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This paper concerns the well-posedness of the hydrodynamic model for semiconductor devices, a quasi- 
linear elliptic-parbolic-hyperbolic system. Boundary conditions for elliptic and parabolic equations are 
Dirichlet conditions while boundary conditions for the hyperbolic equations are assumed to be well-posed 
in L 2  sense. Maximally strictly dissipative boundary conditions for the hyperbolic equations satisfy the 
assumption of well-posedness in L2 sense. The well-posedness of the model under the boundary conditions 
is demonstrated. 

1. Introduction 

This paper addresses the well-posedness of the hydrodynamic model for semiconduc- 
tors. The model is derived from moments of the Boltzmann’s equation, taken over 
group velocity space. When coupled with the charge conservation equation, it de- 
scribes the behaviour of small semiconductor devices and accounts for special features 
such as hot electrons and velocity overshoots. The model consists of a set of 
non-linear conservation laws for particle number, momentum, and energy, coupled to 
Poisson’s equation for the electric potential. It is a perturbation of the drift diffusion 
model [7]. We consider a ballistic diode problem which models the channel of 
a MOSFET, so the effect of holes in the model can be neglected. The model is [4,11] 

a,n + V . ( n V )  = 0, (1.1) 

1 4 I/ a,v + ( V . V ) V  + - V(nT) - - VY = --, 
m 2 P  mn 

1 2 2mV2 mV2 T - T ,  
a,T - - V.(knVT) + VVT + - T V .  I/ - -~ +- +-- - 0, (1.3) 

n 3 32, 32, 7, 

( 1.4) 

where k is a constant, and t E [0, tM], x E a. The electron density is labeled n, I/ is the 
average electron velocity, T the temperature in energy units (Boltzmann’s constant 

4 AY = - (n - Z ( x ) ) ,  
0 
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has been set to l), m the effective electron mass, q the electron charge, Y the 
electrostatic potential, T, the surrounding temperature, Z ( x )  the prescribed ion 
background density, o the dielectric constant, and R c R 3  the bounded semiconduc- 
tor domain. Electric field E is given by E = -VY. The collision terms of equations 
(1.2-1.3) are approximated in terms of momentum and energy relaxation times, 
respectively, [2,4]: 

TS Ts T Ts 
T '  L V = B 2 - + 8 3 - - -  2T T + Ts TP = B 2  - 

for some constants B2,B3 .  The initial conditions of system (1.1-1.4) are 

V(0,x)  = Vo, n(0,x) = n o  > 0, T(0,x) = To. (1.6) 

In addition, system (1.1-1.4) is supplemented by the following boundary conditions: 

where ep = n and the admissible form of M will be explained in section 3. The 
hydrodynamic model couples a hyperbolic system of two equations (equations 
(1.1-1.2)), a parabolic equation (equation (1.3)), and an elliptic equation (equation 

For steady-state solutions of Euler-Poisson model, a simplified version of the 
hydrodynamic model, we refer the reader to the works [4,7,11,13,16], and references 
therein. The well-posedness of the transient model in the two-dimensional space was 
discussed in [ 131, where maximally strictly dissipative boundary conditions for 
hyperbolic equations were mainly concerned. For non-linear hyperbolic initial 
boundary value problems, we refer to [9, lo]. 

We consider the transient model in three-dimensional space. Boundary conditions 
for elliptic and parabolic equations are Dirichlet conditions while boundary condi- 
tions for the hyerbolic equations (1.1-1.2) are assumed to be well-posed in L 2  sense. 
Maximally strictly dissipative boundary conditions for the hyperbolic equations are 
shown to satisfy the assumption of well-posedness in L 2  sense. The well-posedness of 
the model under these boundary conditions is then demonstrated. To do this, we first 
establish an existence theorem for a linear hyperbolic system by extending the results 
of [8,17]. Then the existence and the uniqueness of the solution of the transient 
hydrodynamic model are proved by employing contractive map and interpolation 
theorem [6,12]. More precisely, we prove the following: 

Theorem 1.1. Under the assumptions A1-8 (see section 3), system (1.1-1.7) has a unique 
classical local-in-time solution. 

