FREARFELR e by W22 v

Llgr @ 2RFL
ﬁ[’&é‘f#‘ _J’f#?ﬁt SR oF: 9 TR f#iﬁrﬂfl’%fﬁﬁ%i%ﬁiiﬁs@ﬁﬁ

caags Ml RNAYE O FEsIVR
% %% 0 NSC 96—2221 —E—009—082—
REHF L 96E 08 0lpx 97077 3¢

b R R
SLEE L
FRFEAR

*EFLFA(REF P UFER TR I RFEE O EHFRE

e R SR R 2R

| ENECIRRIE S = AN -
D{%%%?ﬂgj%"uwﬁf—w
§ g vﬁﬁf’;;}b?\‘»\cw ;\.E”G’\
D@wtﬁz FERMFETRL T - B
BRI S IR AR L EF PR RE AR A ABTFIVE

FEFEE T FE T OB A5
HE RS FEMAR (- #0- 287 2R 43

[]

;ﬁﬁﬁiij:

i F X R 97 & 09 14 p



R

AT MR - R RS
B b RERARS - fudRd 4 o a2 o LA f 2 = Al d
'@iL@—%i%ﬁFd%%ﬁkﬁg

-
=
LU A S (RO ffFloo) 277 o e AlBAA Y - 24 BT RAOHA TR -

Z_

E

BE

)
~3

d

TR I o @ R A R JE R 0 R AR R o R B AR A R

CEFRARY AT ALK R 5 AL EA 0 fEA L k2 E g T
ST JRB R RS B B2 AL F S GEgE A R L @ Rt G B o e A
Py AERAE- 392 ke P52 H SHRFRZIERES S AR D o IR 2
206 Rk AT e BRI RS R B AR AR A

= ;L‘* Bz

R
bl
v

K
W
=\
"
A



Abstract

The paper presents a systematic procedure to calculate the vibration at any specific
location on a half-space medium due to harmonic vibrations of a circular rigid plate on the
medium. In the procedure, the analytic solutions of 3D wave equations in cylindrical
coordinates are employed. The vibration at any specific location on half-space medium is
obtained analytically by a semi- infinite integration with respect to wave number &k from
0 to . However, the numerical integration will be only performed up to a certain upper

limit &, instead of c. InThe paper presents a systematic procedure to calculate the

vibration at any specific location on a half-space medium due to harmonic vibrations of a
circular rigid plate on the medium. In the procedure, the analytic solutions of 3D wave
equations in cylindrical coordinates are employed. The vibration at any specific location
on half-space medium is obtained analytically by a semi- infinite integration with respect
to wave number k£ from 0 to oo. However, the numerical integration will be only

performed up to a certain upper limit %, instead of co. In order to keep the accuracy, the
upper limit k£, must be large enough. The choosing of the integration upper limit £, is

dependent upon the factors of nondimensional vibration frequency, nondimensional
distance between vibration source and receiving location and material damping of the
medium. From the numerical results, one finds that the vibrations may not attenuate
monotonically along the distance from source. This is due to the phenomenon of Rayleigh
surface wave. The influence of hysteretic damping of medium on the attenuation of
vibration is also investigated. Some numerical results will be shown and discussed.
Comments on the presented method and numerical results will be given, and the presented
scheme is proved to be effective and efficient for accurately calculating the vibration
induced by harmonic loadings applied at rigid circular plate.

k, k 4 order to keep the accuracy, the upper limit ¥ must be large enough. The
choosing of the integration upper limit k&  is dependent upon the factors of

nondimensional vibration frequency, nondimensional distance between vibration source
and receiving location and material damping of the medium. From the numerical results,
one finds that the vibrations may not attenuate monotonically along the distance from

source. This is due to the phenomenon of Rayleigh surface wave. The influence of



hysteretic damping of medium on the attenuation of vibration is also investigated. Some
numerical results will be shown and discussed. Comments on the presented method and
numerical results will be given, and the presented scheme is proved to be effective and
efficient for accurately calculating the vibration induced by harmonic loadings applied at

rigid circular plate.



Introduction

Environmental vibrations near vibration source will affect the performance of high
precision equipments or hi-tech production machines; e.q. optical tools used by
microelectronics industry. Therefore how to specify the allowance of ground vibration for
those hi-tech production equipments and how to evaluate the ground vibration due to a
specific vibration source have become important issues for design and construction of
hi-tech production plants.

