
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 27, 1011-1028 (2011)

1011

A Delegation Framework for Task-Role
Based Access Control in WFMS*

HWAI-JUNG HSU AND FENG-JIAN WANG
Institute of Computer Science and Engineering

National Chiao Tung University
Hsinchu, 300 Taiwan

E-mail: {hjhsu@csie; fjwang@cs}.nctu.edu.tw

Access control is important for protecting information integrity in workflow man-

agement system (WfMS). Compared to conventional access control technology such as
discretionary, mandatory, and role-based access control models, task-role-based access
control (TRBAC) model, an access control model based on both tasks and roles, meets
more requirements for modern enterprise environments. However, few discussions on
delegation mechanisms for TRBAC are made. In this paper, a framework considering
temporal constraints to improve delegation and help automatic delegation in TRBAC is
presented. In the framework, the methodology for delegations requested from both users
and WfMS is discussed. The constraints for delegatee selection such as delegation loop
and separation of duty (SOD) are addressed. With the framework, a sequence of algo-
rithms for delegation and revocation of tasks are constructed gradually. Finally, a com-
parison is made between our approach and the representative related works.

Keywords: delegation, task-role-based access control (TRBAC), workflow management
system (WfMS), separation of duty (SOD), time constraints

1. INTRODUCTION

Workflow management systems (WfMS) systematically coordinate resources and
business processes for modern enterprises [1], and regulates activities of employees
through varieties of access control methods. Role-based access control (RBAC) model [2,
3] which groups users with similar permissions into roles is a popular solution for access
control among enterprises. However, business processes are operated based on not only
roles but also tasks. With both as core concepts, task-role-based access control (TRBAC)
model provides more modeling power. Besides, in TRBAC, roles group tasks and users
together, and permissions to business objects are bound with tasks. TRBAC prevents
users from access business objects when not executing the corresponding tasks, and thus
satisfies the confidentiality requirements of modern enterprises [4].

Delegation is to authorize subjects like access rights or works between users or roles,
and is often built based on access control models. For example, RBDM0 [5], RBDM1
[6], and the methods in [7-10] describe various delegation models based on RBAC [2, 3].
On the other hand, tasks, the basic logic units in business processes, should also be con-
sidered for delegation in workflow systems. Some studies like [11, 12] extend the RBAC
model with tasks, and develop respective delegation mechanisms for the relative access
control models.

Received September 3, 2009; revised September 10, 2010; accepted December 6, 2010.
Communicated by Chih-Ping Chu.
* The preliminary work [13] of this study was presented in FTDC’08 (Kunming, China, October 21-23, 2008)

by Dr. Feng-Jian Wang.

HWAI-JUNG HSU AND FENG-JIAN WANG

1012

Delegation for TRBAC is also studied in some researches like [13, 14]. Jian et al.
construct a framework and define the components for delegation in TRBAC [13]. Nev-
ertheless, Jian’s work [13] ignores the temporal issues, and is thus incomplete. In [14],
Zhang et al. develop a delegation model with time constraints for TRBACM, a reduced
TRBAC model. However, TRBACM violates the primary spirit of TRBAC because of
binding roles with permissions and tasks separately.

In this paper, we refine the delegation framework from [13] by adopting a set of
systematic operations for delegation in TRBAC. In our work, the temporal factors are
considered as [15] does. The constraints like delegation loop and separation of duty
(SOD) in delegatee selection are stated. Based on the discussions, a series of algorithms
for delegation of a task instance and delivery of candidate delegatees from the role hier-
archy are developed. With the algorithms, a user is able to delegate his work to the des-
ignated delegatee through an approval process, and WfMS can delegate an emergent
work item to an appropriate delegatee automatically. The algorithm for users and WfMS
to revoke a delegation is also established. Finally, we present a case study throughout our
approach, and make a comparison between the existing methodologies and ours.

The rest parts of this paper are organized as follows. Related works in the past are
presented in section 2. The workflow model adopted in this study is defined in section 3.
In section 4, we construct the basic framework for delegation in TRBAC. The methods
for delegation and revocation in TRBAC are described in section 5. In section 6, a case
study is made to demonstrate our framework. Finally, we compare our approach with
other related works, and make a conclusion in section 7.

2. BACKGROUNDS

2.1 Task-Role-based Access Control Model

Based on RBAC96 [2, 3], TRBAC model [4] illu strated in Fig. 1 works for modern
enterprise environments in which tasks are the fundamental units of business processes.
TRBAC model binds permissions on tasks and groups users operating the same tasks into
roles. Rather than accessing business objects directly [2, 3], users accomplish their works

Fig. 1. The TRBAC model [4].

DELEGATION FOR TRBAC IN WFMS

1013

through tasks in which permissions are properly defined and protected. Restricting the
access rights of business objects on tasks facilitates permission management and reduces
the risks about inappropriate permission authority made by users. In TRBAC [4], tasks
are classified into four classes according to whether the task participates in a business
process and whether the task is inherited by the ancestor job. The classes of tasks in
TRBAC model are illustrated in Table 1.

Table 1. Classes of tasks in TRBAC model [4].
 Non-inheritable Inheritable

Passive access P (private) S (supervision)
Active access W (workflow) A (approval)

2.2 Delegation Approaches in RBAC and TRBAC

In RBAC [2, 3], permissions to business objects are bound with roles. RBDM0 [5]
provides a flexible way for granting and revoking permissions between roles. RBDM1 [6],
an extension of RBDM0 [5], is more realistic since it organizes roles with hierarchy. Both
techniques are focused on delegation of roles among human users through identifying
can-delegation relationships between roles.

In [7], the essence of this delegation model is that a user delegates a particular right
to another user, and delegation of partial permissions is allowed. Osborn separates users
in organization, role hierarchies, and relationships among privileges into different graph
models in [8, 16], and shows a simple way to delegate privileges to users by creating a
delegatee role. In [10], Crampton gives a further discussion about both granting and
transferring access rights between roles. When access rights are granted from the dele-
gator to the delegatee, the delegated access rights are available for both the delegator and
the delegatee [10]. On the other hand, if the access rights are transferred, only the dele-
gatee holds the access rights after the delegation [10]. Besides, Crampton considers both
can-delegate and can-receive relationships, and introduces the concept of administrative
scope to improve the efficiencies in delegation controlling [10].

