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Run statistics about a sequence of independent geometrically distributed random 

variables has attracted some attention recently in many areas such as applied probability, 
reliability, statistical process control, and computer science. In this paper, we first study 
the mean and variance of the number of alternating runs in a sequence of independent 
geometrically distributed random variables. Then, using the relation between the model 
of geometrically distributed random variables and the model of random permutation, we 
can obtain the variance in a random permutation, which is difficult to derive directly. 
Moreover, using the central limit theorem for dependent random variables, we can obtain 
the distribution of the number of alternating runs in a random permutation.  
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1. INTRODUCTION 
 

Let X1, …, Xn be n independent geometrically distributed random variables satis-
fying for i ∈ {1, 2, …, n}, Pr[Xi = k] = pqk-1, ∀k ∈ N, where p + q = 1. Combinatorics of 
independent geometrically distributed random variables has caught some attention re-
cently in many areas including computer science due to the applications to, for example, 
the skip list [1-6] and probabilistic counting [7-10]. Moreover, since taking the limit q → 
1, with probability 1 − o(1), there are no equal values in X1, …, Xn and each relative or-
dering of values is equally likely, we have that the model of geometrically distributed 
random variables approaches the model of random permutation [11, 12]. Therefore, vari-
ous runs of geometrically distributed random variables have been investigated [11, 
13-16]. For runs of consecutive equal numbers, Louchard [15], Grabner et al. [14], and 
Eryilmaz [13] studied the asymptotic properties of the number of runs using a Markov 
chain approach, probability generating functions, and the existing theory for m-depen- 
dent random variables (that is, the two sets (X1, …, Xr) and (Xr+m+1, …, Xn) are independ-
ent), respectively. Another line of research considered ascending runs, which is a se-
quence of contiguous strictly increasing numbers. Louchard and Prodinger investigated 
the asymptotic properties of the number of ascending runs and the longest ascending runs 
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using a Markov chain approach [11], where they mentioned the possibility of applying 
their approach to study alternating runs properties. 

For a permutation, an alternating run is a sequence of consecutive ascending or de-
scending numbers, in which the first run can be ascending or descending [17]. For exam-
ple, 814965237 is considered to have 4 alternating runs: 81,149,9652, and 237. With 
permutation array, we can use alternating run for information hiding [18]. For informa-
tion hiding, we want to hide some message in an object, such as an image data or a MIDI 
file, without changing the appearance of the object. Using a permutation array [19], 
which contains some permutations of a fixed length and satisfies the property that the 
distance (under some metric) of any two permutations in this array is not too large, one 
can incorporate the capability of error correcting into information hiding, but we can 
only hide few bits. Fortunately, with the help of alternating runs, we can increase the 
number of hiding bits and preserve the ability of error correcting, where we can simply 
treat the increasing run of length 2 as 1 and decreasing run of length 2 as 0. 

In this paper, we will study the mean, variance and distribution of the number of al-
ternating runs. Instead of using the approach of [11], we prove with an elementary 
method and the central limit theorem for dependent random variables [20]. Since in a 
random permutation (Y1Y2…Yn), Yi’s are mutually dependent, it is difficult to derive the 
variance of the number of alternating runs. Hence, we first consider the model of geo-
metrically distributed random variables, and then by taking the limit q → 1, we can ob-
tain the result in the model of random permutation. Since there may be some consecutive 
equal numbers in a sequence of independent geometrically distributed random variables, 
we modify the definition of alternating runs to define modified alternating runs. In short, 
a modified alternating run is a sequence of alternatively strictly ascending and descend-
ing numbers. Like alternating runs, each modified alternating run can begin with ascend-
ing or descending. Moreover, we also consider turning points in a sequence of numbers. 
In a sequence x1, …, xn, we call xi a turning point if max{xi+1, xi-1} < xi or min{xi+1, xi-1} > 
xi. One can observe that the number of alternating runs in a sequence of random variables 
is exactly the sum of the number of modified alternating runs and the number of turning 
points. Therefore, to obtain the asymptotic properties of the numbers of alternating runs, 
we can study the asymptotic properties of the numbers of modified alternating runs and 
turning points. 