(1.4)). 

This paper is organized as follows: In section 2, pertinent notation is reviewed. In 
section 3, we reformulate the differential equations (1.1-1.7) and present the assump- 
tions A1-8 of Theorem 1.1. In section 4, maximally strictly dissipative boundary 
conditions for hyperbolic system are shown to satisfy the assumption of well-posed- 
ness in L2 sense. In section 5, we establish an existence theorem of a linear hyperbolic 
system for our application. The existence and the uniqueness of a local-in-time 
solution of (1.1-1.7) are proved in section 6. 
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2. Notation 

Summation convention is used. c denotes various constants, which may not be the 
same. That z is a tangential vector field in R means a vector field z in Q satisfies 
z . 3  = 0 on aR (where 3 = (nl, n 2 , n 3 )  is the unit outward normal vector on aQ). 
52' = [O, t M ]  x R, aR' = [O, t M ]  x aQ. For a system 

the partial derivative "a:U(O)" of (2.1) is defined by formally taking i - 1 time 
derivatives of the system, solving for 3: U ,  and evaluating at time t = 0, e.g. "U(0)" =f, 
"at U(0)" = (AO(O)) - ' [F(O)  - Aj(O)a,f - B(O)f] ,  etc. That compatibility conditions 
for (2.1) hold up to m - 1 means that, on aR for 0 < p < rn - 1, 

Let Y *  be, the formal adjoint of 9, 

9* = -AOa, - ~ j a ,  + B* - ~ , A O  - a ,Aj ,  

where B* is the conjugate transpose of the matrix B. The kernel of A is the boundary 
subspace denoted by N. The adjoint boundary subspace is N * = (AaN)', where 
Ail := C Ajnj .  Let A*, adjoint boundary operator, be a matrix-valued function on 
R x aR whose kernel is N * .  

For p 3 1, ( I f P ) '  is the dual space of H P .  For a matrix A, IAl denotes its 
operator norm. Suppose A is a positive definite matrix, we define the norm / I  U 
by 

C ( H s )  := C(0, t M ,  Hs(Q) ) ,  L p ( H s )  := Lp(O, t M ,  HS(Q) ) .  The space Xs(O, t M ,  Q) is 
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3. Statement of the problem 

We rewrite the system (1.1-1.4). Letting e P  = n, (1.1-1.4) can be written as 

T v 9  1 
m TP m 

a,v + ( v q v  + - vp  + - = - v~ - - v ~ ,  

2mV2 mV2 T - T ,  
a,T - kAT = kVpVT - VVT - 5 TV. V + - - __ - ____ 3 (3.3) 

3Tp 32, 2, 

(3.4) 9 AY = - (ep - Z(x)). 
0 

The new system (3.1-3.4) is equivalent to the old system (1.1-1.4). 
To solve (3.1-3.4), we uncouple the system into a Poisson equation, a parabolic 

equation, and a linearized symmetric hyperbolic system. Next we show a fixed point of 
the uncoupled system exists in some weak spaces. Then by interpolation theorem, we 
show the fixed point is a classical solution of system (3.1-3.4). 

System (3.1-3.4) is uncoupled as follows: Given Q, q, S, find Y by solving 
9 AY = - (eq - Z(x)), 
w 

Y l l a O  = y b .  

Then determine T by solving 
2mQ’ mQ’ S - T ,  

a,T - kAT = kVqVS - QVS - :SV.Q +- -~ -___ 
3TP(S) 3TW(S) TW(S) ’ 

Tlant = Tb, 

T(0,x) = To. 

Finally, we solve the following linearized system for V and p 

T T T 
m m m 
- a , p + - ~ ~ p + - ~ . ~  =o ,  

V(0, x) = V,, p(0, x) = In no. 

Obviously, a smooth fixed point of system (3.5-3.9) is a classic solution of the system 
(3.1-3.4) and vice versa. Therefore, we can proceed to work with system (3.5-3.9). 

