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摘要 

 

    本研究將發展一種求得彈性半空間上任何位置振動之方法。此振動之振動源為彈

性半空間上一剛性圓基礎受一簡諧振動力。在這方法中，圓柱座標系統之三維波動方

程式的解析解將被利用。因此求得在彈性半空間上任何一點之振動可由對波數 積分

之半無限積分式( k 從 0積到∞)表示。但在數值積分上，吾人只可能從 0積分到某一

積分上限 。而此積分上限必須足夠大以求得精確之結果。能夠以積分上限代替無限

大是因積分式中之積分項是以 衰減。經由本研究顯示，積分上 之選取與非因

次化頻率，振動源與振動位置間之非因次化距離及彈性半空間之阻尼比有關。同時本

研究亦發現在某一方向之振動量並非單純隨與振動源之距離變大而減少。此種現象乃

因表面波影響之現象。本研究同時將探討阻尼比對振動衰減之影響。本研究亦證明本

研究所發展之方法有效。 
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Abstract 

 

   The paper presents a systematic procedure to calculate the vibration at any specific 

location on a half-space medium due to harmonic vibrations of a circular rigid plate on the 

medium. In the procedure, the analytic solutions of 3D wave equations in cylindrical 

coordinates are employed. The vibration at any specific location on half-space medium is 

obtained analytically by a semi- infinite integration with respect to wave number  from 

 to ∞ . However, the numerical integration will be only performed up to a certain upper 

limit  instead of ∞ . InThe paper presents a systematic procedure to calculate the 

vibration at any specific location on a half-space medium due to harmonic vibrations of a 

circular rigid plate on the medium. In the procedure, the analytic solutions of 3D wave 

equations in cylindrical coordinates are employed. The vibration at any specific location 

on half-space medium is obtained analytically by a semi- infinite integration with respect 

to wave number  from  to 

k

0

uk

k 0 ∞ . However, the numerical integration will be only 

performed up to a certain upper limit  instead of uk ∞ . In order to keep the accuracy, the 

upper limit  must be large enough. The choosing of the integration upper limit  is 

dependent upon the factors of nondimensional vibration frequency, nondimensional 

distance between vibration source and receiving location and material damping of the 

medium. From the numerical results, one finds that the vibrations may not attenuate 

monotonically along the distance from source. This is due to the phenomenon of Rayleigh 

surface wave. The influence of hysteretic damping of medium on the attenuation of 

vibration is also investigated. Some numerical results will be shown and discussed. 

Comments on the presented method and numerical results will be given, and the presented 

scheme is proved to be effective and efficient for accurately calculating the vibration 

induced by harmonic loadings applied at rigid circular plate. 
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choosing of the integration upper limit  is dependent upon the factors of 

nondimensional vibration frequency, nondimensional distance between vibration source 

and receiving location and material damping of the medium. From the numerical results, 

one finds that the vibrations may not attenuate monotonically along the distance from 

source. This is due to the phenomenon of Rayleigh surface wave. The influence of 
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hysteretic damping of medium on the attenuation of vibration is also investigated. Some 

numerical results will be shown and discussed. Comments on the presented method and 

numerical results will be given, and the presented scheme is proved to be effective and 

efficient for accurately calculating the vibration induced by harmonic loadings applied at 

rigid circular plate. 
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Introduction  
 

   Environmental vibrations near vibration source will affect the performance of high 

precision equipments or hi-tech production machines; e.q. optical tools used by 

microelectronics industry. Therefore how to specify the allowance of ground vibration for 

those hi-tech production equipments and how to evaluate the ground vibration due to a 

specific vibration source have become important issues for design and construction of 

hi-tech production plants. 

