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This paper concerns the well-posedness of the hydrodynamic model for semiconductor devices, a quasi-
linear elliptic—parbolic-hyperbolic system. Boundary conditions for elliptic and parabolic equations are
Dirichlet conditions while boundary conditions for the hyperbolic equations are assumed to be well-posed
in L? sense. Maximally strictly dissipative boundary conditions for the hyperbolic equations satisfy the
assumption of well-posedness in L? sense. The well-posedness of the model under the boundary conditions
is demonstrated.

1. Introduction

This paper addresses the well-posedness of the hydrodynamic model for semiconduc-
tors. The model is derived from moments of the Boltzmann’s equation, taken over
group velocity space. When coupled with the charge conservation equation, it de-
scribes the behaviour of small semiconductor devices and accounts for special features
such as hot electrons and velocity overshoots. The model consists of a set of
non-linear conservation laws for particle number, momentum, and energy, coupled to
Poisson’s equation for the electric potential. It is a perturbation of the drift diffusion
model [7]. We consider a ballistic diode problem which models the channel of
a MOSFET, so the effect of holes in the model can be neglected. The model is [4,11]

on+V-mV) =0, (1.1
v
VAWV +——var) — vy =Y (1.2)
mn m 1,
1 2 2mV: mV: T—T
QT ——V-(kaVT) + VVT +STv.y -2 07 S0, (1.3)
n 3 37, 31, Tw
q
aY =3 -2z(), (1.4)

where k is a constant, and ¢ € [0, 1, ], x € Q. The electron density is labeled n, V is the
average electron velocity, T the temperature in energy units (Boltzmann’s constant
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has been set to 1), m the effective electron mass, q the electron charge, ¥ the
electrostatic potential, T, the surrounding temperature, Z(x) the prescribed ion
background density, w the dielectric constant, and Q < R? the bounded semiconduc-
tor domain. Electric field E is given by E = — VY. The collision terms of equations
(1.2-1.3) are approximated in terms of momentum and energy relaxation times,
respectively, [2,4]:

T, T, TT,
Tp—ﬁz?, Tw—ﬁzﬁ+ﬂ3m (1.5)
for some constants 5, f5. The initial conditions of system (1.1-1.4) are
V0, x)=V,, n(0,x)=n,>0, TO,x)=T,. (1.6)

In addition, system (1.1-1.4) is supplemented by the following boundary conditions:
vV
M(t,x,V,n, T)<p )

where ¢’ = n and the admissible form of M will be explained in section 3. The
hydrodynamic model couples a hyperbolic system of two equations (equations
(1.1-1.2)), a parabolic equation (equation (1.3)), and an elliptic equation (equation
(L.4)).

For steady-state solutions of Euler—Poisson model, a simplified version of the
hydrodynamic model, we refer the reader to the works [4,7, 11, 13, 16], and references
therein. The well-posedness of the transient model in the two-dimensional space was
discussed in [13], where maximally strictly dissipative boundary conditions for
hyperbolic equations were mainly concerned. For non-linear hyperbolic initial
boundary value problems, we refer to [9, 10].

We consider the transient model in three-dimensional space. Boundary conditions
for elliptic and parabolic equations are Dirichlet conditions while boundary condi-
tions for the hyerbolic equations (1.1-1.2) are assumed to be well-posed in L? sense.
Maximally strictly dissipative boundary conditions for the hyperbolic equations are
shown to satisfy the assumption of well-posedness in L? sense. The well-posedness of
the model under these boundary conditions is then demonstrated. To do this, we first
establish an existence theorem for a linear hyperbolic system by extending the results
of [8,17]. Then the existence and the uniqueness of the solution of the transient
hydrodynamic model are proved by employing contractive map and interpolation
theorem [6,12]. More precisely, we prove the following:

= A, \Planf - \Pba Tlan' = Tbs (1-7)

o0

Theorem 1.1. Under the assumptions A1-8 (see section 3), system (1.1-1.7) has a unique
classical local-in-time solution.

This paper is organized as follows: In section 2, pertinent notation is reviewed. In
section 3, we reformulate the differential equations (1.1-1.7) and present the assump-
tions A1-8 of Theorem 1.1. In section 4, maximally strictly dissipative boundary
conditions for hyperbolic system are shown to satisfy the assumption of well-posed-
ness in L? sense. In section 5, we establish an existence theorem of a linear hyperbolic
system for our application. The existence and the uniqueness of a local-in-time
solution of (1.1-1.7) are proved in section 6.
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2. Notation

Summation convention is used. ¢ denotes various constants, which may not be the
same. That 7 is a tangential vector field in 2 means a vector field 7 in Q satisfies
7-f = 0 on 0Q (where W = (ny,n,,n;) is the unit outward normal vector on 9Q).
Q' = [0,1,,] xQ, 0Q" = [0,1),] x0Q. For a system

LU := AU + A3, U+BU=F inQ,
M, x)U =g on 0QY, 2.1
U(0,x) = f(x) in €,
the partial derivative "0} U(0)” of (2.1) is defined by formally taking i — 1 time
derivatives of the system, solving for 8} U, and evaluating at time ¢t = 0, e.g. "U(0)" = f,

"8, U(0)" = (A°(0)) "' [F(0) — A’(0)D, f — B(0)f ], etc. That compatibility conditions
for (2.1) hold up to m — 1 means that, on 3Q for0<p <m—1,

14 .
> (’l’ >aw(o, X)o7 ~'U(0, x) = 87 g(0, x).
i=0

Let #* be, the formal adjoint of &,
F*=—A4°0, — A0, + B* —0,4° -3, 4/,

where B* is the conjugate transpose of the matrix B. The kernel of .# is the boundary
subspace denoted by N. The adjoint boundary subspace is N* = (4;N)*, where
Az =Y A’n;. Let 4*, adjoint boundary operator, be a matrix-valued function on
R x 0Q whose kernel is N*.