However, modern enterprises adopt WfMS to coordinate business processes. There-
fore, tasks, the basic logic units of business processes, should also be considered in ac-
cess control. In [10], Crampton addresses the issues like upward delegation and authori-
zation of appropriate permissions for delegation to adopt RBAC-based delegation mecha-
nism in workflow system. Bammigatti associates tasks into permission management and
develops a new model for using RBAC in workflow system [11]. In TAC model [12], the
permissions possessed by roles and required by tasks are described separately, and the
assignment of tasks to roles is thus constrained. With such constraints, a protocol ena-
bling delegation of task instances from users to roles is established [12].

TRBAC [4] binds the permissions with tasks, and the tasks with roles. With the roles
assigned to users, users access business objects and accomplish their duties through tasks.
Therefore, authorization of permissions is not necessary for delegation of tasks and task
instances in TRBAC. In our previous work [13], a delegation framework for TRBAC has
been initially established without considering the temporal issues. Zhang et al. develops
a delegation model for time constraints-based TRBAC [14]. However, Zhang reduces

HWAI-JUNG HSU AND FENG-JIAN WANG

1014

TRBAC model as TRBACM model in which permissions and tasks are separately bound
with roles, and the reduction violates the primary sprits of TRBAC [4]. In [14], users
delegate permissions together with tasks to accomplish their works.

2.3 Separation of Duty

SOD is a security principle which requires multiple users to be responsible for the

completion of a work [17]. Ferraiolo defines SOD in [3] as “For a particular set of
transactions, no single individual is allowed to execute all the transactions within the
set.” Botha discusses SOD in workflow environments both statically and dynamically
[18]. In Botha’s study, four possible conflicts, conflicting roles, conflicting permissions,
conflicting users, and conflicting tasks, are described, and the corresponding methods for
the conflicts are developed.

TRBAC [4] offers SOD policy at both task and instance level, and defines that some
tasks are mutually-exclusive to each other. In task level SOD, for the roles played by a
user, none of the tasks assigned to the roles are mutually-exclusive. In instance level SOD,
the policy is effective for the tasks belonging to the same workflow instance. The task
instances instantiated from the mutually-exclusive tasks in a workflow instance can not
be executed by the same user [4].

2.4 Temporal Description

In [19], Allen gives several reasoning relationships between time intervals such as
before, after, and overlapping, etc. In [15], the estimated active interval (EAI) for each
task is calculated. Corresponding to the start time of a workflow, EAI of a task indicates
when the task can be initiated and must be completed. The temporal relationships be-
tween tasks are considered through EAIs. In [9, 20], Bertino uses the periodic expres-
sions to describe the temporal constraints in roles for temporal RBAC model. The peri-
odic expressions are viewed as a combination of multiple time intervals, and are grouped
as a time description in this paper. The definitions are as following.

Definition 1 A time interval ti = [S(ti), E(ti)] indicates a duration from the time point
S(ti) to E(ti) where E(ti) ≥ S(ti). A time point tp can be represented as a time interval [tp,
tp]. ctime is the time point indicating the current time. For any two time intervals ti1 and
ti2, ti2 contains ti1, notated as ti2 ⊇TI ti1, if and only if S(ti2) ≤ S(ti1) and E(ti2) ≥ E(ti1).

Definition 2 A time description td = {ti | ti is a time interval}, and ∀ti1, ti2 ∈ td, ti1 and
ti2 are exclusive. For any two non-empty time description tda and tdb, tda ⊇TD tdb indicat-
ing tda contains tdb if and only if ∀tib ∈ tdb, ∃tia ∈ tda such that tia ⊇TI tib.

3. THE WORKFLOW MODEL ADOPTED IN OUR APPROACH

A workflow specification consists of tasks, networks between tasks, the criteria in-
dicating the start and the termination of the workflow, and the information about the in-
dividual tasks [1]. However, networks between tasks are not necessary in our discussion.

DELEGATION FOR TRBAC IN WFMS

1015

We model a workflow specification in a reduced way that a workflow specification is
composed of a start task, an end task and a set of activity tasks. During run-time, work-
flow instances are instantiated from a workflow specification, and the tasks in the speci-
fication are also instantiated along with the workflow instance.

Tasks are the basic components describing pieces of works in logical steps within a
workflow [1]. Permissions are the rules describing the admission in accessing business
objects such as documents or computation resources. Based on TRBAC, individual per-
missions are bound with tasks. The active duration of a task is estimated with EAI which
can be calculated with the methodology described in [15]. Besides, the task classes re-
lated to enactment of business processes, i.e. “Workflow” and “Approval”, are consid-
ered as the types of tasks.

Users are participants of business processes. A user may play multiple roles for
business, and a role can be played by multiple users. During run-time, users execute task
instances in their work list to accomplish their daily duties. The status of a user is nor-
mally available and is transited to unavailable when he is not available for work.

Task instances are the basic units for users’ daily duties. When a workflow instance
is instantiated, related task instances are initiated as well. When a task instance is going to
be executed, the system offers the instance to a role in accordance with the workflow
specification. Then, the instance is allocated to the work list of one of the users playing
the offered role. The user executes the instances in his work list, and submits the instance
whenever it is complete. A task instance is suspended once the responsible user becomes
unavailable for a certain time, is resumed from suspension when the responsible user is
again available. An instance is failed if it is not completed in its active interval, and is
discarded if it is not executed until the end of the workflow instance. The active interval
of an instance indicates when the instance can be started and the corresponding deadline.

Roles represent collections of users with common responsibilities. In this paper, a
role is modeled as a collection of the users responsible for the same tasks with certain
timing constraints. The definition of workflow specification, workflow instances, tasks,
users, task instances, users, and roles are formally described as follows.