To make the above definitions clear, we consider the following example. Let ARn, 
MARn, and Tn denote the total number of alternating runs, modified alternating runs, and 
turning points in a sequence of n independent geometrically distributed random variables, 
respectively. Then consider the sequence: 5342221442. There are 6 alternating runs: 53, 
34,42,21,14,42; 3 modified alternating runs: 5342, 214, 42; and 3 turning points: 2 turn-
ing points (3 and 4) in the modified alternating run 5342 and one turning point (1) in the 
modified alternating run 214. Hence, AR10 = 6, MAR10 = 3, and T10 = 3. Note that AR10 = 
MAR10 + T10. 

Next, we describe our results. First, we derive the following three theorems about 
the means and variances of MARn, Tn, and ARn in a sequence of geometrically distributed 
random variables, which have not (to the best of our knowledge) been discussed before. 
 
Theorem 1  The expectation of the number of modified alternating runs for n ≥ 3 is 
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given by  

2 3 3

2 2

2 6[ ] .
(1 )(1 ) (1 )(1 )n

q q q qE MAR n
q q q q q q
+ +

= +
+ + + + + +

 

The variance of the number of modified alternating runs for n = 3 is   
3 5

3 2 2 2

3 6 3[ ] .
(1 ) (1 )

q q qVar MAR
q q q
− +

=
+ + +

 

Furthermore, for n ≥ 4, Var[MARn] is 
 

2 3 4 5 6 7 9 10 11 12

2 2 2 3 2 3 4

3 4 5 6 7 8 9 10 11 12

2 2 2 3 2 3 4

6 8 15 4 17 14 11 14
(1 )(1 ) (1 )(1 )

18 26 52 14 58 6 50 36 2 42 .
(1 )(1 ) (1 )(1 )

q q q q q q q q q q q n
q q q q q q q q q q

q q q q q q q q q q
q q q q q q q q q q

+ − + + + + − − − −
⋅ +

+ + + + + + + + + +

− − − − + + + − −
+ + + + + + + + + +

 

Theorem 2  The expected number of turning points for n ≥ 3 is  

2 3

2

2[ ] ( 2) .
(1 )(1 )n

q q qE T n
q q q
+ +

= −
+ + +

 

The variance of the number of turning points for n = 3 is 
 

2 3 4 5 6

3 2 2 2

2 4 2 2[ ] .
(1 ) (1 )

q q q q q qVar T
q q q

+ + + + −
=

+ + +
 

Furthermore, for n ≥ 4, Var[Tn] is 

2 3 4 5 6 7 8 9 10 11 12

2 2 2 3 2 3 4

2 3 4 5 6 7 8 9 10 11 12

2 2 2 3 2 3 4

5 +14 18 25 18 15 4 8 11 3 6
(1 )(1 ) (1 )(1 )

 2 12 34 42 60 40 32 22 30 32 6 16 .
(1 )(1 ) (1 )(1 )

q q q q q q q q q q q q n
q q q q q q q q q q

q q q q q q q q q q q q
q q q q q q q q q q

+ + + + + − − − − −
⋅ +

+ + + + + + + + + +

− − − − − − − + + + + +
+ + + + + + + + + +

 

Theorem 3  For n ≥ 3, the expectation of the number of alternating runs satisfies 

2 2 3

2 2

2 2 2 2 2[ ] .
(1 )(1 ) (1 )(1 )n

q q q q qE AR n
q q q q q q

+ + −
= −

+ + + + + +
 

The variance of the number of alternating runs for n = 3 is  

2 3 4 5 6

3 2 2 2

6 2 2 2 2 2[ ] ,
(1 ) (1 )

q q q q q qVar AR
q q q

+ − − + +
=

+ + +
  

while for n ≥ 4, Var[ARn] is  
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2 4 5 6 7 8 9 10 11

2 2 2 3 2 3 4

2 3 4 5 6 7 8 9 10 11 12

2 2 2 3 2 3 4

4 4 6 6 2 10 12 6 8 6
(1 )(1 ) (1 )(1 )

 6 4 12 8 8 2 26 32 12 20 16 2 .
(1 )(1 ) (1 )(1 )

q q q q q q q q q q n
q q q q q q q q q q

q q q q q q q q q q q q
q q q q q q q q q q

+ + + + + + + + +
⋅ +

+ + + + + + + + + +

− − + − − + − − − − − +
+ + + + + + + + + +

 

The proofs of these theorems are in sections 2, 3, and 4, respectively. Then, as men-
tioned above, taking the limit q → 1, we can obtain the mean and variance in a random 
permutation using the results of geometrically distributed random variables.  
 