For p>1, (H?) is the dual space of H”. For a matrix A, |4| denotes its
operator norm. Suppose A is a positive definite matrix, we define the norm | U ||2
by

IUI2a= Y | @U,A8"U)dx.
[pi<s vQ
C(H®):= C(0,ty, H¥(Q)), LP(H®) := LP(0, 25, H*(Q)). The space X (0,15, Q) is

Xs(Oa lMaQ) = m Ci(0> IM, Hs~i(Q))
i=0

with norm [I[U|llx, = sup: | Ul,oa(t) Where |Ul,oa(t) = (53_ 18U |3a(®))" In
addition, we introduce the norm

nvué[,,,tz]xnﬁj f U7 e~ 2 dxdr,
1 [¢]

HUHg.[z,,rz]xaQ,a:J J |U?e”**dodt.
t, JOQ
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3. Statement of the problem

We rewrite the system (1.1-1.4). Letting e? = n, (1.1-1.4) can be written as

T % 1
WAV +-Vp+—=Lyw_ vy, G.1)
m Tp m m

op+VVp+V-V =0, (3.2)
V2 my: T—

T —KAT = kVpVT — yWT —3Tv.y 4 20/ _mV7 T-T - 33
31, 3ty Tw

AY = % (€ — Z(x)). (3.4)

The new system (3.1-3.4) is equivalent to the old system (1.1-1.4).

To solve (3.1-3.4), we uncouple the system into a Poisson equation, a parabolic
equation, and a linearized symmetric hyperbolic system. Next we show a fixed point of
the uncoupled system exists in some weak spaces. Then by interpolation theorem, we
show the fixed point is a classical solution of system (3.1-3.4).

System (3.1-3.4) is uncoupled as follows: Given Q,#, S, find ¥ by solving

AY =3 (o z(w),
w

3.5)
Voo = Py
Then determine T by solving
2mQ> mQ* S-T.
3, T — kAT =kVyVs — ~35v- - - :
‘ ViVS —QVS =38V 0 4 376 T3 T i)
T oqr = T, (3-6)
T(0,x) = Tp.
Finally, we solve the following linearized system for V and p
T %4 1
OV +(Q V)V +=Vp+——=LyY _ VT,
m (T) m m
3.7
T T T
—0p+—QVp+—V-V =0,
m m m
|4
M, x,Q,1, T)( > =%, (3.8)
P/ locr
V{0,x)=V,, pl0,x)=Inn,. (3.9)

Obviously, a smooth fixed point of system (3.5-3.9) is a classic solution of the system
(3.1-3.4) and vice versa. Therefore, we can proceed to work with system (3.5-3.9).

We note that if a smooth solution of the system (1.1-1.4) exists, the following
compatibility conditions hold, for p > 0,

5 (’7>65M(0,x>a:""(V)(o,x)
i=o \! p

atpT(Oa x)laﬂ = atp Tb(09 x)a (311)

= ' B(0, ), (3.10)

0Q
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where derivatives are obtained by differentiating (1.1-1.4) with respect to ¢t and setting
t=0.

Define (V,, p;, T;) as follows: When i = 0, it is the initial condition (Vy,Inn,, Tp);
When i = 1,2, it is obtained by formally taking i — 1 time derivatives of the system
(1.1-1.3), solving for (0; V,;p,d; T), and evaluating at time ¢ = 0. Define K, by
(Q,n,5) € X5(Q)nH>(@Q"),
1(Q,n,S) — (Vo.1Inny, To)”lxs(n‘)

+ 1(Q,1,8) — (Vo,Inng, Ty) | 300y < d,
(atlQ: atlnﬁ atlS)(Os x) = (171, p_i’ Ti)9 i= 09 1,2-

K =14 (Q:n,5) (3.12)

Let us make the following assumptions

(A1) Q is open, bounded, and smooth in R3,

(A2) 0 < (V,, )% s0 and 0 < |(V,, 82 — (To/m)| in 3Q,

(A3) 0 < ng, Ty, Ty, and Vy,no € H*(Q),

(Ad) T, e C3(Q), Z(x) e H*(Q), ¥y € H*(OQ'), B e H3(DQ'), M € H3(Q' x R),

(AS) Toe H3(Q), Ty € H*(Q), T, € H¥(Q), and there is a T satisfying T o = T,
diTeL*H* ), i=0,1,23 0T e L*H"),

(A6) compatibility conditions (3.10-3.11) for system (1.1-1.4) hold up to 2.

Remark 1. By A3-5, we know (V,, p;, T;) e H*> (Q), i = 0,1,2. By trace theorems [3],
we see K;, is not an empty set for some J.

Given (Q,n,S) € K ,,,, we are able to solve (3.5-3.6) to obtain T. Then by (Q,n, T), we
want to solve (3.7-3.9). For convenience, (3.7-3.9) will be written as

LW = ANT)o,W + AX(Q, T)o,W + B(T)W =F in Q,
M(t,x,0,n, TYW =2 on 0, (3.13)
W (0,x) = (Vy,Inng)’ in Q,
where
q 1 ‘
W= (V,p), Fi={ 2V¥ - —VT,0}.
m m
Let ag,a,,a,,25 be constants satisfying

(1) 0< a; < AO(T()) < aq in Qt,
(2) n;A7(Vy, Ty) is non-singular and 0 < a; < |n; A7 (Vy, To)| < a, on 0Q".
By A2-3, above four constants exist. Two more assumptions for (3.13).