Definition 3 (Workflow Specification & Instance) A workflow specification rws =
(Trws, s, e). Trws is the set containing the tasks operated in rws, and s, e ∈ Trws are the start
and the end tasks of rws. A workflow instance wi = (Iwi, rws, st). Iwi is the set of the task
instances instantiated from each task in Trws. rws is the workflow specification instanti-
ating wi, and st is the time point wi being initialized.

Definition 4 (Task) Let T be the set of all tasks.∀t ∈ T, t = (rws, Pt, Rt, eai , type). rws
is a workflow specification, and t ∈ Trws. Pt is the set of permissions to business objects
bound on t. Rt is the set of roles assigned to t. eai is a time interval indicating the EAI of
t. type ∈ {Workflow, Approval} is the class of t.

Definition 5 (Task Instance) Let I be the set of all task instances. ∀i ∈ I, i = (wi, tk, ar,
s, eu, ai). wi is the workflow instance where i ∈ Iwi. tk ∈ Twi.rws is the task instantiating i.
ar ∈ Rtk is the role i offered. s ∈ {Initiated, Discarded, Offered, Allocated, Completed,
Suspended, Failed} is the status of i. eu is the user executing the task instance. ai = [wi.st
+ S(tk.eai), wi.st + E(tk.eai)] is the active interval of i.

HWAI-JUNG HSU AND FENG-JIAN WANG

1016

Definition 6 (User) Let U be the set of all users. ∀u ∈ U, u = (Ru, WL, cs). Ru is the
set of roles played by u. WL = {i | i ∈ I, i.eu = u, i.s ∈ {Allocated, Completed, Suspended,
Failed}} is the work list of u. cs ∈ {Available, Unavailable} is the current status of u.

Definition 7 (Role) Let R be the set of all roles. ∀r ∈ R, r = (Ur, Tr, etd). Ur is the set
of users playing r. Tr is the set of tasks assigned to r. etd is a time description indicating
when r is active.

The role hierarchy indicates inheritance relationships and partial orders between
roles to reflect organization lines of authority or responsibility [2]. The role hierarchy is
modeled with directed acyclic graph (DAG) like in [2, 21, 22]. Among the role hierarchy,
the roles in higher positions possess larger authority, and the connected roles are more
coherent than disconnected ones [2, 21, 22]. The number of edges between two con-
nected roles in the role hierarchy is defined as their distance. The roles closer in distance
are related more tightly than roles farther. The role hierarchy and the function calculating
the distance between two roles in a hierarchy are defined in Definition 8.

Definition 8 (Role Hierarchy) The role hierarchy RH ⊆ R × R. ∀(r1, r2) ∈ RH, (r1, r2)
shows a partial order that all inheritable tasks assigned to r1 can also be assigned to r2. ∀r,
r′ ∈ R, r′ rh r holds if there exists (r, r1), …, (rk, r′) ∈ RH*. RH is acyclic, and if r′ rh r
holds, r rh r′ does not. DisRH() shows the distance between two roles in the role hier-
archy: (1) DisRH(r, r) = 0, (2) if r′ rh r, DisRH(r, r′) = − (k + 1) and DisRH(r′, r) = k +
1, (3) DisRH(r, r′) is undefined while neither r′ rh r nor r rh r′ holds.

4. THE DELEGATION FRAMEWORK FOR TRBAC

In this section, we construct a framework for delegation in TRBAC. The properties
of delegation in TRBAC are described in section 4.1. The methods collecting candidate
delegatees and filtering out inappropriate candidates are discussed in section 4.2.

4.1 The Properties of Delegation

A delegation is primarily composed of a delegator, a delegatee and a delegating
subject. The delegator delegates the subject, and the delegatee receives it. In TRBAC,
since the permissions are bound with tasks, the task instances are delegated between us-
ers during run-time.

For each delegation, the delegator, the delegatee, the delegated task instance, and the
delegation duration are recorded in a delegation record. In this paper, the duration is con-
strained not exceeding the active interval of the delegated task instance. Our framework
allows multi-level delegation [5, 7], and a task instance can be delegated several times.
For each delegated task instance, a delegation record keeps tracking its status no matter
how many times it is delegated. All the delegators who once delegated the task instance
are put into the historical delegator list in the corresponding delegation record. We as-
sume that the maximal number of times a task instance can be delegated is constrained by
an enterprise policy named the Maximal Levels of Delegation (MLD). If MLD is equal to
1, multi-level-delegation is forbidden. With above features, the format of a delegation

DELEGATION FOR TRBAC IN WFMS

1017

record is defined in Definition 9. When a delegation occurs, the corresponding record is
attached to the task instance for reference as Definition 10 shows. Algorithm 1 describes
how a task instance is delegated in our framework.

Algorithm 1 Delegation Algorithm
Input: the delegating task instance dti, the delegatee u, and the designated delegating duration ddur
Pre-Condition: dti.ai ⊇TI ddur
DA {
1: if (dti.dr ≠ Ø) {
2: if (|dti.dr.HDRL| + 1 > MLD)
3: EXCEPTION(MAX_DELEGATION_LEVEL_REACHED)
4: else {
5: add dti.eu to dti.dr.HDRL
6: dti.dr.du := ddur
7: dti.dr.de := u
8: }
9: } else {
10: dti.dr := (dti, dti.eu, u, ddur, {dti.eu})
11: add dti.dr to D
12: }
13: remove dti from dti.eu.WL
14: add dti to u.WL
15: dti.eu := u
}

Definition 9 (Delegation Record) Let D be the set of all delegation records. ∀d ∈ D, d
= (di, dr, de, dur, HDRL). di ∈ I, is the delegated task instance, and ∀d′ ∈ D, if d′ ≠ d,
d′.di ≠ d.di. dr ∈ U is the original delegator. de ∈ U, is the current delegatee. dur is a
time interval indicating the duration d is effective, and di.ai ⊇TI dur. HDRL = {u1, u2, …,
uk} is the historical delegator list. u1 = dr, and ∀um ∈ HDRL, m < k, um delegated di to
um+1, and uk delegated di to de. | HDRL | ≤ MLD.