Corollary 1  In a random permutation of length n, the expectation of the number of 
alternating runs satisfies, for n ≥ 3,   

2 1 2[ ] 1 ( 2).
3 3 3nE AR n n= − = + −  

For n = 3, the variance of the number of alternating runs is 2/9, while for n ≥ 4, it is  

8 29 .
45 90

n −  

Note that the expectation is exactly the result for the case of random permutations 
[17]. Moreover, since the random variables we use to evaluate ARn are m-dependent for 
some integer m, we can get the following theorem about the distribution of ARn in a ran-
dom permutation, whose proof is in section 5. 
 
Theorem 4  In a random permutation of length n, the random variable n-1/2(ARn − E[ARn]) 
has a limiting normal distribution with mean 0 and variance A = 4/45 as n → ∞.  

2. TOTAL NUMBER OF MODIFIED ALTERNATING RUNS 

Throughout this paper, let X1, …, Xn be n independent geometrically distributed 
random variables satisfying for i ∈ {1, 2, …, n},  

 
Pr[Xi = k] = pqk-1, ∀k ∈ N, where p + q = 1. 
 
In this section, we prove Theorem 1 which is about the mean and variance of the to-

tal number of modified alternating runs in X1, …, Xn. Let MARn denote the total number 
of modified alternating runs in X1, …, Xn. Since each modified alternating run must end 
with repeated numbers, we observe that MARn is one more than the number of consecu-
tive identical substrings except for the cases of X1 = X2 and Xn-1 = Xn. Take the sequences 
55542331 and 1233 as examples. We find that there are 2 modified alternating runs in the 
sequence 55542331: 5423,31, while the number of repeated subsequence is exactly 2. 
Moreover, there is 1 modified alternating run in the sequence 1233: 123, while the num-
ber of repeated subsequence is exactly 1. Hence, to count the number of repeated sub-
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1 Throughout this paper, we use matlab to expand the polynomials. 

strings and deal with the case of Xn-1 = Xn, we define a binary random variable xii for 
each i ∈ {1, 2, …, n − 2} by 

 

1 21,     if ;
0,     otherwise.

i i i
i

X X X
ξ + += ≠⎧
= ⎨
⎩

 

Moreover, we define an additional random variable  

2
1

 1,     if ;
0,        otherwise;

iX X
ς

− =⎧
= ⎨
⎩

 

for the case of X1 = X2. Then, we have  

2

1
1

1 .
n

n i
i

MAR ξ ς
−

=

= + +∑     (1) 

To evaluate the expectation of MARn, we need to obtain E[ξi], for each i and E[ς1]. 
For each i ∈ {1, …, n − 2}, since Xi’s are independent, then by the formula for a geomet-
ric series, the expectation of ξi is1 

1 2 1 2

1 2 1 2 2 2 3 3 3

2 3 2 3

2 3 2

[ ] Pr[ ] Pr[ ]Pr[ ]

         = ( ) (1 ) ( )

2         = .
1 1 (1 )(1 )

i i i i i i i
k

k k k k

k k

E X X X X X k X k

pq pq p q p q

p p q q q
q q q q q

ξ + + + +
∈

− − − −

∈ ∈

= = ≠ = = = ≠

⋅ − = −

+ +
− =

− − + + +

∑

∑ ∑
N

N N

     

On the other hand, the expectation of ς1 is 

1 2
1 2[ ]  1 Pr[ ]  1 ( ) .