(A7) There are two constants M, M, such that, for any (Q;,#;,5:) € K;,,,
i=1,2,3, the following hold on boundary 0,

(M(t,x,Q1,'I1,S1) - M(t’x7Q29”2,S2))<g:)

<(WIM; + |Inng| M,)(1@y — Qal + |11 — 12l + 181 — S21),

and

4
L2 (IVoI M, + |Inng| M) < min{1, c(Q)k).
a,a3
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(A8) There is a positive constant o, such that, for any a > ay, W e H(RxQ),

(Q’ 1, T) € Ké.tu
(a) the followings hold:

2 oa, 1
a,[We? t|'£2(ﬂ)(t2) + > 1w Hg,[:l,tz]xn,a + . w “()2,[t‘.t2]xaﬂ,a
2

2 _
< a4, I MW”(%,[!,.t;]xaQ,u + E W I'()z,[t,.tz]x(l,az +ay|We ™ Hfz(m(tl),
(3.14)
aa 1
a, | We™ Hfzm)(tl) + 71 W “g,[l;,tz]xﬂ,—x + 2a, W n&[z,,zz]xan,fa
2
<2 Mrw Al
a2, 0,[t,1,] x 082, —a a, 0,[,,]%Q, —2
+ag || W e || 2 (t2)s (3.15)

where 0 < t; < t; < ty, &, M are the operators in (3.13), and £ *, M * are the adjoint
operators of ¥, M (see section 2), _
(b) there are By, M,, and symmetric 4y, A] = C*(Q') satisfying
{42, 4], By} - {A%(T), 4/(Q, T), B(T)} in X5(€),
M, ->M(t,x,0,4T) on H3(dQY),

s

and inequalities (3.14-3.15) hold for the following

LW = AJQW + Ald, W + BBW =F in Q',
MW =42 on 3Q, (3.16)
W(O, X) = (Vo,ln ﬂo)t in Q,
where ¥, M, #* M* in (3.14-3.15) are replaced by %, M,, L%, M}, respectively,
(&, M are the adjoint operators of %, M,).
Actually, A8 assume that boundary condition M(t,x,Q,n, T) for the hyperbolic
system (3.13) is well-posed in L? sense. In section 6 we will show that if A1-8 hold,

then a fixed point of system (3.5-3.9) exists uniquely in a short-time period, which
implies Theorem 1.1.

4. Example

We give one example for M of (1.7) such that assumptions A1-8 hold. Muitiplying
(3.2) by T/m and combining it with equation (3.1) along with initial and boundary
conditions, we obtain

ANTYO,W + ANV, TYo, W + B(T)YW =F in Q,
M@,x,V.p,TYW =% on 0QY, 4.1)
W (0, x) = (Vy, Inng) in Q,
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where W := (V, p)'. Assume that the matrix Aa(=A4’n;) of (4.1) on 3Q’ has negative
eigenvalues 4, , u = 1...7, and positive eigenvalues AY,v=¢+1..4, and, corres-
ponding to them, orthonormal eigenvectors r, ,r,”, u=1.../, v=¢+1...4. The
boundary condition M is taken as

¢ 4
MW =Y (7 W)a,,r, + YooY (nwW)b,rs 4.2)
p=1lv=~,41

where a, ,, b, , are smooth functions and (a, ,) is an invertible matrix in 0Q". If b, , = 0
for all u,v, then M is maximally strictly dissipative boundary condition [17].

Remark 2. The eigenvalues of Az for (4.1) are A, = A, = V;(:=V-1n),

_ L+ T/mVs +/IVi(l + T/m)* — 4T/m(V3 — T/m)]

A3 5

_ L+ T/mV; — Vil + T/m)* - 4T/m(V3 — T/m)]

Aa >

Let 1y := (T11,T12,T13), T2 := (T21,T22, T23) be two orthonormal tangential vectors in 2,
and { be defined by

(= T/mVi + [Vl + T/m)> — 4T/m(V'; — T/m)
- 5 .

{

The corresponding eigenvectors of Ay, Ay, Ag are (Ty;,712,713,0), (T21,722,723,0), and
(ny,ny,n3, —m({/T), respectively.

Therefore on inflow boundary {(t,x) e 8Q'|V;(0,x) < 0}, (1) if VE(0,x) < To/m, we
specify three boundary conditions (because 1, , A5, A4 are negative and A5 positive), (2) if
To/m < VZ(0,x), M is the identity matrix (since all of the eigenvalues are negative). The
Jormer corresponds to subsonic case, and the latter to supersonic case. However an
outflow boundary {{(t, x) € 0Q'| V5(0, x) > 0}, (3) if VZ(0,x) < To/m, we need one bound-
ary condition (because only A4 is negative), (4) if To/m < V(0,x), M is the zero matrix
(because no boundary condition is needed). Similarly, (3) and (4) correspond to subsonic
and supersonic cases, respectively.

For example, MW = % of (1.7) can be: in case (1)

W,
Ti1 Ti2 Ti3 0 W,

MW =| 13 722 723 0 W = %,
ny np, ny —m{T ’

which means (W, W,,, Wz — pm{/T) = B' on 0Q, where W, := W -1, i = 1,2, in case
(2) (W,p)= B on 0Q, in case 3) M = (ny,ny,n5, —m{/T), i.e. Wy — pm{/T = % on
0Q, and in case (4) M = 0.

If A1-6 and (4.2) hold, and if | p{(0, x)lsq, {b,..} of (4.2) are sufficiently small, then
they imply assumptions A1-8 hold. A7 holds obviously if |p|(0, x)|sq 1s small. The
following lemma implies AS8.



1496 Li-Ming Yeh

Lemma 4.1. Consider (1.1-1.7). Besides assumptions A1-6, if the following holds: M of
(1.7) is constructed as (4.2), {a,,} and {b,,} are in H*(QQ'), and they satisfy

max a,,)| <b;', max|b,,|<by, Vv,
aq! o

4(1/az + 1/a3)by *b3 < 1/a,,
for some constants by, b, then A8 holds for any 6 as long as ty is small enough.