In response to the first problem, Gordon and Dresner [1] have proposed the generic
vibration criterion curves for different vibration sensitive equipments. From these curves,
one can find the allowable ground vibration is getting smaller as the production
requirement is getting stricter. To address the second problem Sheng et al [2] and Krylov
[3] employed Euler beam theory to model whole track including rails, steepers and ballast,
and Kaynia et al [4], Takemiya and Bian [5,6] proposed a more sophisticate analysis model,
which takes dynamic interaction into account, to evaluate the ground vibration induced by
passing train. To reduce the ground vibrations near track, open or in-fill trenchs are usually
recommended. Ahmad and Al-Hussaini [7] and Dasgupta et al [8] have given some
theoretical studies. Moreover, if the track is elevated on bridges, the ground vibration due
to the excitations by bridge abutments will produce more serious problem to the hi-tech
production tools. Takemiya [9] designed a wave impeding barrier of honeycomb piles to
reduce the ground vibrations near bridge abutments. Therefore, the calculation of ground
vibrations induced by vibration of bridge foundation due to passage of high speed train is
very important for high precision production equipments nearby.

All above mentioned methods, finite element or boundary element based methods are
employed to model half-space medium. Regarding the analytical approach to evaluate the
ground vibration due to specific sources, Miller and Pursey [10] have calculated the energy
flux of compressional, shear and Rayleigh waves in the far-field of a semi-infinite medium
generated by vertical harmonic vibration of circular plate. Also from the practical point of
view, Woods and Jedele[11] collected some observation data and deduced these data into a
simple formula expressing the attenuation relationship of vibration in terms of distance and
soil damping.

The paper will present an analytical procedure to calculate the vibration at any location



of half-space medium due to harmonic vibration of a rigid circular plate. The components
of harmonic vibration of the plate are torsional, vertical, horizontal and rocking motions.
To solve the problem of wave propagation in half-space medium, Liou [12] have
developed a technique to decompose the applied tractions induced by vibrations of plate.
These decomposed tractions will be easily fitted into the analytic solutions of three
dimensional wave equations in cylindrical coordinates. This technique was employed to
generate the impedance functions for circular plate on half-space medium by

Liou et al [13]. The presented procedure in the paper will extend the work of Reference 13
to generate the vibration at any location on half-space medium due to a harmonic loading
applied at a rigid circular plate.

In order to simulate the distribution of interaction tractions between rigid plate and
surrounding medium, piecewise linear distribution in r-direction of cylindrical coordinates
is assumed. Based on this assumption, the impedance functions for the plate can be
obtained by enforcing compatibility condition, using variational principal and reciprocal
theorem. The vibration at any specific location on half-space medium can also be
calculated for the cases of applying harmonic loadings at the plate.

Numerical results for a rigid circular plate subjected to torsional, vertical, horizontal
and rocking loadings are presented to demonstrate the effectiveness and efficiency of the
proposed scheme .The numerical results will be presented in the nondimensional forms. In
the numerical investigations, spatial dilution of vibrations and attenuation due to material
damping of half-space medium will be discussed. Also, some comments about the

presented scheme and numerical results will be made.



Analytical Model for Half-space Medium

The analytical model is a rigid circular plate on a half-space medium subjected to time
harmonic loadings. The interaction tractions between plate and surrounding medium are
shown in Fig.1, and can be expressed in cylindrical coordinates in terms of Fourier
components with respect to azimuth.

[ —. cos(n@)
o (r){sin(né)}

Z(r’ & . 1 n cos(n6) . 0<r<a (1)
O_ZZ(r’ 0) eza)t — Z 3 r . eza)t s =1 =10

= e sin(n@)

7,.(r,0)

—n —sin(nd)
_ng (r){ cos(nd) }

th

where the superscript # denotes the »n” Fourier component in the series; in this circular
plate case, n=0 represents vertical (symmetric with respect to 6=0) and torsional
loadings (anti-symmetric), n =1 represents horizontal and rocking loadings (symmetric);

w =frequency; and 4, is radius of circular plate. Since the time variation ¢ appears on

both sides of the equation and can therefore be canceled, it is omitted hereinafter.