1
k

i
k

pE X X pq
q

ς −

∈

−
= − ⋅ = = − ⋅ =

+∑
N

     

Therefore, by the linearity of expectation and Eq. (1), we obtain that the expectation of 
MARn is 

2 3 32

1 2 2
1

2 6[ ] 1 [ ] [ ] .
(1 )(1 ) (1 )(1 )

n

n i
i

q q q qE MAR E E n
q q q q q q

ξ ς
−

=

+ −
= + + = +

+ + + + + +∑      

Next, we derive the variance of MARn. Since the variance of MARn is given by  

2 2

1 1
1 1 2 1

[ ] [ ] [ ] 2 ( ,  ) ( ,  ) ,
n n

n i i j i
i i j n i

Var MAR Var Var cov covξ ς ξ ξ ξ ς
− −

= ≤ < ≤ − =

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦
∑ ∑ ∑     (2) 

we consider the following values: Var[ξi], Var[ς1], cov(ξi, ξj), and cov(ξi, ς1) for any i and 
j > i. For each i ∈ {1, 2, …, n − 2}, the variance of ξi is  
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2 4 5 6
2 2

2 2 2

2 2 6[ ] [( ) ] ( [ ]) .
(1 ) (1 )i i i

q q q q qVar E E
q q q

ξ ξ ξ + + + −
= − =

+ + +
 (3) 

In addition, the variance of ς1 is 

2
2 2

1 1 1 2

2 2[ ] [( ) ] ( [ ]) .
(1 )
q qVar E E

q
ς ς ς −

= − =
+

    (4) 

Then, we proceed to bound the covariance. Since for i, j ∈ {1, 2, …, n − 2} with |i − j| ≥ 
3, ξi and ξj are independent, we know cov(ξi, ξj) = 0. Moreover, for i ≥ 3, ξi and ς1 are 
also independent, that is, cov(ξi, ς1) = 0. It remains to evaluate cov(ξi, ξi+1), cov(ξi, ξi+2), 
cov(ξ1, ς1), and cov(ξ2, ς1) for any i. For i ∈ {1, 2, …, n − 3}, the covariance of ξi and ξi+1 
is  

1 1 1

2
1 2 1 2 3

2

2 3 4 5 6

2 2 2

( , ) [ ] [ ] [ ]

                  Pr[  and ] ( [ ])

                   ( [ ])

2 3 4 4                   ,
(1 ) (1 )

i i i i i i

i i i i i i i

i

cov E E E

X X X X X X E

E

q q q q q
q q q

ξ ξ ξ ξ ξ ξ

ξ

ξ

+ + +

+ + + + +

= −

= = ≠ = ≠ −

= −

+ − − +
= −

+ + +

    (5) 

and similarly, for i ∈ {1, 2, …, n − 4}, the covariance of ξi and ξi+2 is 

2

2 2

2
1 2 2 3 4

2
1 2 3 4

;

1 2 1 2 1 2

2
1 2

2

( , )
[ ] [ ] [ ]

= Pr[  and ] ( [ ])

Pr[ ] Pr[ ]Pr[ ] ( [ ])

( ) ( ) (1 ) ( [ ])

( )
1

i i

i i i i

i i i i i i i

i i i i i i
k h h k

k h h
i

k h k

k

k

cov
E E E

X X X X X X E

X X k X X h X h E

pq pq pq E

p ppq
q

ξ ξ
ξ ξ ξ ξ

ξ

ξ

ξ

+

+ +

+ + + + +

+ + + +
∈ ∈ ≠

− − −

≠

−

= −

= ≠ = ≠ −

= = = = = ≠ −

= − −

= −
−

∑ ∑

∑ ∑

∑

N N

3
2 2 2 3 3 3 2

3

3 4 5 6 7 8 9 11

2 2 2 3 2 3 4

( [ ])
1

2 2 2 4 2 .
(1 )(1 ) (1 )(1 )

k k
ip q p q E

q

q q q q q q q q
q q q q q q q q q q

ξ− −⎡ ⎤
− + −⎢ ⎥−⎣ ⎦

− − + − + + −
= −

+ + + + + + + + + +

     

On the other hand, the covariance of ξ1 and ς1 is 

1 1 1 1 1 1

1 2 3 1 2 1 1

1 2 3 1 1

2 3 4

2 2 2

( , ) [ ] [ ] [ ]
                 =  Pr[  and ] [ ] [ ]
                 =  Pr[ ]Pr[ ] [ ] [ ]

2 2 4                 =  ,
(1 ) (1 )

k

cov E E E
X X X X X E E

X X k X k E E

q q q
q q q

ξ ς ξ ς ξ ς
ξ ς

ξ ς
∈

= −
− = ≠ = −

− = = ≠ −

+ −
−

+ + +

∑
N

    (7) 