 In response to the first problem, Gordon and Dresner [1] have proposed the generic 

vibration criterion curves for different vibration sensitive equipments. From these curves, 

one can find the allowable ground vibration is getting smaller as the production 

requirement is getting stricter. To address the second problem Sheng et al [2] and Krylov 

[3] employed Euler beam theory to model whole track including rails, steepers and ballast, 

and Kaynia et al [4], Takemiya and Bian [5,6] proposed a more sophisticate analysis model, 

which takes dynamic interaction into account, to evaluate the ground vibration induced by 

passing train. To reduce the ground vibrations near track, open or in-fill trenchs are usually 

recommended. Ahmad and Al-Hussaini [7] and Dasgupta et al [8] have given some 

theoretical studies. Moreover, if the track is elevated on bridges, the ground vibration due 

to the excitations by bridge abutments will produce more serious problem to the hi-tech 

production tools. Takemiya [9] designed a wave impeding barrier of honeycomb piles to 

reduce the ground vibrations near bridge abutments. Therefore, the calculation of ground 

vibrations induced by vibration of bridge foundation due to passage of high speed train is 

very important for high precision production equipments nearby. 

   All above mentioned methods, finite element or boundary element based methods are 

employed to model half-space medium. Regarding the analytical approach to evaluate the 

ground vibration due to specific sources, Miller and Pursey [10] have calculated the energy 

flux of compressional, shear and Rayleigh waves in the far-field of a semi-infinite medium 

generated by vertical harmonic vibration of circular plate. Also from the practical point of 

view, Woods and Jedele[11] collected some observation data and deduced these data into a 

simple formula expressing the attenuation relationship of vibration in terms of distance and 

soil damping. 

  The paper will present an analytical procedure to calculate the vibration at any location 
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of half-space medium due to harmonic vibration of a rigid circular plate. The components 

of harmonic vibration of the plate are torsional, vertical, horizontal and rocking motions. 

To solve the problem of wave propagation in half-space medium, Liou [12] have 

developed a technique to decompose the applied tractions induced by vibrations of plate. 

These decomposed tractions will be easily fitted into the analytic solutions of three 

dimensional wave equations in cylindrical coordinates. This technique was employed to 

generate the impedance functions for circular plate on half-space medium by  

Liou et al [13]. The presented procedure in the paper will extend the work of Reference 13 

to generate the vibration at any location on half-space medium due to a harmonic loading 

applied at a rigid circular plate.  

    In order to simulate the distribution of interaction tractions between rigid plate and 

surrounding medium, piecewise linear distribution in r-direction of cylindrical coordinates 

is assumed. Based on this assumption, the impedance functions for the plate can be 

obtained by enforcing compatibility condition, using variational principal and reciprocal 

theorem. The vibration at any specific location on half-space medium can also be 

calculated for the cases of applying harmonic loadings at the plate. 

    Numerical results for a rigid circular plate subjected to torsional, vertical, horizontal 

and rocking loadings are presented to demonstrate the effectiveness and efficiency of the 

proposed scheme .The numerical results will be presented in the nondimensional forms. In 

the numerical investigations, spatial dilution of vibrations and attenuation due to material 

damping of half-space medium will be discussed. Also, some comments about the 

presented scheme and numerical results will be made.    
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Analytical Model for Half-space Medium 
 

   The analytical model is a rigid circular plate on a half-space medium subjected to time 

harmonic loadings. The interaction tractions between plate and surrounding medium are 

shown in Fig.1, and can be expressed in cylindrical coordinates in terms of Fourier 

components with respect to azimuth. 
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where the superscript  denotes the  Fourier component in the series; in this circular 

plate case, n = 0  represents vertical (symmetric with respect to θ=0) and torsional 

loadings (anti-symmetric),  represents horizontal and rocking loadings (symmetric); 

n thn

n = 1

ω = frequency; and  is radius of circular plate. Since the time variation 
0a i te ω  appears on 

both sides of the equation and can therefore be canceled, it is omitted hereinafter. 