Definition 10 (Delegation Record in Task Instance) ∀i ∈ I, if i is delegated, i.dr ∈ D,
i.dr.di = i; otherwise, i.dr = Ø.

The system invokes Algorithm 1 when delegating a task instance to the designated
delegatee. At line 1, the algorithm checks whether the input task instance has been dele-
gated. If so, the algorithms checks the size of historical delegator list of the task instance
at line 2 to assure that further delegation will not exceed MLD. According to the input
parameter, the delegation record is updated from lines 5 to 7. Otherwise, the task instance
is delegated for the first time. A new delegation record is created and attached to dti at
lines 11 and 12. After the delegation record is well updated or created, the task instance
is transferred from the delegator’s work list to the delegatee’s from lines 14 to 16.

4.2 Delegatee Decision

4.2.1 Removing inappropriate users from candidate delegatees

Algorithm 1 does not concern whether a delegatee is appropriate for delegation or

HWAI-JUNG HSU AND FENG-JIAN WANG

1018

not. In multi-level-delegation, if a task instance is delegated to one of the delegators who
once delegated the task instance, a delegation loop occurs. Delegation loop causes re-
dundancy in business and should be avoided [23]. Algorithm 2 is constructed to remove
users causing delegation loop from the candidate users.

Algorithm 2 Removing Users causing Delegation Loop
Input: the candidate user set CUS, and target task instance ti
Pre-Condition: CUS ⊆ U
User Set RUDL {
1: if (ti.dr ≠ Ø) {
2: CUS := CUS\(ti.dr.HDRL)
3: return CUS
}

Taking a set of users and a task instance as the input parameters, Algorithm 2 elimi-
nates users causing delegation loop from the input user set. Each delegator user who
once delegated the instance is recorded in the historical delegator list of the delegation
record. After removing the historical delegators from the input user set at line 2, CUS is
returned at line 3.

SOD is another issue in delegatee decision. Since delegation happens during run-
time, we focus on maintaining instance level SOD policy for the task instances in a work-
flow instance. For each workflow specification, the mutually-exclusive tasks are grouped
in records, and a task might belong to multiple records. For example, task “auditing” is
mutually-exclusive to both task “ordering” and “purchasing”, but “ordering” and “pur-
chasing” are not mutually-exclusive. Therefore, two records are established, and “audit-
ing” is contained in both records with “ordering” and “purchasing” separately. The record
for mutually-exclusive tasks and the SOD constraints adopted in this paper is defined as
follows.

Definition 11 (Mutually-Exclusive Tasks) MET is the set of all the records of mutu-
ally-exclusive tasks. ∀met ∈ MET, met = (w, Tmet). w is a workflow specification. Tmet ⊆
Tw.rws is a set of mutually-exclusive tasks and ∀ti, tj ∈ Tmet, ti and tj are mutually-exclusive.

Definition 12 (Instance Level SOD constraints) ∀ workflow instance wi that wi.rws
= w, ti1, ti2 ∈ Iwi. If ∃(w, Tmet) ∈ MET, that ti1.tk, ti2.tk ∈ Tmet ⇒ ti1.eu ≠ ti2.eu.

In a delegation, SOD also holds. For a task instance ti which is being delegated, a
user executing a task instance mutually-exclusive to ti can not be the delegatee of ti. Tak-
ing a set of candidate delegatees and a task instance as the input parameters, Algorithm 3
eliminates the users violating instance SOD from the candidate delegatees.

Proof: To show Algorithm 3 following SOD constraints in Definition 12, we assume that
a user u ∈ RUCT(CUS, ti) is now executing ti′ which is mutually-exclusive to ti. Let a
workflow instance wi1 contains ti′ and ti. With the assumption, ti′.tk and ti.tk are mutually-
exclusive to each other, and ti′.eu = u. Since ti.wi = wi1 and ti′ ∈ Iti.wi, ti′ is selected at line
1. On the other hand, by Definition 11, there exists met ∈ MET that met.w = ti.wi.rws =
ti′.wi.rws = wi1.rws and ti′.tk, ti.tk ∈ Tmet. Therefore, the expression at line 2 is true for ti′

DELEGATION FOR TRBAC IN WFMS

1019

and ti′.eu is removed from the result set at line 3. Thus, u is not included in the result set
and the assumption is contradicted. Algorithm 3 follows SOD constraints in Definition 12.

Algorithm 3 Remove Users involving Mutually-Exclusive Tasks
Input: the candidate user set CUS, and target task instance ti
Pre-Condition: CUS ⊆ U
User Set RUCT {
1: ∀i ∈ Iti.wi\{ti} {
2: if (∃met ∈ MET, met.w = ti.wi.rws, i.tk, ti.tk ∈ Tmet)
3: remove i.eu from CUS
4: }
5: return CUS
}

Intuitively, an unavailable user can not be the delegatee of any delegation, and a

task instance should not be delegated to the user currently executing it. Concluding these
two issues and the algorithms described in this section, the algorithm removing inappro-
priate users from a set of candidate delegatees is constructed as follows.

Algorithm 4 Removing Inappropriate Users
Input: candidate delegatee set CDS, delegating task instance dti
Pre-Condition: CDS ⊆ U

Candidate Delegatee Set RCU {
01: ∀u ∈ CDS
02: if (u.cs = Unavailable) remove u from CDS
03: CDS := RUCT(RUDL(CDS, tdi), tdi)\{dti.eu}
04: return CDS
}

Algorithm 4 first removes the unavailable users from the input set at line 2. At line
3, the algorithm invokes Algorithms 2 and 3 to remove the users causing delegation loop
or violating SOD. After removing the current executing user of dti, Algorithm 4 returns
the result set at line 4.