Proof. (3.14) is proved by energy L? estimate. By means of a local co-ordinate change
and a partition of unity, it is sufficient to prove (3.14) in a half space. The estimate in
a half-plane can be obtained as follows: Multiplying (3.13) by W e~ 2%, integrating the
resulting equation over €', and employing assumptions of boundary conditions of this
lemma.

(3.15) can be proved in a similar way as (3.14). A8(b) holds by using Friedrichs’
mollifiers and arguing as the proof for (3.14). |

5. Existence results for linear problems

In this section, we present existence results for a parabolic equation (Lemma 5.1)
and for a linear symmetric hyperbolic system (Lemma 5.4). These are used to show the
existence of a fixed point of system (3.5-3.9) in section 6. Lemma 5.1 is a standard
result. Lemma 5.4 is established by Lemmas 5.2, 5.3. Lemma 5.2 gives an a priori
estimate for a linear symmetric hyperbolic system (5.3) by energy method. Lemma 5.3
is to present approximate systems of (5.3) so that the solutions of these approximate
systems exist. Lemma 5.4 is to show that the solutions of the approximate systems
converge (by a priori estimate obtained in Lemma 5.2). Furthermore, we show the
limit is a solution of (5.3). Domain Q will be assumed in R4,

Lemma 5.1. Consider the following system
oU—aAU=F in Q,
U=g on Y, (5.1
U@0,x)=f in Q,

where a is a constant. If F € H*(Q'), 03F € L*(H™ ') and if there exists a function
g satisfying

Gl =9, 0igeL*H*™), i=0,1,23, 8'jeL*H™"),
0{(U - §)(0,x) e Hp(Q), i =0,1,2, 3}(U — §)(0,x) e L*(©),
then there is a U e X 3(Q') such that !U e L*(H*™%),i=0,1,2,3, and

3 3
Il U|“)2(, + Z lo;U “1%2(11‘-") < CI: 101G ) 2me-iy + 108 G 1 22y + I F | ey
i =0

i=0

12

3
+ ||a?F|ll%z(H") + Z 18: U(0, x) ||12{3-‘(Q):|- (5.2)
i=2

Proof. This lemma can be proved by employing the results in [14, 15]. |
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Lemma 5.2. Consider the system

LU =AU + 40, U+BU=F inQ,
MU =g on 0%), (5.3)
U(0,x) = f(x) in Q.

If the following conditions hold:

1. Q is open, bounded, and smooth in RY,

2. A% A%, Be X () are j x j matrices, # € H*(0Q'), and s > [d/2] + 2,

3. A% A’ are symmetric and 0 < a, < A° < a, in O,

4. Ay:=Y A'n; is nonsingular on 8Q' and 0 < a3 < |A4; '| < a, on 0Q,

5. Fe H"QY), fe H™Q), g € H"0Q'), 1 <m < s,

6. for any Ue H'(RxQ), 0 < t; < t; <ty and aya 2 cl||Ll|[x 0, (3.14) holds for
(5.3), i.e.

— oAy 1
a|Ue ”Z’(ﬂ)(tz) + 5 [l U”Oz,[tl,tz]xﬂ,a + San I U”g,[tl,tz]xaﬂ,a
2

<

2 -
| .#U ”()Z,[tl,tz]xaﬂ,m + — ”gU”OZ,[t,,t;]xﬂ,a +a,|Ue™ HI%Z(Q)(tl)a
243 oay

(5.4)

then there exists a polynomial P such that, if aa, = P(|||Lllix.q), I| # || sspay, a2), the
Jfollowing holds

”lU”l)Zr,(Q‘) + | U!lfzf'"(an')

2aty
<

P(”|L”|X,(ﬂ‘)’ “ ///“H‘(an‘),az)[“F HIZ{"‘(Q') + ”9“}21"'(69') + |U|3;,0,Q(0)],

(5.5)

ay

where L = {A°, AJ, B}.

Proof. By means of a local co-ordinate change and a partition of unity, it is sufficient
to prove (5.5) in a half-space. The estimate in a haif plane will be obtained by
differentiating the equation (5.3), to estimate tangential derivatives and then, using
det Az # 0 to solve for the normal variables in terms of the tangential ones.

For convenience, we assume (5.4) holds in a half plane. (5.5) is proved by induction.
Proof of this lemma is close to that of Lemma 3.2 in [17], so similar arguments will
not be repeated here. The main difference between the two proofs is the estimate for
| MOP U — BT (MU | Zogy -

Consider the following in a half space {(t,xy,...,xa){x; = 0}

Lo, U =0, LU + (L0, U -3, 2LU),

%a}’,x’U}xl =0 = aty.)c'('ﬂ[]) + (’/”a;},x’U - al,:x'(‘//zU))Ixx =0 (56)
0, U(0,x) =0 - U(0,x),
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where 0/ .- is the y derivative with respect to t,x’ = (x,,...,x4) and |y| = 0,1, ...,s. By
(5.4), (5.6)

- oa, 2 1 1 2
2,105 U lgae ™ + — 10, Uldae + =— 18 Ul d ot
10 0.0 3 oot 50 0,00,
2 2
S— 10 v Fllga. + — 1 L0 U -8} . LU kg
oa oay

+

2
Ha:fg“&aﬂﬂ'+
a,a3 2,33

+ 8010, U ||§(0). (5.7

I AU — 3 AMU) G o

By Holder inequality, embedding theorem, using det 43 # 0 to solve for the normal
variables in terms of the tangential ones, and an argument similar to (3.20-3.28) of
[17], one can show that, for 0 <t < 1y,

_ oa 1
a,|Ulfpae™ ™ + Tl IU s +— 1 Ul o0ca
a;