To solve 3D wave equations with prescribed tractions given by Eq(1), some 

fundamental solutions can be exploited. Sezawa [14] developed a technique for separating 

the dilatational and rotational waves in the general equations of wave propagation, and 

used the technique of separation of variables to obtain general solution for  Fourier 

component with respect to azimuth. After mathematical manipulations of the general 

solution, one can express the displacement components at the surface z=0 in terms of the 

traction components on the surface for any  Fourier component as follows: 

thn
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c Pc  and  compressional and shear wave velocities;  shear modulus; 

 wave number in the horizontal direction; 

sc = G =

k = ′nJ (kr) = first kind of Bessel function of 

order n; and . ′ nJ (k [d J (k r)/d r]n r) =

  In order to simulate the arbitrary distributions of interaction tractions in r-direction , 

the distribution of tractions in r-direction of Eq.(1) is approximated by piecewise linear 

model  with respect to r-direction of cylindrical coordinates. Assuming that the interval 

 for Eq. (1) is divided into  subintervals with equal width (0 0, a ) m 0ab =
m

 , one can 

express the piecewise linear stress distribution as follows:  
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and ,  and jp jq js  are the traction intensities at node j  for rzτ , zzσ  and zθτ  

respectively. Liou [11] has developed a technique to decompose the tractions in Eq.(3) as 

follows: 
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Using 0t = -t0  and substituting  from Eq. (5) into Eq. (2b), the following 

equation can be obtained by integrating the resulting expression from 0 to . 

0t = -JDP dk
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Eq.(6) defines the relationship between displacement vector and prescribed traction on 

the surface for the  Fourier component. To generate the impedance matrix, 

substructuring concept, principle of virtual work and reciprocal theorem will be used. 

thn
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  Consider half-space medium with the prescribed tractions defined by Eq. (3) which 

approximates Eq.(1) for tractions. Variational principle gives 

 

( )

0

0

0

2

0 0

0 0

0 0

2

2

T

0 0t u

P H JQD P

P HJ QD P

∞

∞

=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫

∫ ∫

a

aT

aT

W rd dr

dkrdr

rdr dk

π
δ δ θ

π
δ

π

π
δ

π

                                    (7) 

 

where matrix ( ),H h,h,h= diag  and h , 0t  and  are defined in Eqs. (3) and (6) . 
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Using Eq.(2a) or Bettis’s Theorem, one can show that the matrix  is symmetric. 

Therefore, matrix  is also symmetric. 
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    Now, consider the plate itself. Similar to finite element modeling, the displacement 

field of the plate for  Fourier component can be assumed as: thn
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where matrix  is comprised of the shape functions in r-direction, and vector  is 

comprised of the generalized displacements at the nodal rings of the plate finite element 
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Equating Eq. (11) to Eq. (9) and factoring out PTδ , it is obtained 
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where vector V  are the generalized displacements at the nodal rings of the assumed 

piecewise linear stress model. Eq. (14) gives the relationship between the nodal 

generalized displacements of the assumed stress model of Eqs.(3) and the displacements of 

the finite element model of Eq. (10). To obtain the corresponding force-traction 

relationship for both models, reciprocal theorem can be used. This leads to the following 

equation. 

 

2 TF B P⎛ ⎞
= ⎜ ⎟
⎝ ⎠

π
π

                                                         (15) 

 11



 

where vector F  are the generalized forces at the nodal rings of the finite element model. 

Substituting Eq. (13) into Eq. (15) yields 
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The matrix I  is the impedance matrix for  Fourier component. thn

Eq.(16) gives the relationship of applied force and plate vibration displacement. For 

finding vibration at any specific location on half-space medium, Eq.(16) will be employed 

to calculate plate vibration  induced by the external applying harmonic force v F  first, 

the vector P  of traction intensities at nodal rings is calculated by Eq.(13) secondly, and 

then Eq.(6) is used to calculate the vibration at any specific location. Although Eq.(6) does 

not show the variation of vibration with respect to azimuthθ , the variation with respect to 

θ  can be obtained by simply multiplying cosθ  or sinθ  for rocking and horizontal 

loadings as shown in Eq.(1). Numerical results of plate impedance functions have been 

shown by Liou et al [13]. Therefore, the main purposed of the paper is to employ Eq.(6) to 

calculate the vibration at any specific location on a half-space medium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 12