(6) 
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and the covariance of ξ2 and ς1 is 

2 1 2 1 2 1

2 3 4 1 2 2 1

1 2 3 4 2 1

3 4 5

2 2 3

( , ) [ ] [ ] [ ]
                 Pr[  and ] [ ] [ ]
                 Pr[ ]Pr[ ] [ ] [ ]

2 4 2                 .
(1 )(1 )(1 )

k

cov E E E
X X X X X E E

X X X k X k E E

q q q
q q q q q q

ξ ς ξ ς ξ ς
ξ ς

ξ ς
∈

= −
= − = ≠ = −

= − = = = ≠ −

− +
= −

+ + + + + +

∑
N

    (8) 

Substituting (3), (4), and (7) into (2), we can obtain the variance of MAR3, and sub-
stituting (3), (4), (5), (6), (7), and (8) into (2), we can obtain the variance of MARn for n ≥ 
4. This completes the proof of Theorem 1. 

3. TOTAL NUMBER OF TURNING POINTS 

In this section, we prove Theorem 2, which is about the properties of the total num-
ber of turning points in X1, …, Xn. Let Tn be the total number of turning points in X1, …, 
Xn. Recall that xi is a turning point in a sequence x1, …, xn, exactly when max{xi+1, xi-1} < 
xi or min{xi+1, xi-1} > xi. Hence, for each i ∈ {1, 2, …, n − 2}, define a binary random 
variable ηi by 

1 1 2 1 1 21,     if (  and ) or (  and );
0,     otherwise,

i i i i i i i i
i

X X X X X X X X
η + + + + + +< > > <⎧

= ⎨
⎩

 

and it is clear that  

2

1
.

n

n i
i

T η
−

=

= ∑  (9) 

To simplify the evaluation of expectation and variance of Tn, we introduce the following 
handy lemma first. 
 
Lemma 1  For any i = 1, …, n − 3 and s ∈ N,  

 
1. Pr[Xi > s] = qs. 
2. Pr[Xi < s] = 1 − qs-1. 
3. Pr[Xi < s and Xi+1 > Xi] = Pr[Xi+1 < s and Xi > Xi+1] = 

2 2(1 ) .
1

sq q
q

−−
+

  

4. Pr[Xi > s and Xi+1 < Xi] = Pr[Xi+1 > s and Xi < Xi+1] = qs − q2s/(1 + q). 
 

Proof: By the formula for a geometric series and the fact p = 1 − q, we have 

1

1 1

Pr[ ] Pr[ ] ,
1

s
t s

i i
t s t s

p qX s X t pq q
q

∞ ∞
−

= + = +

⋅
> = = = = =

−∑ ∑  
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and 
Pr[Xi < s] = 1 − Pr[Xi > s − 1] = 1 − qs-1. 

Moreover, since Xi and Xi+1 are independent, we get 

1 1
1

1 1
1 1

2 2 2 2

2

Pr[  and ] Pr[ ]Pr[ ]

(1 ) (1 )                                      .
1 1

s s
t t

i i i i i
t t

s s

X s X X X t X t pq q

pq q q q
q q

− −
−

+ +
= =

− −

< > = = > = ⋅

− −
= =

− +

∑ ∑
 

On the other hand, we have 
1 1

1
1 1 1

1 1
2 2

1

Pr[  and ] Pr[ ]Pr[ ]

(1 )                                         Pr[  and ] .
1

s s
t t

i i i i i
t t

s

i i i

X s X X X t X t pq q

q qX s X X
q

− −
−

+ + +
= =

−

+

< > = = > = ⋅

−
= < > =

+

∑ ∑
 

Similarly, we obtain 

1 1 1

1 1
1

1 1

2 2

2

Pr[  and ] Pr[  and ]

                                      Pr[ ]Pr[ < ] (1 )

(1 )                                      
1 1 1

i i i i i i

t t
i i

t s t s

s s s

X s X X X s X X

X t X t pq q

q q q qp
q q

+ + +

∞ ∞
− −

+
= + = +

> < = > <

= = = ⋅ −

⎡ ⎤ −
= ⋅ − =⎢ ⎥− −⎣ ⎦

∑ ∑

.
q+

       