20ty
<

P(ILNx,s | A son, a2) LI F vy + 119 I eary + 1U 12 0.0(0)]. (5.8)

1

Next we assume the following inequality holds:

— oAy 1
a,|U|%pe™ 2 + a4 v ]Ifﬁ',a + 2. U ||fan’,a
2

eZoclM

< 1 PUILIx,» A W, a2) LI F i) + 119 ey + 1U02(0)] (5.9)

where i =0,1,...,m — 1.
We want to show (5.9) also hold for i = m, m < s. By (5.4), (5.6) again

oa 1
a 3" Uldae™ ™ + —1 MU |da, + = 10" Ulld o
2 2a,

2 2
S — 07 F o + — 1 £07.U — 87 LU |5 ata
oa, oa,

2 2
+ —— 07 g5 + —— I AU — B AMUYG oo
aa; a;a;

+ 20| 7% U | 3a(0). (5.10)
By Holder inequality, (5.9), and arguing as (3.31-3.38) of {17], one can show that
|27 U — 80 LU oo

< PUNLIx, 22) (| Flla— 1000 + 107 Ullgata + 1U 2 - 10t
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The term || A" U — 8 (M U)||§ a4 is estimated as follows:

m—1
| MU — 0 MU ||Goea<C Y. ok |2 10F U e 2" dx' dt

u=0 JoQU

m—1
<c¢ Z I az',"x_'ﬂe///”zlv(an') “a:’,lx'Ue_at ”z“(an'), (5.11)

u=0

where for (i) m = s, u = 0 case we pick p = 1, ¢ = 0 in (5.11), and for (ii) m < s, or for
(i) m = s, u > 0 case we pick p,g = 1 1n (5.11) in such a way that
1

11
l=—+-, -
p a4 p

>d—2(s—m+/1)

S ’ 1>d—2(m—u—l/2).
d-1 q

- d-1
For case (i), inequality (5.11) implies that

A3 U — ' MU |goar,, < max |U|* |3 M || Gogr.a
Qt

< e U2 1 gta O A 1 o, (5.12)
For cases (ii), (iii), inequality (5.11) implies that
m=1
|[,/%a,""x/U - at'."x"%U “02‘3()',(1 <c Z I ax',";”//“fzf‘"'*“(aa') I 6,{‘X:Ue_“’ ”1%1"""“/2(69‘)
p=>0

<ol Ml Vogaty 3 j 188 U2 ane™ 2 dr.
u=04J0
(5.13)

By using det 45 # 0 to estimate |3/ U llgae™ ** as (3.39-3.42) in [17] and combin-
ing (5.10-5.13), we complete the proof. |

Remark 3. Consider system (5.3). Besides the assumptions of Lemma 5.2, we assume:
1. compatibility conditions for (5.3) hold up tom — 1,2 < m <,
2. there are By, My, and symmetric {Ay, Aj} = C*(&') such that, as k — oo,
{AQ, AL, B} = {A°% A7, B} in X,(Q),
My — M on H(0QY.

By {A., Ai, B, #,\ above we consider the following:

LU =AU+ 4D U+BU=F inQ
AU =g on 0Q), (5.14)
U(0,x) =f(x) in Q.

It is clear that if k is large, assumptions 2-4 of Lemma 5.2 hold in (5.14), where

{A°, A7, B, M, Az} are replaced by { A, A, By, My, Acz(:= Ain))}. Let L, M} be the
adjoint operators of %, A4, of (5.14) (see section 2). We also assume:



1500 Li-Ming Yeh
3. for Ue HY (R xQ), 0 <ty <ty < ty, and aya = c|||A° A, Bl||x v, (5.4) and the
following hold for (5.14);

ocal 1

a, | UezatHU(n)(H) +—1Ulg {t,6:1x0 —a a. (R Hoz,[:,,zz]xan,—a
2

<

H/lk U||0[z1 1,]% 09, —a(+ “gk U||0[z1 $1xQ —a
1a

+ao | U™ | tz). (5.15)

Assumption 3 above is similar to A8(b) but for (5.14).
Lemma 5.3. Under assumptions of Lemma 5.2 and Remark 3, there exist a sequence of
functions {F,, fx,gi} such that F e H™*2(Q"), f,e H"**(Q), g, € H™"**(0Q"),

Fo—»F in H"(Q)

fi—~f in HYMQ) as k- o0,

g —g on H™0Q)
and, if we consider the following (replacing F, f,g of (5.14) by F, fi, 9x)

LU= A0, U, + 40, U, + B.U = F, in O,

AU, = g on Q! (5.16)

Uk(0,x) = fi(x) in Q,
then (5.4), (5.15), and compatibility conditions up to m also hold in (5.16).
Remark 4. First let us give definition ( for (5.3)) for G;.f,:

Gi:= —(@i[(4%)7"4))9; — &[(4°)'B), i>0,

fo:=U@0,x)=1,
f=y (" R I)Gi(o,x)f,,_l_i +ETIIAYTIFDON, p2l (517)
i=0

By definition, {,, corresponds to "0{ U(0,x)". We define B,,E,, as
Bof:=f,=f and B,f+E,(A°) 'F:=1, p=>1,
where

B, f:= G§(0,x) f + term of the form Gy G, .