 

Numerical Investigation 
 

   In the semi-infinite integrations of Eq. (6) and (9), singular point may exist, provided 

there is no damping assumed for half-space medium. This is because  in matrix Q  

in Eq.(2a) when wave number  is equal to Rayleigh wave number. Although technique 

such as residue theorem may be used to calculate the integration around the singular point, 

material damping is introduced in half-space medium in order to comply with the more 

realistic situation of medium, and hysteretic type of damping is chosen. This means shear 

modulus  in Eqs.(2) is complex and can be expressed as 

0Λ =

k

G (1 2 )= + iG G ξ  in which ξ  

is damping ratio. Therefore, numerical integration scheme can be directly employed. In the 

study, Poisson ratio of half-space medium is assumed to be 0.33. Furthermore, using the 

following two statements, the integrand in the semi-infinite integral of Eq.(9) can be easily 

shown to be proportional to 3

1
k

 and the integrand in Eq.(6) is proportional to 2

1
k

 as 

:  →∞k

  (1) The elements of matrix decay with Q  1
k

 as , since→∞k ′ kν ν  as . →∞k

  (2) Using the identities of 
22

1 1
1( ) ( ) ( )+ −

+
= − +∫ ∫n n n

r nr J kr dr J kr rJ kr dr
k k

 

and 1 1( ) ( ) ( )− −= − +∫ ∫n n n
r nrJ kr dr J kr J kr dr
k k

, and 0.5

1( ) ∝nJ kr
k

as , it is 

concluded that the elements of matrix 

→∞k

D  in Eqs.(4), (4a), (5), (6) and (9) decay with 1.5

1
k

. 

It is therefore appropriate to replace the infinite integration limit with a finite number 

without losing accuracy.      

 After some convergence study, the followings can be concluded : (1)  for the 

number of subinterval in Eqs.(3) is enough to accurately describe the distribution of 

interaction tractions between plate and half-space medium; (2) To approximate the 

semi-infinite integrals of Eqs.(6) and (9), the upper limit of integration is controlled by 

Eq.(6), Since the integrand in Eq.(9) is proportional to 

m = 20

3

1
k

 and integrand in Eq.(6) is 
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proportional to 2

1
k

 as  ; (3) In general, the upper limit of integration in Eq.(6) 

must be larger as the nondimensional distance from plate center is further, hysteretic 

damping ratio of half-space medium is greater, or excitation frequency is higher. 

→∞k

  The above mentioned third conclusion except first part is related to the phenomenon 

of Rayleigh wave behavior. Let us look at Bessel function matrix J  in Eqs.(6) and (2c). 

The elements in matrix J  is proportional to  as . And the elements in matrix 

 and 

0.5k →∞k

Q D  in Eq.(6) are independent of  (the distance from vibration source). This 

means larger  needs larger upper limit of integration in Eq.(6) to compensate the 

integration accuracy. This leads to the first part of third conclusion. Also, high damping 

will make 

R

R

Λ
1  in  matrix smaller for k  in the neighborhood of Rayleigh wave 

number. This means Rayleigh wave number component is less dominating the value of the 

integration in Eq.(6). This explains the second part of third conclusion. For the case of 

higher excitation frequency, the upper limit of integration in Eq.(6) must be larger due to 

higher respective Rayleigh wave number. This statement reasons the third part of third 

conclusion. 

Q

To obtain certain accuracy, it is difficult to definitely give a clear rule to set the upper 

integration limit in Eq.(6), since the above three stated factors influence the upper 

integration limit in different proportions. Therefore, one can only employ the above third 

conclusion as a guide line and increase the upper integration limit to check if the results of 

vibrations calculated by Eq.(6) is converging. 