To solve 3D wave equations with prescribed tractions given by Eq(l), some
fundamental solutions can be exploited. Sezawa [14] developed a technique for separating
the dilatational and rotational waves in the general equations of wave propagation, and
used the technique of separation of variables to obtain general solution for »” Fourier
component with respect to azimuth. After mathematical manipulations of the general
solution, one can express the displacement components at the surface z=0 in terms of the

th

traction components on the surface for any »"” Fourier component as follows:

u,(r,0) k2 /A k(2w -2k7 +k2 )4 0
u (r,0) =3 k(2vw'-2k’ +k; )/ vk, /A 0
u.(7.0) 0 0 _1/Gv




T, (r,0)

J ' o..(r0) (2a)
7,.(r.0)

or

u, = JQJ 't, (2b)
where

J ! (kr) 0 (n/r)J (kr)
J= 0 kJ (kr) 0 (2¢)
(n/r)J  (kr) 0 J ! (kr)

A= Gk’ v -(2k* -k, )" Jiv=\Jk* ~(w’/c, )iv' = Jk* - (w’/c.)

ik s 56 and ¢ = compressional and shear wave velocities; G = shear modulus;
c

N

k = wave number in the horizontal direction; J'(kr) = first kind of Bessel function of
ordern;and J!(kr) = [dJ  (kr)/dr] .
In order to simulate the arbitrary distributions of interaction tractions in r-direction ,

the distribution of tractions in r-direction of Eq.(1) is approximated by piecewise linear

model with respect to r-direction of cylindrical coordinates. Assuming that the interval

(0,a,) for Eq. (1) is divided into m 4, , one can

m
express the piecewise linear stress distribution as follows:
P n-1
T = z (r)p +h(l(r)p() +hm (r)pm - hT

J=1
R m-1 (3)
0. =2 h(1)a, +h(r)g,+h,(r)qg,=hq

~
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where

1+r;m, if  (-Db<z<jb and 1<j<m
h(r) = z-r;w, if  jb<z<(+D)b and O0<j<m -1 (32)
0, otherwise,

and p, g and s are the traction intensities at node j for z., o. and 7,
J J J 1z z Oz

respectively. Liou [11] has developed a technique to decompose the tractions in Eq.(3) as

follows:
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where

n+1

ay ¥
D, =] EJM(kr)thr

D’ = IO“" rJ . (kr)h"dr (4a)
and

D, =" an_l(kr)thr

The integrals on the right hand side of Eq.(4) and integrals in Egqs.(4a) are Hankel
transform pairs respectively. One should also notice that the vectors (1, 0, —1)T , (0, 1, O)T
and (I,O,I)T are orthogonal eigenvectors corresponding to eigenvalue —kJ, ., (kr),

kJ, (kr) and kJ, (kr) of the Bessel functions matrix J in Eq.(2c¢). Therefore, Eq.(4)

can be replaced with the following equation.

T, _D:H + D;_l 0 Dr-1r+1 + Drr-1 q

o |=[3 0 D 0 0 bdk

Ty, ' Dr-mr+1 + Dr-:—l 0 _DrT+1 + D:—l S (%)
= [JDP dk

0

Using t, = -E and substituting t, =-JDP dk from Eq. (5) into Eq. (2b), the following

equation can be obtained by integrating the resulting expression from 0 to .
U = -] JQDP dk (6)

Eq.(6) defines the relationship between displacement vector and prescribed traction on
the surface for the n” Fourier component. To generate the impedance matrix,

substructuring concept, principle of virtual work and reciprocal theorem will be used.



Consider half-space medium with the prescribed tractions defined by Eq. (3) which

approximates Eq.(1) for tractions. Variational principle gives

sw =" j:%f u,rd Odr

T

_ _(szapfj:(j:” Herr)QdeP

- —(mjapfj:‘) H [ JQDdkrdrP (7

where matrix H =diag(h,h,h), and h, to and u, are defined in Egs. (3) and (6) .

The coefficients 27 and 7 in Egs. (7) come from the integrals J.Oz” cos’n@d@ or

2z
.[0 sin”>n@d@ which are not explicitly expressed in the formulations. Furthermore, using

the procedure developed to obtain Eq. (4), one can show that
[ Hordr = kD ®)

where the matrix D is defined in Egs. (5) and (4a). The virtual work in Eq.(7) can then

be rewriteen in the form as follows:

2 .
5W=—£ ”jaijo DTQDkdkP

Vs
27 .

