        20        30        40       100 
|--------|---------|---------|---------|---------| 

(AA) RMIAESVEIPVFAQHIDPIKPGSHTGHVLPEAVKEAGAVGTLLNHSENRM 
(SA) TTTTPSFCWNEEACWNEEEMADWLADHNARQTTTLKGHRCWNADARQSNE 

101        10        20        30        40      150 
|--------|---------|---------|---------|---------| 

(AA) ILADLEAAIRRAEEVGLMTMVCSNNPAVSAAVAALNPDYVAVEPPELIGT 
(SA) ARQTTTTTTTTTTLKGHNEEEEACARQTTTTTTLKGFCWNEEEARQPPLK 

151        10        20        30        40      200 
|--------|---------|---------|---------|---------| 

(AA) GIPVSKAKPEVITNTVELVKKVNPEVKVLCGAGISTGEDVKKAIELGTVG 
(SA) GHFRQLKGQTTTTTTTTTTTTTSPPCNNEEMMDDHCARQTTTTTTLKGLR 

201        10        20        30        40      250 
|--------|---------|---------|---------|---------| 

(AA) VLLASGVTKAKDPEKAIWDLVSGI  
(SA) DWNARQTTTSFCQPQTTTTTTTPP  
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Table 1. Comparison between our alignment tool, 3D-BLAST, PSI-BLAST, YAKUSA, MAMMOTH and CE on 50 
proteins selected  fromSCOP95-1.69. 

 

 

 

 

 

 

 

 

 

 

Search tool Average time required for a query (sec) Relative to SA-FAST Accuracy (%) Average precision (%) 
Our Tool 1.15 1.00 96 90.80 

3D-BLAST 1.30 1.13 94 85.20 
PSI-BLAST 0.48 0.42 84 68.16 
YAKUSA 8.88 7.72 90 74.86 

MAMMOTH 1834.18 1594.94 100 94.01 
CE 22053.32 19176.80 98 90.78 
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Table 2. Comparison between our structural alphabet, Yang & Tung’s and de Brevern et al.’s in describing motifs 
found by MEME within EGF family. 

(a) Number of motifs found by MEME, using different structural alphabets to describe EGF (EGF-like) proteins 

 Our SA  Yang & Tung’s de Brevern et al.’s  

Sub-domain 

Type 
A B C A B C A B C 

EGF 

proteins 
No.a Hitsb Covc Hits Cov Hits Cov Hits Cov Hits Cov Hits Cov Hits Cov Hits Cov Hits Cov

Type 1 24 23 95.8 22 91.7 23 95.8 11 45.8 21 87.5 19 79.2 18 75.0 14 58.3 18 75.0

Type 2 74 73 98.6 71 95.9 74 100.0 62 83.8 73 98.6 60 81.1 68 91.9 62 83.8 70 94.6

Type 3 117 116 99.1 106 90.6 61 52.1 54 46.2 102 87.2 25 21.4 109 93.2 112 95.7 48 41.0

Others 12 12 100.0 11 91.7 11 91.7 9 75.0 11 91.7 9 75.0 12 100.0 11 91.7 9 75.0

All 227 224 98.6 210 92.5 169 74.4 136 59.9 207 91.2 113 49.8 207 91.2 199 87.7 145 63.9
aThe number of EGF proteins of a specific type, bWe called it a hit for a sub-domain when more than half of the sub-domain residues were 
contained in a motif. We presented the count of hits of different types, cCov(Coverage) was defined as the ratio of the count of hits to the number 
of EGF proteins, e.g., if No.=24 and Hits=22, then Cov=22/24=91.7%.   
 
 
(b) Statistics of EGF (EGF-like) proteins whose sub-domains detected by MEME 

 Structural Alphabet 

 

Our SA 

 

 

Yang & Tung’s  

 

 

de Brevern et al.’s  

 

EGF proteins 

Count Percentage Count Percentage Count Percentage 
Found 3a 

151 66.52 79 34.80 104 45.81 
Found 2b 

74 32.60 78 34.36 116 51.10 
Found 1c 

2 0.88 63 27.75 7 3.08 
Found 0d 

0 0.00 7 3.08 0 0.00 
Total 

227 100.00 227 100.00 227 100.00 
aEGF (EGF-like) proteins in which all three sub-domains (A, B and C) were found by MEME, bEGF (EGF-like) proteins in which two out of 
three sub-domains were found by MEME, cEGF (EGF-like) proteins in which only one sub-domain was found by MEME, dEGF (EGF-like) 
proteins in which MEME failed to identify any sub-domain. 
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