4.2.2 Deriving candidate delegatees

For system requested delegations, WfMS derives the delegatees automatically. The
role hierarchy indicates the organization lines of authority and responsibility [2], and can
be used for exploration of possible candidate delegatees. Along with the role hierarchy, a
task instance can be delegated upward or downward. When a task instance of daily works
is being delegated, the system gathers the users playing lower roles related to the offered
role of the instance as candidate delegatees. On the other hand, for the instances of the
tasks related to decision making, the system commits an upward discovery from the of-
fered role in the role hierarchy for the candidate delegatees. Besides, the users playing
roles closer to the offered role in the role hierarchies are considered as better candidates
in delegatee decision. Based on Definition 8, the algorithm discovering the role hierarchy
for the candidate delegatees is constructed as follows.

HWAI-JUNG HSU AND FENG-JIAN WANG

1020

Algorithm 5 Discover Role Hierarchy
Input: the delegating task instance dti
Candidate Delegatee Set DRH {
1: if (dti.tk.type = Approval) p := 1
2: else if (dti.tk.type = Workflow) p := − 1
3: m := 0
4: US := Ø
5: loop {
6: GR := Ø
7: ∀r ∈ R, DisRH(dti.ar, r) = p*m
8: add r to GR
9: if (GR = Ø) return Ø
10: ∀r ∈ GR, r.etd ⊇TD {dti.ai}
11: US := US ∪ Ur
12: US := RCU (US, dti)
13: if (US = Ø) m := m + 1
14: else break
15: }
16: return US
}

At lines 1 and 2, according to the class of the dti’s task, the algorithm decides the
direction to explore the role hierarchy. Algorithm 6 commits an upward discovery for the
tasks typed “Approval” or a downward discovery for the tasks typed “Workflow”. From
lines 5 to 14, the algorithm does a breadth first search in the role hierarchy. At line 9,
empty GR set represents that all roles connected to the offered role along with the desig-
nated direction in the role hierarchy are explored, and no proper delegatee is found.
Therefore, Algorithm 6 returns Ø as the result. If GR is not empty, the users playing roles
in GR is gathered into user set US and filtered with Algorithm 4. If US set is not empty
after the removal of conflict users, the algorithm returns US as the result set. Otherwise,
the discovery continues with further distances.

5. DELEGATION PROCESS FOR TRBAC

In this section, we discuss how our framework works in workflow systems. In sec-
tion 5.1, the methodology automating delegation requested by the system is discussed. In
section 5.2, the process for users to delegate their current and forthcoming works are
described. The method to revoke delegation is described in section 5.3.

5.1 Delegation from System Request

When a suspended task instance is nearly timed out, the system might spontaneously
request a delegation for the task instance. We assume that a suspended task instance is
emergent, and need to be delegated automatically if the proportion of its remaining active
interval is less than an enterprise policy named the Emergent Execution Ratio (EER).
With this assumption, the algorithm for delegation requested by the system is described
as follows.

DELEGATION FOR TRBAC IN WFMS

1021

Algorithm 6 Delegation from System Request
Input: the delegating task instance dti
Pre-Condition: dti.s = Suspended, E(dti.ai) > ctime

(E(dti.ai) − ctime)/(E(dti.ai) − S(dti.ai)) < EER
DFSR {
1: CDS := DRH(dti)
2: if (CDS = Ø) EXCEPTION(NO_PROPER_DELEGATEE)
3: else {
4: randomly choose a user u from CDS
5: DA(dti, u, [ctime, E(dti.ai)])
6: }
}

The system tracks the status of the executing task instances, and invokes Algorithm
7 whenever an emergent task instance is found. Algorithm 7 acquires the candidate dele-
gatees by exploring the role hierarchy with Algorithm 6 at line 2. Exception is raised if
Algorithm 6 returns no candidates. Otherwise, the algorithm randomly chooses a delega-
tee from the candidate delegatees and invokes Algorithm 1 to delegate the emergent task
instance.

5.2 Delegation from User Request

Many modern enterprises adopt user-authorized delegation as the primary delegation
methodology. The RBAC-based researches like [6, 8-10], also describes how roles and
permissions are delegated under user authorization.

With our framework, a user can authorize two types of delegation. First, a user may
delegate task instances currently allocated to him. Second, a user may delegate the task
instances going to be allocated to him during a specific period.

To request a delegation, the delegator fills in an authorization form which designates
the delegating subject, the delegatee user and the activation duration of the delegation.
For the first type of delegation, the delegator designates a task instance residing in his
work list as the delegating subject. The duration to authorize the delegation must be con-
tained by the active interval of the delegating task instance. For the second type of dele-
gation, the delegator designates an executable task by any of the roles he playing as the
delegating subject. The duration to authorize the delegation must be contained by the
effective duration of the role.

After accomplishing the authorization form, the delegator user submits the form in
requesting approval from his supervisor and the designated delegatee. If the delegation is
approved, for the first type of delegation, the designated task instance is delegated to the
delegatee user with Algorithm 1 immediately. For the second type of delegation, the ap-
proved form is put into Forthcoming Delegation Table (FDT). According to the form, the
task instances of the designated task which is allocated to the delegator in the specified
duration are delegated to the designated delegatee. Fig. 2 represents the process of dele-
gation from user request, the authorization form is defined in Definition 13, FDT is de-
fined in Definition 14, and finally, Algorithm 7 shows how WfMS handles the second
type of delegation.

HWAI-JUNG HSU AND FENG-JIAN WANG

1022

Fig. 2. The process of delegation from user request.