= OP"KP
Vs

Using Eq.(2a) or Bettis’s Theorem, one can show that the matrix Q is symmetric.

)

Therefore, matrix K = —j: D"QDkdk is also symmetric.

Now, consider the plate itself. Similar to finite element modeling, the displacement

field of the plate for n” Fourier component can be assumed as:

10



— (cos n@J
Uo = Nv (10)

sinnf

where matrix N is comprised of the shape functions in r-direction, and vector V is
comprised of the generalized displacements at the nodal rings of the plate finite element

model. Similarly, variational principle gives:
27 pay T
oW =["]"5t Uordrdd

2 .
:( ”japfj HNrdrv (1)
T 0

2 r
= oP'Bv
s

Equating Eq. (11) to Eq. (9) and factoring out SP”, it is obtained

(Zﬂ'j (272}
kP =| 7" |Bv (12)
i 7

P =K!Bv (13)
or
7]
V = By (14)
T

where vector V are the generalized displacements at the nodal rings of the assumed
piecewise linear stress model. Eq. (14) gives the relationship between the nodal
generalized displacements of the assumed stress model of Egs.(3) and the displacements of
the finite element model of Eq. (10). To obtain the corresponding force-traction
relationship for both models, reciprocal theorem can be used. This leads to the following

equation.

(X
F= B'P (15)

T

11



where vector F are the generalized forces at the nodal rings of the finite element model.

Substituting Eq. (13) into Eq. (15) yields

27 Ty -1
F= B'K'Bv = Iv (16)
T

The matrix | is the impedance matrix for n” Fourier component.

Eq.(16) gives the relationship of applied force and plate vibration displacement. For
finding vibration at any specific location on half-space medium, Eq.(16) will be employed
to calculate plate vibration v induced by the external applying harmonic force F first,
the vector P of traction intensities at nodal rings is calculated by Eq.(13) secondly, and
then Eq.(6) is used to calculate the vibration at any specific location. Although Eq.(6) does
not show the variation of vibration with respect to azimuth @, the variation with respect to
6 can be obtained by simply multiplying cos@ or sinf for rocking and horizontal
loadings as shown in Eq.(1). Numerical results of plate impedance functions have been
shown by Liou et al [13]. Therefore, the main purposed of the paper is to employ Eq.(6) to

calculate the vibration at any specific location on a half-space medium.

12



Numerical Investigation

In the semi-infinite integrations of Eq. (6) and (9), singular point may exist, provided
there is no damping assumed for half-space medium. This is because A =0 in matrix Q
in Eq.(2a) when wave number £ is equal to Rayleigh wave number. Although technique
such as residue theorem may be used to calculate the integration around the singular point,
material damping is introduced in half-space medium in order to comply with the more
realistic situation of medium, and hysteretic type of damping is chosen. This means shear
modulus G in Egs.(2) is complex and can be expressed as G = 5(1 +2£&i) in which &
1s damping ratio. Therefore, numerical integration scheme can be directly employed. In the
study, Poisson ratio of half-space medium is assumed to be 0.33. Furthermore, using the

following two statements, the integrand in the semi-infinite integral of Eq.(9) can be easily
shown to be proportional to % and the integrand in Eq.(6) is proportional to % as

k—oo:

(1) The elements of matrix Q decay with ki as k—oo,sincev=v'=k as k—o.

n+1

2 2
(2) Using the identities of IF J, (kr)dr = —%J o (k) + IVJ . (kr)dr

1
and j rJ, (kr)dr = —% (k) + % j Sy r)dr and J, (kr) £ 5 as ko0, it is

concluded that the elements of matrix D in Egs.(4), (4a), (5), (6) and (9) decay with %

It is therefore appropriate to replace the infinite integration limit with a finite number
without losing accuracy.