  Since the total system is linear. All the quantities can be nondimensionalized. As shown 

in Reference 13, the torsional, vertical, horizontal, coupling and rocking impedance 

functions are nondimensionalized respectively as follow: 
3

TT

0

I
Ga

, vv

0

I
Ga

, HH

0

I
Ga

, 
2

HR

0

I
Ga

, and 

3
RR

0

I
Ga

. Therefore, the excitation forces are normalized in the similar way. However, in 

order to obtain nondimensional displacements , ru zu  and θu  in Eq.(6), the shear wave 

length for ( ω )1 H  frequency is introduced. The wave length 

, in which 

z = 1
2π

sec.sλ= Re c()/1 sRe c() is real part of shear wave velocity sc . Complex 
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sc  is due to complex shear modulus . The vertical and horizontal excitation forces are 

nondimensionalized in the forms of 

G

V

0

F
Ga λ

 and H

0

F
Ga λ

 respectively. The torsional and 

rocking excitation moments are normalized in the forms of T
3

0

M
Ga λ

 and R
3

0

M
Ga λ

 

respectively. The reason to manipulate the quantities in this way is to made the following 

numerical results of , ru zu  and θu  have been nondimensionalized by . The numerical 

results shown in the following figures are produced by unit harmonic excitation forces. 

This means 

λ

V

0

F
Ga λ

, H

0

F
Ga λ

, T
3

0

M
Ga λ

 or R
3

0

M = 1
Ga λ

. 

   In the numerical results, the hysteretic damping ratios   ξ = 0.0001, 0 0.01,.001,

0.02, 0.03 and 0.05

R

 are selected for half-space medium. The reason to select the case 

of very low damping ( ) is to check and approximate the behavior of vibration 

in the medium without material damping. Figs. 2-13 show the results of vibration 

amplitudes along the nondimensional distance from center of circular plate. In Figs. 2-13, 

the distance  is nondimensionalized as 

ξ .0001= 0

s

ωR
2πRe(c )

 in which  is excitation frequency. 

Figs. 2-13 show the results for the case of nondimensional frequency 

ω

0.00005=0

s

ωa
2πRe(c )

 . This small nondimensional frequency can be used to approximate 

point source exaitation problem. Fig. 2 shows the vibration amplitude of θu  component 

due to unit normalized torsional moment excitation. From the figure, one can see that for 

0.5≤
s

ωR
Re(c )2π

 the attenuation of vibration in mainly caused by spatial dilution and for 

0.5

u

≥
s

ωR
Re(c )2π

 material damping is getting more significant for attenuation of vibration. 

Also, the vibration decays along the distance smoothly. Figs.3 and 4 show the vibration 

amplitudes of  and r zu  respectively due to unit nondimensional vertical force. Looking 

at these two figures, one can observe that the vibration attenuate over the distance only 

from marco view of point, the amplitudes of vibration along the distance fluctuate, the 

fluctuation becomes more dramatic as damping getting higher and the period of the 
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fluctuation over the nondimensional distance is around 1.90. To explain these phenomena, 

one can refer to Eqs.(6) and (2a). The 
Λ
1  in Q matrix of Eqs.(6) or (2a) will be getting 

huge as  is close to Rayleigh wave number. Rayleigh wave number is approximately k

1.073
s

ω
Re(c )

 for poisson ratios 0.33 . Therefore, the contribution of the wave number 

components in the neighborhood of Rayliegh wave number is very important in the 

integration of Eq.(6). Dependent upon distance, this property will make the value of the 

integration of Eq.(6) larger or smaller locally. The fluctuation is caused by this property. 

Furthermore, the Rayleigh wave length is about 0.932 s2πRe(c )
ω

. This is about half of the 

period of fluctuation along nondimensional distance in Figs.3 and 4. One should also 

notice that the phenomenon mentioned above does not occur in the torsional case (Fig.2). 