1

-G 0, x)f (5.18)
withy +iy + - +i,<p—1and
E,(A°)"'F := sum of the terms of the form G{G,, ... G, (0)3;[(4°) ™' F1(0)
(5.19)
withy +i; + - +i,+pu<p—1

Proof. (1) That (5.4), (5.15) hold in (5.16) is because (5.4), (5.15) hold in (5.14).
By assumption 2 of Remark 3, there are smooth functions Ap, Al B, .#, which
converge to A°, A%, B, 4. Consider system (5.14) for each k. Let us use f; ,, B, ,,E, , to
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denote the f,,B,,E, of (5.14) (see (5.17-5.19)). By the assumption of compatibility
conditions for (5.3), on boundary 0Q, for 0 <p <m — 1,

p

) (Z)ar“//((), X, =0/9(0,x),

n=0

where f,_, is the (p — p)th derivative, "0; “U(0,x)", of (5.3). Since

p
p ( )awmx)fk,, \— 009(0,)

-3 (i)ar(m—m(o,x)fk,rﬁ 3 (Z )ar//t(o,x)(fk,p-u—fp—u),
o]

©=0

flom
we may choose k such that
p

Y (Z )a:wkfk,p-u—a:’g

u=0

0 <= !

ospsm-—1 (5.20)
H""P’l/l(an) 2k

Let g=>m+ 2 be an integer. For fixed k, we choose sequences Fj e H™"4(Q),
i e H"1(Q), and g; € H™4(0Q") such that

FisF in H™Q)
¢ —f in HMQ)  asi—co. (5.21)
gi—>g on H™(Q)

Then we want to find i(k) and hi® such that,for 0 < p < m

e H" 2(Q),  [h®|lma < (5.22)

ﬁa

io (Z)af//k(Bk,p—u( h® + $i®) + Ey p—u(40) T Fi®) = 07 i = 0,
' (5.23)
for (¢, x) € {0} x 0Q. Suppose {h*'} is available, we define

Fi0 = Rty it
Then we see, when i(k) is large,

| Fi® — F || gy < ¢/, Hﬁci(k) ~flamg < c/k, Igi® — g Il ey < c/ks

and system (5.16) satisfies compatibility conditions up to m. So Lemma 5.3 holds true.
Next step is to search for h®.
(2) Equation (5.23) can be written as, for 0 < p < m, (1,x) € {0} x0Q,

p
Z < >a"/szk,, Jhi

p . .
Z ( >au'/%k(Bk p— uff)k + Ey p- u(Ak) YFi) — 8 gk (5.24)
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Let R, be the inverse of .4, when it is restricted to the orthogonal complement of the

kernel of .#,. Note 8/ gi(0,x) is in the image of .#,. For 0 < p < mon (t,x) € {0} x 8Q,
to solve (5.24) is sufficient to solve

. p .
B.,hi +R, Y <Z )a:‘///kBk,,,-uh,z

u=1

14
Z ( >au‘/%k(ka u¢k+Ekp ,,(A )"'Fi) — Rl gi =k

(5.25)
The left-hand side of equation (5.25) can be written as
i P
B, + R, Y (ﬂ)a“/{kBk p—uhi = D[0%h; + Z Ci.p.p—,Os b,
u=1 Y=
where D z:= —(47) 7! kn,, Oahi denotes the normal derivative of 4i on 8Q, and

Cy.», -, an operator of order (p — y) which only contains derivatives tangential to 0Q.
So equation (5.25) becomes

p—-1
bp.i,k - (le,ﬁ)—l <ap,i,k - z Ck,p,pyby.i.k>5 (5'26)

y=0

where 3%hj:= b, ;. Since a, ; , € H" 977~ 12(3Q)), it follows that
byix€ H" 4 P~ 12(3Q).
Also by (5.20-5.21) and (5.25-5.26), there is a large i(k) such that
I b ik llgm=r-12q0 < c/k, O0<p<m—1.
Furthermore, by a trace theorem [10], there is a v, € H™*(Q) such that
v =bpigir 0<p<m—1, |vellgmg < c/k.
Finally, we write hi® = v, 4+ w,, where w, is required to satisfy w, € H(Q), and,
| Wi HH"'(Q) c/k;  OF wileg = b, i,k — OF Uy; B Wilea =0, 0<p<m—1.

To find such a wy, we refer the reader to the proof of Lemma 3.3 of [8]. Therefore the
desired 7%’ can be obtained. [ |

Lemma 54. Under the assumptions of Lemma 5.3, system (5.3) has a unique solution
U € X,.(Q")n H™(0Q') and there is a polynomial P such that

(“U”lim(n') + U Hle"'(an‘)
2atpy

< a P LN x5 H%HH’(aﬂ’)aaZ)[“FHIZJ"‘(Q') + “g“fzr"‘(an') + ”f“fmg)],

1

(5.27)

where L = {A°, A, B} and o is a constant with a,a > P(|||L|lIx q, || # || 5@y 22)-
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Proof. (1) By Lemma 5.3, there exist B, and symmetric matrices A2, Aj € C* ("),
M e C* (), Foe H" (), f, e H™*2(Q), and g, € H™2(0Q) such that

{42, A}, B} - {A°% A%, B} in X,(Q)

My~ M on H(dQ)

F,—»F in H™(Q') as k- 0.
LS in H™(Q)

gi— g on H™@©Q')

Furthermore (5.4), (5.15), and the compatibility conditions up to m hold for system
(5.16) for each k. Consider the system (5.16). By Proposition 5.1 of [8], one can show
that system (5.16) has a solution U, € X+ 1(Q'). By Lemma 5.2, {U, } is bounded, i.e.,

MU, + 1 Ukl meery < €, Vk. (5.28)
Let us consider the following:

LU -U)=F—F+ (& - B)U,— (L~ £)U, in Q|

MUy — U)) = (M — MUy + (M — MU, + g, — g1 on O, (5.29)

U — U0, x)=fi — /i in Q.
Inequality (5.4) of Lemma 5.2 applied to {U, — U,} shows that {U,} converges in
C(L?). Let U be the limit of {U,}, then U € C(L2). By (5.28), || U || smear) < c.