Now we derive the expectation of Tn. For each i ∈ {1, …, n − 2}, since Xi’s are in-
dependent, then by Lemma 1, we obtain E[ηi] as 

 
1 1 2 1 1 2

1 2 1 2

1 1 2 1 2

2 3

2

Pr[  and ] Pr[  and ]
Pr[ ]Pr[ ]Pr[ ] Pr[ ]Pr[ ]Pr[ ]

(1 ) ( )

2 .
(1 )(1 )

i i i i i i i i

i i i i i i
s s

s s s s

s s

X X X X X X X X
X s X s X s X s X s X s

pq q pq q

q q q
q q q

+ + + + + +

+ + + +
∈ ∈

− − −

∈ ∈

< > + > <

= = < < + = > >

= ⋅ − + ⋅

+ +
=

+ + +

∑ ∑

∑ ∑
N N

N N

 

Then, by the linearity of expectation and the representation of Eq. (9), we have the 
expectation of Tn as 

2 32

2
1

2[ ] [ ] ( 2) .
(1 )(1 )

n

n i
i

q q qE T E n
q q q

η
−

=

+ +
= = −

+ + +∑  

Next, we evaluate the variance of Tn. For each i ∈ {1, 2, …, n − 2}, the variance of 
ηi is  
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2 3 4 5 6
2 2

2 2 2

2 4 2 2[ ] [( ) ] ( [ ]) .
(1 ) (1 )i i i

q q q q q qVar E E
q q q

η η η + + + + −
= − =

+ + +
 (10) 

Since for i, j ∈ {1, …, n − 2} with |i − j| ≥ 3, ηi and ηj are independent, we know 
cov(ηi, ηj) = 0. In addition, for i ∈ {1, 2, …, n − 3}, by Lemma 1, the expectation of 
ηiηi+1 is   

E[ηiηi+1] = Pr[(Xi < Xi+1) and (Xi+1 > Xi+2) and (Xi+2 < Xi+3)] + 
Pr[(Xi > Xi+1) and (Xi+1 < Xi+2) and (Xi+2 > Xi+3)] 

1 2 3 2

1 2 3 2

2 2 2
1 1 1

2 3 4 5 6

2

Pr[ ]Pr[ ]Pr[  and ]

   Pr[ ]Pr[ ]Pr[  and ]

(1 )(1 )
1 1

2( )
(1 )(1 )(1

i i i i i
s

i i i i i
s

s s
s s s s s

s s

X s X s X s X X

X s X s X s X X

q q qpq q pq q q
q q

q q q q q
q q q q

+ + + +
∈

+ + + +
∈

−
− − −

∈ ∈

= = < < > +

= > > <

⎛ ⎞ ⎛ ⎞−
= ⋅ − ⋅ + ⋅ ⋅ −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

+ + + +
=

+ + + +

∑

∑

∑ ∑

N

N

N N

2 3 ,
)q q+ +

 

and therefore the covariance of ηi and ηi+1 is 

1 1 1

22 3 4 5 6 2 3

2 2 3 2

2 3 6 8

2 2 2 3

( , ) [ ] [ ] [ ]

2( ) 2                   
(1 )(1 )(1 ) (1 )(1 )
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Similarly, for i ∈ {1, 2, …, n − 4}, by Lemma 1, the expectation of ηiηi+2 is  
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∑

 

which leads to  

cov(ηi, ηi+2) 
= E[ηiηi+2] − E[ηi]E[ηi+2]    

5 6 7 8 9 11

2 2 2 3 2 3 4 .
(1 )(1 ) (1 )(1 )

q q q q q q
q q q q q q q q q q

+ + − − +
=

+ + + + + + + + + +
                  (12) 

Hence, by Eq. (10), we can obtain the variance of T3, and by Eqs. (10)-(12), we can 
obtain the variance of Tn for n ≥ 4. This completes the proof of Theorem 2. 

4. TOTAL NUMBER OF ALTERNATING RUNS 

In this section, we prove Theorem 3, that is, we consider the total number of alter-
nating runs in a sequence of n independent random variables, which is exactly the sum of 
the number of modified alternating runs and the number of turning points. Let ARn de-
note the number of alternating runs in a sequence of n independent geometrically distrib-
uted random variables X1, …, Xn. Therefore,  

ARn = MARn + Tn. 