Algorithm 7 Handle Forthcoming Delegation
Input: Task Instance i, User u
Pre-Condition: i is allocating to u
HFD {
1: if (∃ap ∈ FDT, ap.dr = u, and ap.sub = i.tk) {
2: if (RCU({ap.de}, i) ≠ Ø {
3: DA(i, ap.de, [ctime, min(E(ap.tta), E(i.ai)))
4: } else EXCEPTION(INAPPROPRIATE_DELEGATEE)
}

Definition 13 (Authorization Form) Let AP be the set of all authorization forms. ∀ap
∈ AP, ap = (dr, de, sub, tta, is_approved). dr is the delegator user. de is the designated
delegatee user, dr ≠ de. sub is the subject of delegation, where if sub ∈ T, there exists r ∈
u.RU ∩ sub.RT and r.etd ⊇TD {tta}, and if sub ∈ I, sub ∈ dr.WL, sub.s ≠ Completed, and
sub.ai ⊇TD tta. tta, time to authorize, is the time interval that dr delegates the subject to
de.is_approved is a boolean variable showing whether ap is approved.

Definition 14 (Approved Form) ∀ap ∈ AP, if ap ∈ FDT, ap.sub ∈ T, ap.is_approved
= true, and E(ap.tta) ≥ ctime.

The system invokes Algorithm 8 whenever a task instance is being allocated to its
execution user. At line 1, the algorithm first checks if the user and the task of the task
instance are recorded on an authorization form in FDT. If the task instance is authorized
to be delegated, Algorithm 8 then invokes Algorithm 4 to check whether the designated
delegatee user on the form violates any delegation constraints. If the check is not passed,
an exception is raised and further handling is necessary. According to different policies,

DELEGATION FOR TRBAC IN WFMS

1023

the hanging task instance might be handled manually or be automatically delegated by the
system. Otherwise, Algorithm 1 is invoked to perform the delegation.

5.3 Revocation

A successful delegation can be revoked before it ends [10]. For revoking a delegated
task, the authorization form is removed from the FDT. For revoking a delegated task in-
stance, according to the system settings and the enterprise policies, the delegatee’s con-
tribution on the task instance might be preserved or discarded. The task instance is trans-
ferred back to the work list of the user requesting the revocation, the revoker, and the
revoker continues executing the task instance after the revocation.

Revoking a multi-level delegation is complex. For a multi-level delegation, all the
users recorded in the historical delegator list might revoke the delegation. If the revoker
is the original delegator, after the delegated task instance is transferred back, the delega-
tion record is totally eliminated. Otherwise, if the revoker is the other delegator in the
historical delegator list, the revoker becomes the delegatee of the delegation after the
revocation. The revoker and the other delegators behind the revoker are removed from
the historical delegator list.

When a delegation runs out of its effective duration, the system revokes it auto-
matically. The delegated task instance is transferred back like the revocation is requested
by the original delegator. Algorithm 8 is constructed as follows for revocation.

Algorithm 8 Revocation Algorithm
Input: the subject to be revoked rsub, the revoker u
Pre-Condition: rsub ∈ T ∪ I, u ∈ U
RA {
1: if (rsub ∈ T && ∃ap ∈ FDT that ap.dr = u, and ap.sub = rsub) {
2: remove ap from FDT
3: } else if (rsub ∈ I && rsub.dr = d that u ∈ d.HDRL, and rsub.s ≠ Completed) {
4: alert dti.eu that d is going to be revoked
5: remove rsub from rsub.eu.WL
6: add rsub to u.WL
7: rsub.eu := u
8: if(u = d.dr) {
9: remove d from D
10: rsub.dr := Ø
11: } else {
12: d.de := u
13: u and all the users behind u in the d.HDRL are removed from d.HDRL
14: }
15: alert dti.eu dti is transferred back to his work list
16: } else EXCEPTION(INVALID_REVOCATION)
}

Algorithm 8 takes the subject being revoked and the revoker as the input parameters.
If the subject is a task, Algorithm 8 checks whether there is corresponding authorization
form, and removes the form from FDT at lines 1 and 2. Otherwise, if the subject is a task
instance, Algorithm 8 checks the corresponding delegation record to assure the revoca-

HWAI-JUNG HSU AND FENG-JIAN WANG

1024

tion is valid at line 3. If valid, the current delegatee of the delegated instance is first
alerted at line 4. The delegated instance is removed from the delegatee’s work list, and
transferred to the revoker from lines 5 to 7. If the revoker is the original delegator of the
delegation, the delegation record is eliminated from lines 8 to 10. Otherwise, the record
is updated. The delegatee is assigned to the revoker at line 9; the revoker and the delega-
tors behind him are removed from the historical delegator list at line 10. The revoker is
alerted at line 15. At line 16, an exception is raised if the revocation is invalid.

6. CASE STUDY

In this section, we adopt a specification review process illustrated as an example to
show the feasibility of our approach. The workflow specification of the review process,
the partial role hierarchy, and the other related information are illustrated in Fig. 3. In this
case, the review process is composed of two tasks, primary review and secondary review.
Chief Engineer is in charge of the primary review, and Senior Engineer is responsible for
the secondary one. These two review tasks are mutually-exclusive, and concurrent with
the same EAI, [0, 5]. Let Alex is busy in his duty, and gets an approved delegation of the
reviews allocated to him during the time interval [ca, cb]. The approval is done by his
supervisor and Bob, the designated delegatee.

 (a) (b) (c)
Fig. 3. (a) The sample workflow specification; (b) The sample role hierarchy and the user assign-

ment; (c) The information about tasks, mutually-exclusive tasks, and authorization applica-
tions.

At time c1, ca < c1 and c1 + 5 < cb, a workflow instance of rws1, wi1 = ({i_t1, i_t2},

rws1, c1), is instantiated so that the task instances i_t1 and i_t2 are instantiated based on t1
and t2. i_t1 and i_t2 are offered to Chief Engineer and Senior Engineer, and allocated to
Alex and Carrie correspondingly. Now, i_t1 = (wi1, t1, r1, Allocated, u1, [c1, c1 + 5], Ø),
and i_t1 = (wi1, t2, r2, Allocated, u3, [c1, c1 + 5], Ø). Because Alex has been approved to
delegate all the reviews during [ca, cb] to Bob, Algorithm 7 invokes Algorithm 1 to dele-
gate i_t1 to Bob. The delegation record d = (i1, u1, u2, [c1, c1 + 5], {u1}) is created, and
i_t1 becomes (wi1, t1, r1, Allocated, u2, [c1, c1 + 5], d) after the delegation.