We note that if a smooth solution of the system (1.1-1.4) exists, the following 
compatibility conditions hold, for p 2 0, 

(3.10) 
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where derivatives are obtained by differentiating (1.1-1.4) with respect to t and setting 
t = 0. 

Define (q,  p i ,  Ti) as follows: When i = 0, it is the initial condition (Vo,lnno, To); 
When i = 1,2, it is obtained by formally taking i - 1 time derivatives of the system 
(1.1-L3), solving for (aiV,afp,afT), and evaluating at time t = 0. Define K6,', by 

Let us make the following assumptions 

(Al) $2 is open, bounded, and smooth in R3, 
(A21 0 < (Vo,ii)21an and 0 < l(V0,ii)' - (To/m)I in 82, 
(A3) 0 < no, To, Tb and Vo,no E H4(R), 

(A5) To: I f 5 @ ) ,  Tl E H4(R), Tz  E H2(R), and there is a T satisfying TIanG = Tb, 

(A6) compatibility conditions (3.10-3.11) for system (1.1-1.4) hold up to 2. 

( ~ 4 )  T, E c3(cit), z ( x )  E H ~ ( R ) ,  y b  E ~ ~ ( a ~ t ) ,  B E  ~ 3 ( a q ,  M E H ~ ( R '  x 129, 

a f ~  E L ~ ( H ~ - ' ) ,  i = 0,1,2,3,  a,4T E L ~ ( H - ' ) ,  

Remark 1. B y  A3-5, we know ( q , p i ,  Ti) E H3-i(R), i = 0,1,2.  By trace theorems [3], 
we see K6,t ,  is not an empty set for some 6. 

Given (Q, q, S )  E K d , t M ,  we are able to solve (3.5-3.6) to obtain T. Then by (Q,q, T) ,  we 
want to solve (3.7-3.9). For convenience, (3.7-3.9) will be written as 

Y W  := Ao(T)atW + Aj(Q,  T ) a ,  W + B(T) W = F in R', 
M ( t ,  X, Q, q, T) W = on aR', (3.13) 
W(0,x) = (Vo,lnno)' in R, 

where 

W : = ( V , p ) ' ,  F : =  

Let a,, a , ,  a2, a3 be constants satisfying 

(1) 0 < al  < Ao(To) < a. in R', 
(2) njAj(Vo,  To) is non-singular and 0 < a3 < InjA'(Vo, To)/ < az on aR'. 

(A7) There are two constants M 1 , M z  such that, for any ( Q i , q i , S i )  E K6, tM,  

By A2-3, above four constants exist. Two  more assumptions for (3.13). 

i = 1,2,3, the following hold on boundary aRt, 

and 

*(lVolMl + IlnnoIM2) < min{l,c(R)k). 
a1a3 
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(A8) There is a positive constant a. such that, for any a 2  ao, W E H ' ( R  x n), 
(a) the followings hold: 

( Q ,  Y], T )  E &,t, 

(3.14) 

(3.15) 

where 0 < t l  < t2 < tM, 9, M are the operators in (3.13), and 9*, M* are the adjoint 
operators of 9, M (see section 2), 

2a1 2 + a0 II w e  IIL2(n)(t2), 

(b) there are Bk,Mk, and symmetric A;,A: c P ( @ )  satisfying 

k - + c o ,  {AkO,Ai,Bk} -, {AO(T),Aj(Q, T ) , B ( T ) }  in x3(Qt), 
Mk + M ( t ,  x, Q, ?, T )  on ff3(aR'), 

and inequalities (3.14-3.15) hold for the following 

y k w : =  &a,w + A:a,W + BkW = F 
M k W = g  on aRr, (3.16) 
W(0,x) = (Vo,lnno)' in R, 

in a', 

where 9, M ,  2'*, M* in (3.14-3.15) are replaced by y k , M k r 9 t ,  M:, respectively, 
(T;, M: are the adjoint operators of zk, Mk). 

Actually, A8 assume that boundary condition M(t, x, Q, q, T )  for the hyperbolic 
system (3.13) is well-posed in L2 sense. In section 6 we will show that if A1-8 hold, 
then a fixed point of system (3.5-3.9) exists uniquely in a short-time period, which 
implies Theorem 1.1. 