By the linearity of expectation along with Theorems 1 and 2, we have the expecta-
tion of ARn as 

E[ARn] = E[MARn] + E[Tn]   
2 3 3 2 3

2 2 2

2 2 3

2 2

2 6 2( 2)
(1 )(1 ) (1 )(1 ) (1 )(1 )

2 2 2 2 2 .
(1 )(1 ) (1 )(1 )

q q q q q q qn n
q q q q q q q q q

q q q q qn
q q q q q q

+ − + +
= + + −

+ + + + + + + + +

+ + −
= −

+ + + + + +

 

Next, we derive the variance of ARn. Since for any i, j ∈ {1, …, n − 2} with |i − j| ≥ 
3, ξi are independent of ηj, and ς1 is independent of ηk for any k ≥ 3, we have 
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Hence, by Theorems 1 and 2, it remains to evaluate cov(η1, ς1), cov(η2, ς1), cov(ξi, 
ηi), cov(ξi, ηi+1), cov(ξi, ηi+2), cov(ξi+1, ηi), and cov(ξi+2, ηi) for any i. 

The covariance of η1 and ς1 is 
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and by Lemma 1, the covariance of η2 and ς1 is  
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(14) 

(15) 
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On the other hand, for i ∈ {1, …, n − 2}, the covariance of ξi and ηi is 

1 2 1 1 2

( , )
[ ] [ ] [ ]

Pr[  and ((  and ) or 

i i

i i i i

i i i i i i i

cov
E E E

X X X X X X X

ξ η
ξη ξ η

+ + + + +

= −

= = ≠ < >

 

1 1 2

2 3 4 6

2 2 2

    (  and ))] [ ] [ ]
 [ ] [ ]

2 4 ,
(1 ) (1 )

i i i i i i

i i

X X X X E E
E E

q q q q
q q q

ξ η
ξ η

+ + +> < −

= −

+ + −
= −

+ + +

 

and similarly, for i ∈ {1, …, n − 3}, the covariance of ξi+1 and ηi is 

cov(ξi+1, ηi) 
= E[ξi+1ηi] − E[ξi+1]E[ηi] 
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Then, by Lemma 1 and Eq. (16), for i ∈ {1, …, n − 3}, the covariance of ξi and ηi+1 is 
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Similarly, for i ∈ {1, …, n − 4}, the covariance of ξi and ηi+2 is 
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(16) 
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(18) 
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Finally, for i ∈ {1, …, n − 4}, the covariance of ξi+2 and ηi is 
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Now, substituting Theorems 1 and 2 along with Eqs. (14) and (16) into Eq. (13), we 
can obtain the variance of AR3, and substituting Theorems 1 and 2 along with Eqs. 
(14)-(20) into Eq. (13), we can obtain the variance of ARn for n ≥ 4. This completes the 
proof of Theorem 3. 

 

(19) 

(20) 
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5. THE DISTRIBUTION OF THE NUMBER OF ALTERNATING RUNS 

In this section, we prove Theorem 4. Note that  

2

1
1

1 ( ).
n

n n n i i
i

AR MAR T ς ξ η
−

=

= + = + + +∑  

We observe that the sequence of random variables ς1, ξ1, η1, ξ2, η2, … is 5-dependent, 
where a sequence of random variables {Yi} is called m-dependent, if the two sets (Y1, 
Y2, …, Yr) and (Yr+m+1, Yr+m+2, …, Yn) are independent for any r. Hence, we can apply the 
central limit theorem for dependent random variables [20] to obtain the distribution of 
ARn. The following lemma is immediately from Theorem 1 in [20]. 
 
Lemma 2  Let Y1, Y2, … be an m-dependent sequence of random variables such that  
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tion with mean 0 and variance A.  
For the sequence of random variables ς1, ξ1, η1, ξ2, η2, …, we have that for any i ≥ 1, 
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Then, by Eqs. (3), (5), (6), (10)-(12), (16)-(20), we obtain that for any i,  
 

1 2
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2 2 2 3 2 3 4

1 1lim ( )
2
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∑
 

Hence, according to Lemma 2 and taking the limit q → 1, we complete the proof of 
Theorem 4. 
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