DELEGATION FOR TRBAC IN WFMS

1025

At time c2 which is in the middle of the active interval of i_t1, c1 < c2 < c1 + 5, Bob
gets an emergent call and becomes unavailable right away. The task instances in his
work list are all suspended. If EER equals to 1, the workflow system would immediately
invokes Algorithm 6 to delegate i_t1 to another appropriate delegatee. In Algorithm 6,
Algorithm 5 is first invoked to explore the role hierarchy for a proper delegatee. Because
t1 is typed “Workflow”, the role hierarchy is explored downward from Chief Engineer,
the role i_t1 offered. Alex is the only user now playing Chief Engineer, and is eliminated
from the candidate delegatee set by Algorithm 2 to avoid delegation loop. When consid-
ering Senior Engineer, Carrie is eliminated from the candidate set by Algorithm 3 be-
cause of the SOD policy, and Bob is eliminated from the candidate set by Algorithm 4
because he is unavailable. No users playing Senior Engineer are appropriate to take the
task. Therefore, Engineer is then considered. After all, Deff and Elly are included in the
candidate set, and Deff is randomly decided as the new delegatee of i_t1. Algorithm 1 is
invoked to delegate i_t1 to Deff. d is updated as (i1, u1, u4, [c2, c1 + 5], {u1, u2}), and i_t1
is updated as (wi1, t1, r1, Allocated, u4, [c1, c1 + 5], d).

At c3, c2 < c3 < c1 + 5, Alex finishes his jobs ahead of time, and decides to finish i_t1
himself. Alex invokes Algorithm 8 to revoke i_t1. Deff is first alerted and i_t1 is then
revoked. The delegation record d is removed, and i_t1 is updated as (wi1, t1, r1, Allocated,
u1, [c1, c1 + 5], Ø). In summary, this case demonstrates the delegations requested from a
user and the system, and indicates how the constraints like delegation loop and SOD
work in automatic delegatee decision.

7. COMPARISON AND CONCLUSION

7.1 Comparison

In this section, we compare our framework with the latest popular approaches: [6, 10,
12, 14], and Table 2 illustrates the characteristics of above approaches and ours corre-
spondingly. RBDM1 [6] is a classic delegation model for RBAC, and can be adopted in
managing delegation of permissions between users. Crampton develops another RBAC-
based delegation model for workflow systems [10]. Crampton’s approach allows both grant
and transfer operations for delegation of permissions while RBDM1 adopts only grant

Table 2. Delegation characteristics in various delegation models.
Characteristics RBDM1 [6] Crampton [10] Gaaloul [12] VTTRDM [14] Our Approach
Access Control RBAC [3] RBAC [3] TAC [12] TRBACM [14] TRBAC [4]
Delegation of
Permissions Grant Grant & Transfer No Grant No

Delegation of
Tasks No No Transfer Yes Transfer

Delegation of
Task Instances No No No No Transfer

Time
Constraints No No No Yes Yes

Automatic
Delegation No No No No Yes

HWAI-JUNG HSU AND FENG-JIAN WANG

1026

operation [10]. Crampton also raises the issues like upward delegation and permission
authorization for delegation of tasks in work-list based workflow systems [10]. However,
both RBDM1 and Crampton’s approach describe no methods about delegation of tasks.

With various access control models based on tasks and roles, Gaaloul’s methodol-
ogy [12], VTTRDM [14], and our approach can be adopted in managing delegation of
tasks for workflow systems. Gaaloul’s methodology describes constraints for delegation
of tasks based on Task-oriented Access Control (TAC) model [12]. TAC model describes
the permissions which a role owns and a task needs. Gaaloul’s methodology allows a user
to delegate his tasks to a role which has sufficient permissions to execute the tasks. Since
Gaaloul’s methodology allows no delegation of permissions, it is limited and inflexible
when selecting the delegatee for a delegation.

In VTTRDM [14], both permissions and tasks can be delegated between users.
RBDM1 [6] is adopted in VTTRDM to manage the delegation of permissions. When
delegating a task, if the delegatee does not have sufficient permissions to execute the task,
permission delegation from the delegator to the delegatee is necessary to enable the exe-
cution [14]. Since in VTTRDM, the delegated permission is not limited being used for
the delegated tasks only, security risk exists.

In our approach, tasks are delegated through user’s authorization. Our approach is
based on TRBAC, and a task is executed with a set of associate permissions. Therefore,
the delegatee can execute the delegated task without delegation of permissions, and the
security risks brought by delegation of tasks are eliminated. Besides, in [24], delegation is
defined as “A user allocates a task instance previously allocated to him to another user.”
While delegation of task instances is ignored in [12, 14], our approach clearly states how
to delegate task instances between users. For delegation of task instances, our methods
could gather candidate delegatees and remove inappropriate users from the candidates.
With our approach, a workflow system can automatically delegate an emergent task in-
stance to an appropriate user to prevent the task instance from failure.

Regarding temporal issues, in VTTRDM, delegation is effective during a single time
interval, and the delegated tasks are revoked after the interval [14]. Our approach is based
on the time constraints between the delegated task instances and the related roles. Be-
cause a role might be activated in multiple time intervals, multiple or periodical time
intervals are considered in our approach to provide a more realistic temporal constraints.

7.2 Summaries and Future Works

In this paper, a delegation framework for TRBAC in WfMS is presented. The com-
ponents of delegation are discussed. In the framework, the constraints in delegatee selec-
tion e.g. delegation loop and SOD are stated, and the methods to derive candidate dele-
gatees from the role hierarchy are established. The temporal constraints are considered
with the active interval of a task instance, the active durations of a role, and the effective
duration of a delegation. The algorithms for delegation and revocation are constructed.
With the algorithms, a user can delegate his tasks manually, and the workflow system
can delegate an emergent task instance automatically. Finally, we make a comparison
between the related works and ours, including the advantages and the disadvantages.