After some convergence study, the followings can be concluded : (1) m =20 for the
number of subinterval in Egs.(3) is enough to accurately describe the distribution of
interaction tractions between plate and half-space medium; (2) To approximate the

semi-infinite integrals of Eqs.(6) and (9), the upper limit of integration is controlled by

Eq.(6), Since the integrand in Eq.(9) is proportional to ki and integrand in Eq.(6) is

3

13



proportional to % as k— o ; (3) In general, the upper limit of integration in Eq.(6)

must be larger as the nondimensional distance from plate center is further, hysteretic
damping ratio of half-space medium is greater, or excitation frequency is higher.

The above mentioned third conclusion except first part is related to the phenomenon
of Rayleigh wave behavior. Let us look at Bessel function matrix J in Egs.(6) and (2¢).
The elements in matrix J is proportional to k”° as k — 0. And the elements in matrix

Q and D in Eq.(6) are independent of R (the distance from vibration source). This

means larger R needs larger upper limit of integration in Eq.(6) to compensate the

integration accuracy. This leads to the first part of third conclusion. Also, high damping
will make % in @ matrix smaller for & in the neighborhood of Rayleigh wave

number. This means Rayleigh wave number component is less dominating the value of the
integration in Eq.(6). This explains the second part of third conclusion. For the case of
higher excitation frequency, the upper limit of integration in Eq.(6) must be larger due to
higher respective Rayleigh wave number. This statement reasons the third part of third
conclusion.

To obtain certain accuracy, it is difficult to definitely give a clear rule to set the upper
integration limit in Eq.(6), since the above three stated factors influence the upper
integration limit in different proportions. Therefore, one can only employ the above third
conclusion as a guide line and increase the upper integration limit to check if the results of
vibrations calculated by Eq.(6) is converging.

Since the total system is linear. All the quantities can be nondimensionalized. As shown
in Reference 13, the torsional, vertical, horizontal, coupling and rocking impedance

) ) . . . 1 1 1 1
functions are nondimensionalized respectively as follow: ~7_  “w = “an HR_ - and

Ga; Ga, Ga, Ga,

0

0

—RR__ Therefore, the excitation forces are normalized in the similar way. However, in

Ga’

0

order to obtain nondimensional displacements u_, u_ and u, in Eq.(6), the shear wave

length for | Hz (sz 1) frequency is introduced. The wave length
T

A= Re(c)/1 sec., in which Re(c,) is real part of shear wave velocity c,. Complex

14



¢, is due to complex shear modulus G . The vertical and horizontal excitation forces are

nondimensionalized in the forms of £y and £ respectively. The torsional and
Ga,/ Ga,A
rocking excitation moments are normalized in the forms of r_ and R
Ga,’A Ga,’2

respectively. The reason to manipulate the quantities in this way is to made the following

numerical results of u , u. and u, have been nondimensionalized by A. The numerical

results shown in the following figures are produced by unit harmonic excitation forces.

This means E £y M, or M, =]

Ga,.” Ga,. Ga, ') Ga,’ A

In the numerical results, the hysteretic damping ratios &= 0.0001, 0.001, 0.01,
0.02, 0.03 and 0.05 are selected for half-space medium. The reason to select the case

of very low damping ( & =0.0001) is to check and approximate the behavior of vibration

in the medium without material damping. Figs. 2-13 show the results of vibration
amplitudes along the nondimensional distance from center of circular plate. In Figs. 2-13,

wR

the distance R is nondimensionalized as — —
2nRe(c,)

in which @ 1is excitation frequency.

Figs. 2-13 show the results for the case of nondimensional frequency

w4y _ 0.00005 . This small nondimensional frequency can be used to approximate
2nRe(c,)

point source exaitation problem. Fig. 2 shows the vibration amplitude of #, component

due to unit normalized torsional moment excitation. From the figure, one can see that for

wR

7" <(.5 the attenuation of vibration in mainly caused by spatial dilution and for
2nRe(c,)

wR

" >(.5 material damping is getting more significant for attenuation of vibration.
2nRe(c, )

Also, the vibration decays along the distance smoothly. Figs.3 and 4 show the vibration

amplitudes of u and u_ respectively due to unit nondimensional vertical force. Looking

at these two figures, one can observe that the vibration attenuate over the distance only
from marco view of point, the amplitudes of vibration along the distance fluctuate, the

fluctuation becomes more dramatic as damping getting higher and the period of the

15



fluctuation over the nondimensional distance is around 1.90. To explain these phenomena,

one can refer to Eqgs.(6) and (2a). The ks in Q matrix of Egs.(6) or (2a) will be getting
A

huge as k 1is close to Rayleigh wave number. Rayleigh wave number is approximately

(6]

1.073 for poisson ratios 0.33 . Therefore, the contribution of the wave number

Re(c,)
components in the neighborhood of Rayliegh wave number is very important in the
integration of Eq.(6). Dependent upon distance, this property will make the value of the
integration of Eq.(6) larger or smaller locally. The fluctuation is caused by this property.