By (5.28) and the Sobolev’s interpolation theorem [1,6], we have for arbitrary
v >0,

1Uy = Ul i@ < cll U = Ul 2@ 11 Ui — Upllimen " (0),
SO

U-»U inCH"") ask-oo. {5.30)
By (5.3) and (5.16), we see that

m—1
Ui—-Ue [} C(H™ ") as k-0,

i=0
iU e L*(H™ ), i=0...m.

By (5.5), we see U satisfies the estimate (5.27). Equation (5.27) implies solution of (5.3)
is unique. So the proof is complete as long as we know 8/U e C(H™ ™), i =0...m.

(2) That 8/U e C(H™"%), i = 0...m, is proved by three steps:

Step 1: Ast—t,, 0U(t,") —» 0! U(to, ) weakly in H™ ¥(Q) for all i < m.

Step 2: 91", U(t,") is continuous at t = 0 in L%(Q).

Step 3. U e X,.(QY).
Proof of Step 1. if g < m and y, € (H3(Q))', by (5.30), ¥, (Ui(t,-)) = ¥4 (U(t,*)) uni-
formly in t as k = co. Now if ¥y € (H™)', there is a yr € (H?)', for some g < m, such that
I — ¥y llgmy < 1/2* for any k. By (5.28), for all ¢,

[ (Ui, ) — (U (t,))]
<Y (U) = ¥ (U] + 1§11 (Ue) — ¥ (U + [Y1(U) =y (U)]
< /27 + Y (Up) — i (U)].
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This implies that (U,) - (U) uniformly in ¢. Because W(Uk) is continuous in ¢,y (U)
is also continuousin t for all y € (H™(Q))’; thatis, as t — to, U(t,") = Ul(to,") weakly in
H™(Q). Similarly, one can show that if t >ty and 1 <i < m, then o, U(t) -0, Ul(ty)
weakly in H™~/(Q) by (5.30). Then, by (5.3), we see that 8] U(t,") = 0] U (¢, - ) weakly
in L2(€) as t - t,.

Proof of Step 2. To prove this step, we will show the convergence result in an
equivalent norm || - o 40¢). By differentiating (5.16) with respect to tangential vectors
or time 0] ,, we have

£.00, Uy = 08! LUk + (L0, Uy — 0. L Uk) in Q,
MO Uy = 0] (MU + (H3] Uy — 8] (MUy)) on 0, (5.31)
9!, U(0,x) = 07, U, (0, x) in Q.
Multiplying above by 87, U;, and integrating the resulting equation over Q, we derive,
for |yl <m,
d

‘—'J. aZ‘,UkA,?BZ,, dex =j aty,,UkAk,ﬁa deO' + z J‘ ach)dx
dt Jg 0 121 < Iyl

(5.32)

where G(0°Dy) is a function depending on 0°Dy, Dy = {40, A}, B, Uy, F,}, and
Apq:=Y Ain;. We integrate (5.32) over (0, ¢), then

j 81, Uy ADBY Un(£, ) dx < f 3, U ALDL UL(0, %) dx
Q

¢
+JJ laz,,UkAk,,.,az,,Ukmode R(z)dz,
0 Jo 1]
(5.33)

where R € L'(0,1),) is a positive function (since |02 (4} AL B UYL (@ |y < m, are
uniformly bounded in ¢). Since U,(0,-) converges to U(0,-) in H™(Q), it is easy to see

lim [ 02, U Y07, U0, x)dx = (3, U(0) |6 42)- (534
k=0 JQ

Now, since U(t,-) converges weakly to U(z,-}) in H™(Q) for each ¢, U,(t,-) converges
weakly to U(t,') in H™(Q) in an equivalent norm for each t. So for all |y]| < m,

0L UG oy < lim 107, Unl&) g s (5.35)

k—'oo

Now since Ay — A° in X ('), then
Hm || Up(&) | a0y = Hm || Unl&) [ a2er- (5.36)

k- k— o

By (5.33-5.36), letting k — oo, we obtain, for |y| < m
132, U)Ig 400 < 102, U0} a0

¢ 3
+limj f 1az,,ukAk,ﬁaz,‘Uk|dadt+j R(z)dz. (5.37)
i ¢

k= JO
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Let Q¢ be the intersection of Q and a s-neighborhood of 8Q, and let 1 be a half bell
function satisfying ¥*(x) = 1 for x € 3Q and with support in Q°. Multiplying (5.31) by
%, then applying (5.4) to the resulting equation, one can show that, for any e,

4
limj f le” 2407 ,U,|*do dt
0 Jon

k—w
4

¢
<c <Hq(/‘a,7_, Ul L0} + f f le” 29! g|*dodt + J R(2) dz), {5.38)
on 0

0o

for some constant ¢. To obtain the result (5.38), we need to control the boundary term
| 4,01, U, — 0} (A, Uy) “02’39‘,[1. It can be estimated by the same technique as
{5.12-5.13). (5.38) implies that

- e
lim lim j f (07, Uy A 507 Ui da dt < ¢|[§°0! U | L2n(0). (5.39)
0 JoQ

E-0" koo

The right-hand side goes to 0 as ¢ approaches 0. Since the left-hand side is independent
of &, it equals 0. By the continuity of A°, we get, for |y| < m,

fim | 07,U4°,U(x)dx = lim f 87, U(¢,x)4°(0, %31, U (£, %) dx.
Q

fa0* Ja Ea0r
(5.40)
By (5.37-5.40), we have, for |y| < m,
lim J 87, U(&,x)4°(0,x)37 U (&, x)dx < (|82, U()(I§ 40- (5.41)
0% JQ

Combining the result of Step 1, Theorem 3.8 in [1], and (5.41), we see 07, U(t,-) is
continuous at t = 0 in L%(Q) for all || = m.