In the future, the feasibility and security issues in sharing a task instances among us-
ers can be further studied to adopt grant operation in delegation of task instances. More

DELEGATION FOR TRBAC IN WFMS

1027

constraints about temporal factors and SOD might be discussed to construct methods for
exception detection and handling. Besides, the possibility and user’s factors in delegation
automation will be further studied by applying experiences in knowledge management.

REFERENCES

1. WfMC, Workflow Management Coalition Terminology and Glossary, the WfMC
Specification, Winchester, 1999.

2. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based access
control models,” IEEE Computer, Vol. 29, 1996, pp. 38-47.

3. D. Ferraiolo and R. Kuhn, “Role-based access controls,” in Proceedings of the 15th
National Computer Security Conference, Vol. 2, 1992, pp. 554-563.

4. S. Oh and S. Park, “Task-role-based access control model,” Information Systems, Vol.
28, 2003, pp. 533-562.

5. E. Barka and R. Sandhu, “A role-based delegation model and some extensions,” in
Proceedings of the 23rd National Information Systems Security Conference, 2000,
pp. 125-134.

6. E. Barka and R. Sandhu, “Role-based delegation model/hierarchical roles (RBDM1),”
in Proceedings of the 20th Computer Security Applications Conference, 2004, pp.
396-404.

7. J. Wainer and A. Kumar, “A fine-grained, controllable, user-to-user delegation method
in RBAC,” in Proceedings of the 10th ACM Symposium on Access Control Models
and Technologies, 2005, pp. 59-65.

8. H. Wang and S. Osborn, “Delegation in the role graph model,” in Proceedings of the
11th ACM Symposium on Access Control Models and Technologies, 2006, pp. 91-100.

9. J. B. D. Joshi and E. Bertino, “Fine-grained role-based delegation in presence of the
hybrid role hierarchy,” in Proceedings of the 11th ACM Symposium on Access Con-
trol Model and Technologies, 2006, pp. 81-90.

10. J. Crampton and H. Khambhammettu, “Delegation in role-based access control,”
International Journal of Information Security, Vol. 7, 2008, pp. 123-136.

11. P. H. Bammigatti and P. R. Rao, “Delegation in role based access control model for
workflow systems,” International Journal of Computer Science and Security, Vol. 2,
2008, pp. 1-10.

12. K. Gaaloul and F. Charoy, “Task delegation based access control models for work-
flow systems,” Software Services for e-Business and e-Society, IFIP Advances in
Information and Communication Technology, Vol. 305, 2009, pp. 400-414.

13. P. Jian, H. J. Hsu, and F. J. Wang, “A delegation framework for access control in
WfMS based on tasks and roles” in Proceedings of the 12th IEEE International
Workshop on Future Trends of Distributed Computing Systems, 2008, pp. 165-171.

14. D. W. Zhang, X. Pei, J. Q. Qiu, Y. Zhang, and J. Peng, “A delegation model for time
constraints-based TRBAC,” in Proceedings of the 8th International Conference on
Machine Learning and Cybernetics, 2009, pp. 2027-2032.

15. H. J. Hsu and F. J. Wang, “An incremental analysis for resource conflicts to work-
flow specifications,” Journal of Systems and Software, Vol. 81, 2008, pp. 1770-1783.

16. M. Nyanchama and S. Osborn, “The role graph model and conflict of interest,” ACM

HWAI-JUNG HSU AND FENG-JIAN WANG

1028

Transactions on Information and System Security, Vol. 2, 1999, pp. 3-33.
17. R. T. Simon and M. E. Zurko, “Separation of duty in role-based environments,” in Pro-

ceedings of the 10th Computer Security Foundations Workshop, 1997, pp. 183-195.
18. R. A. Botha and J. H. P. Eloff, “Separation of duties for access control enforcement

in workflow environments,” IBM System Journal, Vol. 40, 2001, pp. 666-683.
19. J. F. Allen, “Maintaining knowledge about temporal intervals,” Communications of

the ACM, Vol. 26, 1983, pp. 832-843.
20. J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “Generalized temporal role-

based access control model,” IEEE Transactions on Knowledge and Data Engineer-
ing, Vol. 17, 2005, pp. 4-23.

21. M. J. Moyer and M. Ahamad, “Generalized role-based access control,” in Proceed-
ings of the 21st IEEE International Conference on Distributed Computing Systems,
2001, pp. 391-398.

22. G. Ding, J. Chen, R. F. Lax, and P. P. Chen, “Graph-theoretic method for merging
security system specifications,” Information Sciences, Vol. 177, 2007, pp. 2152-2166.

23. C. H. Chang, and F. J. Wang, “An analysis of delegation mechanism in workflow
management system,” Master’s Thesis, Institute of Computer Science and Engineering,
National Chiao Tung University, 2003.

24. N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der Aalst, “Work-
flow resource patterns,” BETA Working Paper Series, WP 127, Eindhoven Univer-
sity of Technology, Eindhoven, 2004.

Hwai-Jung Hsu (許懷中) received the B.E. and M.E. degrees
in Computer Science and Information Engineering from National
Chiao Tung University, Hsinchu, Taiwan, in 2001 and 2003. He
is now a Ph.D. candidate of the Institute of Computer Science and
Engineering, National Chiao Tung University, Hsinchu, Taiwan.
His research interests are software engineering, workflow techno-
logy, service-oriented computation, and pervasive computing, etc.

Feng-Jian Wang (王豐堅) received the B.S. degree in Phy-
sic from National Taiwan University, Taipei, Taiwan, in 1980,
and the M.S. and Ph.D. degrees in Electrical Engineering and
Computer Science from Northwestern University, IL, U.S.A., in
1983 and 1988. He is a Professor of the Department of Computer
Science of the National Chiao Tung University, Hsinchu, Taiwan.
His area of research includes software engineering, pervasive
computing system, workflow technology, and grid computation.