For torsional excitation, only  wave is generated.  SH

     The above mentioned interesting phenomenon leads to the curiosity of finding the 

average energy flux intensity at . The average flux intensity can be easily calculated 

by the formula as follows: 

z = 0

 

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫
2ω 2π 22 2iωt2π

θ 20 0

sin nθ1E = ρω ( u + u + u ) dθ e dt
2π cos nθ

2 2

r z

ω
2π

ρ

                    (17) 

 

Where  is mass density. The flux intensity in Eq.(17) is averaging over time period 

2π
ω

and circle length 2πR . Eq.(17) is easy to be integrated. The E  can be 

normalized to become the following equation without lossing the meaning of average 

energy flux intensity. 

 

 
2 2 2

r z θE = u + u + u                                                  (18) 

 

Now, one can employ Eq.(18) to calculate E  for different distances from the center of 

plate. The results are shown in Fig.5. From the figure, one observes that the fluctuation is 

smaller. It is also believed that the curve for average energy flux intensity will be smoother 
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for greater  , since Rayleigh wave is confined in the depth near free surface. z
Figs. 6~8 show the results of three components ,  and ru zu θu  induced by unit 

nondimensional horizontal excitation. Comparing these three figures to Figs. 4-5, one can 

observe similar phenomenon of local fluctuation except the fluctuation becomes more 

dramatic. Eq.(18) is employed to calculate the average energy flux intensity at = 0z

ru

 

induced by unit nondimensional horizontal excitation. The results are shown in Fig.9. 

From the figure, one can see that the fluctuation is greatly reduced. For the case of unit 

normalized rocking excitation, Figs. 10-12 show the results of the three components , 

 and zu θu . From these three figures, similar fluctuation phenomenon is observed. 

However, the fluctuation is less dramatic. Also, Eq.(18) is used to compute the average 

energy flux intensity and the results are shown in Fig.13. Again, the fluctuation for the 

results of average energy flux intensity is dramatically reduced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 17



Concluding Remarks  
 

After extensive numerical investigations of the presented scheme, the following 

conclusions and suggestions can be made. 

 

(1) For nondimensional distance ( )ωR  is smaller than 0.5, the decay of vibration is 

mainly governed by spatial dilution of waves. For 

s2πRe(c )

( ) 2.0> , the decay of 

vibration is mainly governed by material damping of half-space medium. For 

s

ωR
2πRe(c )

0.5 ( ) 2.0≤ ≤ , both spatial dilution and material damping have the influence 

on vibration attenuation.  

s

ωR
2πRe(c )

(2) One should not jump to conclusion that the vibration components )  

are smaller as the distance from vibration source is further. From macro view, the 

vibration does attenuate over the distance from vibration source. However, there are 

fluctuations of vibration amplitudes along distance as shown in some above mentioned 

figures.  

r z θ(u , u and u

(3) Although the results of vibrations for the cases of high nondimensional frequencies are 

not shown in the paper, the fluctuation for the cases of high frequencies is even more 

severe, and the period of fluctuation along nondimensional distance is always about 

twice of Rayleigh wave length. 

(4) The presented procedure can be extended to deal with the cases of layered half-space 

medium, calculating vibrations at locations with depth ≠z 0  and plates with arbitrary 

shapes. For the cases of layered half-space medium and calculating vibration at depth 

≠z 0 , one just need to revise Q  matrix in Eqs.(2a) and (6). For the case of plates 

with arbitrary shapes, one just need to incorporate more Fourier components as 

indicated in Eq.(1) in the calculation. 

(5) According Eq.(10), the presented procedure is feasibly combined with finite element 

model of superstructure on foundation plate. This would take soil-structure interaction 

effect into account. 
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計畫成果自評 

 

    本計劃總時程為二年期計畫(96 年 8 月至 98 年 7 月)，本報告為第一年之成果，

其計畫成果與預期相符，本計劃總共將可發表一篇國際會議論文，及兩篇國際期刊論

文，目前已有一篇在審查中。本計劃所完成之程式包含求得基礎振動或半空間土壤任

何位置之振動。本程式將可實際應用在求得某一結構(如高鐵橋梁)之振動對附近結構

(高科技廠房)物之影響。 

    本程式及其理論推導將可擴大求任意基礎形狀及基礎剛度之結構物振動時任何

距離之振動大小。 