Next we show that 8], U (t,-) is also continuous at ¢ = 0 in L*(Q). By partition of
unity, we can reduce the problem to the boundary 8Q. By using det 4; # 0 on 8Q', we
can solve for the normal variables in terms of the tangential ones and time. Because
07, U(t,-}is continuous at t = O for |y| = m, 0" U(t,* ) is also continuous at t = 0in L?
around the boundary 8Q. Therefore, we conclude that 8, U(t," ) is continuous at ¢t = 0
in L2(Q).

Proof of Step 3. By the same argument as that in Step 2, one can prove strong right
continuity at any point ¢ € [0,¢)). Note that equation (5.3) and the argument of
Step 2 are reversible in time, so the proof of strong right continuity in [0, ;) implies
strong left continuity on (0, ¢, 1. Therefore, we conclude that U € X,,(€°). n

6. Existence of a unique local-in-time solution

In this section we prove the existence of a unique local-in-time solution of the
system (1.1-1.7) under assumptions A1-8 of section 3. That is equivalent to showing
the existence of a fixed point of the system (3.5-3.9). By A3-5, we know K, (see
(3.12)) is not an empty set for some d. Given (Q,n,5) € K;,,, we are able to solve
(3.5-3.9) to obtain (V,p,T) by Al1-8 of section 3 and Lemmas 5.1, 5.4. Set
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I1(Q,#n,S) = (V,p, T). The existence of a unique local-in-time solution of the system
(1.1-1.7) is proved as follows: First we show that, as t,; is small enough, there exists
a 0 such that IT is a map from K;,, to itself (Lemma 6.1). Next we prove that I is
a contractive map in some weak spaces. So we obtain a fixed point in these weak
spaces. Then we show the fixed point is a smooth solution of the system (3.5-3.9)
(Lemma 6.2). The existence and uniqueness of classical solution of system (1.1-1.7)
follows the result of Lemma 6.2.

Lemma 6.1. Under assumptions A1-8 of section 3, as ty is small enough, there exists
0 such that (3.5-3.9) is uniquely solvable and the solution of (3.5-3.9) is in K, for all
(Qa ", S) € Ké,tM'

Proof. Given(Q,n,S) € K, ,,,, we solve the system (3.5-3.9) to obtain (V, p, T) by A1-8
of section 3 and Lemmas 5.1, 5.4. By Lemma 5.1, the solution of (3.6) satisfies

T € X5(Y), 0;TeL*(H*), i=0,1,23,
oiT0,x)=T,;,, i=0,1,2

By (5.2, IlT — Tollly, + I T — Tolluea) < 01 If ty is small enough, §; depends on
To, Ty, Ty, T,mg, ¥ but is independent of 4.
By Lemma 5.4 for d = m = s = 3, we see that the solution (3.7-3.9) satisfies

(V’p)€X3(Qt)f\H3(aQ'), (athaatlp)(Oax) =(I7i’p_i)a l= 09 132

By (5.27), [i(V,p) ~ (Vo, Inmo)lliz, + 1V, p) — (Vo,1n00) | Frpqy < 82. If 1y is small
enough, we see that d, is dependent on ny, V,, Ty, ¥, but independent of 6. If we take
8o :=max{8,8,,0,}, repeat the above procedure, and let t),, smaller, we see
(V,p,T)e K;, ,, for all (Q,n,5) e K;, ,,. That is, IT is a map from K;_,, to itself. W

Lemma 6.2. Under assumptions A1-8 of section 3, system (3.5-3.9) has a unique fixed
point if ty is small enough. Moreover, the solution satisfies

@V,03(p, 0 T)e L*(H*™"), dTeL*(H*"), d¥eL~(H*), (6.1)
fori=20,1,2,3.

Proof. By Lemma 6.1, I1(Q,%,S) = (V, p, T) is a map from K;, to K;,, for some é.
Given (Q4,711,5;) and (Q,,n,,S,), by solving (3.5-3.9) we get two solutions
(VMi,p1,Ty,¥1) and (V,, p,, T5,¥,). Subtracting one solution from the other, multi-
plying the difference of (3.6) by (T; — T,)e ™ *¥, integrating the resulting equations
over ', using (5.4) for the difference of system (3.7-3.9), we see, if o is large and 1, is
small enough, I1 is a contractive map in V, p € C(L?)nL*©Q"), T € L*(Q"). That is,

W Ty —T, H&Q',u + (V1 — Vo, p1 — Pz)e_zn HI%Z(Q) + (V1 — Va,p1 — Pz)“&an‘,a
<c|S; = Saldan. + Q1 — Q211 — n2)e ™ > P2y
+ 11021 — Q2,11 — 12) G oo

for some constant ¢ < 1.

By the above, if we define II(Vi—1,px-1, Te-1) = (Vi> ox> T), then sequence
{Vi, 01, T} converges to the unique fixed point {V,p,T} where
V.,pe C(LY))NL*©@QY), Tel*Q'). Since {(Vi,p,Tu}<Ks,, V,p,T)e
L*(H3*)n H3*©Q"). By Lemma 5.1, we know that 8/ T, e L2(H*"%), i=0,1,2,3, so
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OiT e L3(H*™Y), i =0,1,2,3. By Sobolev’s interpolation theorem [1, 6], we have for
arbitrary v > 0 {set W, := (V;, p1))

| Wi — Wi gs-v®) < ¢l Wae — Wil 1500 | Wi — Wil i@ (@),

which implies that V,pe C(H*"*). By equation (3.7), we see 0o!V,0ipe
2, C(H*>7"7'). Therefore {V,p, T} is the unique classical solution of system

(3.5-3.9). Moreover, by (3.1-3.4), we see the fixed point satisfies, for i =0, 1,2, 3,
(@iV,0ip,0iTye L*(H3™%), diTeL?*H*""), d!¥WeL*H>H. |

Theorem 1.1 is a direct result of Lemma 6.2,
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