2nRe(c

Furthermore, the Rayleigh wave length is about (.932 ) . This is about half of the

w
period of fluctuation along nondimensional distance in Figs.3 and 4. One should also
notice that the phenomenon mentioned above does not occur in the torsional case (Fig.2).
For torsional excitation, only SH wave is generated.

The above mentioned interesting phenomenon leads to the curiosity of finding the
average energy flux intensity at z = (. The average flux intensity can be easily calculated

by the formula as follows:

‘+

*_ 20) ] % 2
E=po’ ], (] +

cos n6

n’nd |
by, | )(S’”Z” ]d@ ™ dt (17)

Where p is mass density. The flux intensity in Eq.(17) is averaging over time period

2 =
—and circle length 27R . Eq.(17) is easy to be integrated. The £ can be
Q)

normalized to become the following equation without lossing the meaning of average

energy flux intensity.
E = o+ as)

Now, one can employ Eq.(18) to calculate £ for different distances from the center of
plate. The results are shown in Fig.5. From the figure, one observes that the fluctuation is

smaller. It is also believed that the curve for average energy flux intensity will be smoother

16



for greater z , since Rayleigh wave is confined in the depth near free surface.

Figs. 6~8 show the results of three components # , #, and u, induced by unit

nondimensional horizontal excitation. Comparing these three figures to Figs. 4-5, one can
observe similar phenomenon of local fluctuation except the fluctuation becomes more
dramatic. Eq.(18) is employed to calculate the average energy flux intensity at z =0
induced by unit nondimensional horizontal excitation. The results are shown in Fig.9.

From the figure, one can see that the fluctuation is greatly reduced. For the case of unit

normalized rocking excitation, Figs. 10-12 show the results of the three components u ,

I

u, and u,. From these three figures, similar fluctuation phenomenon is observed.

However, the fluctuation is less dramatic. Also, Eq.(18) is used to compute the average
energy flux intensity and the results are shown in Fig.13. Again, the fluctuation for the

results of average energy flux intensity is dramatically reduced.

17



Concluding Remarks

After extensive numerical investigations of the presented scheme, the following

conclusions and suggestions can be made.

(1) For nondimensional distance (wiR) is smaller than 0.5, the decay of vibration is
2nRe(c,)

(a’iR)>2.(), the decay of

2nRe(c,)

mainly governed by spatial dilution of waves. For

vibration is mainly governed by material damping of half-space medium. For

5< (&) < 2.0, both spatial dilution and material damping have the influence

2nRe(c,)
on vibration attenuation.

(2) One should not jump to conclusion that the vibration components (u, u. and u,)

are smaller as the distance from vibration source is further. From macro view, the
vibration does attenuate over the distance from vibration source. However, there are
fluctuations of vibration amplitudes along distance as shown in some above mentioned
figures.

(3) Although the results of vibrations for the cases of high nondimensional frequencies are
not shown in the paper, the fluctuation for the cases of high frequencies is even more
severe, and the period of fluctuation along nondimensional distance is always about
twice of Rayleigh wave length.

(4) The presented procedure can be extended to deal with the cases of layered half-space
medium, calculating vibrations at locations with depth z # (0 and plates with arbitrary
shapes. For the cases of layered half-space medium and calculating vibration at depth
z#(, one just need to revise ( matrix in Eqgs.(2a) and (6). For the case of plates
with arbitrary shapes, one just need to incorporate more Fourier components as
indicated in Eq.(1) in the calculation.

(5) According Eq.(10), the presented procedure is feasibly combined with finite element
model of superstructure on foundation plate. This would take soil-structure interaction

effect into account.
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Fig.5: Average Energy Flux Intensity due to Unit Nondimensional Vertical Excitation
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