4. Example 

We give one example for M of (1.7) such that assumptions A1-8 hold. Multiplying 
(3.2) by T/m and combining it with equation (3.1) along with initial and boundary 
conditions, we obtain 

Ao(T)a, W + Aj(V,7')ax,W + B(T) W = F in R', 

W(0,x) = (Vo,lnno)' in R, 
M(t ,x ,  V , p ,  T )  W = 93 on 3R1, (4.1) 
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where W := (V,p) ' .  Assume that the matrix A-,(=Ajnj) of (4.1) on ant has negative 
eigenvalues A,, p = 1 ... t, and positive eigenvalues A:, v = t + 1 ... 4, and, corres- 
ponding to them, orthonormal eigenvectors rp-,r:, p = 1 ... t, v = t? + 1 ... 4. The 
boundary condition M is taken as 

c c 4  

M W  = 2 (r; .  W)ap,,rp- + c 1 (r,?. W)bp,,rp- 
p, Y = I p = l  v = c + 1  

where up,", bp,,, are smooth functions and (ap,") is an invertible matrix in an'. If bp," = 0 
for all p, v, then M is maximally strictly dissipative boundary condition [ 171. 

Remark 2. The  eigenvalues of A-, for (4.1) are A1 = A 2  = V,( := V .G), 

(1 + T/m)V-,  + J [ V i ( l  + T/m)' - 4T/m(V$ - T/m)] 
2 3  = 9 

(1 + T/m)V-,  - J[V,'(1 + T/m)' - 4T/m(Vi - T/m)] 
2 

A4 = 

Let z1 := ( T ~ ~ , ~ ~ ~ , T ~ ~ ) ,  z2 := ( T ~ ~ , T ~ ~ , T ~ ~ )  be two orthonormal tangential vectorsin 0, 
and [ be dejned by 

The corresponding eigenvectors of A1,A2,A4 are ( T ~ ~ , T ~ ~ , T ~ ~ , O ) ,  ( ~ ~ ~ , ~ ~ 2 , ~ 2 3 , 0 ) ,  and 
(nl , n 2 ,  n3,  - m[/T) ,  respectively. 

Therefore on inflow boundary {(t,x) E aR') Vs(O,x) < 0}, (1) if V$(O, x) < T,/m, we 
specify three boundary conditions (because A1, A 2 ,  L4 are negative and l3  positive), (2)  if 
T,/m < V$(O, x),  M is the identity matrix (since all of the eigenvalues are negative). The  

former corresponds to subsonic case, and the latter to supersonic case. However an 
outfrow boundary { ( t ,  x )  E ant/ V-,(O, x )  > 0}, (3)  if V$(O, x) < T,/m, we need one bound- 
ary condition (because only A, is negative), (4) i f T o / m  < V,"(O,x), M is the zero matrix 
(because no boundary condition is needed). Similarly, (3)  and (4) correspond to subsonic 
and supersonic cases, respectively. 

For example, M W = 39 of (1.7) can be: in case (1) 

which means (Wrt ,  Wr2,  W-, - pm[/T)  = Bf on a0, where Wr, := W . z i ,  i = 1,2, in case 
(2) ( W ,  p )  = 99' on aR, in case (3 )  M = (nl ,n2,  n3,  -m[/T) ,  i.e. W, - pmi/T = 99 on 
80, and in case (4) M = 0. 

If A1-6 and (4.2) hold, and if ( P ( ( O , ~ ) ( ~ ~ ,  { b p , v )  of (4.2) are sufficiently small, then 
they imply assumptions A1-8 hold. A7 holds obviously if JPl(0,x)lan is small. The 
following lemma implies A8. 
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Lemma 4.1. Consider (1.1-1.7). Besides assumptions A1-6, ifthe following holds: M of 
(1.7) is constructed as (4.2), { a , , }  and { b p , v }  are in H3(aRt), and they satisfy 

max laibl < bC1, max Ibp,J < bo, V P , ~ ,  

4(1/a2 + l/a3)b;'b; < l/a2, 

an1 anc 

for some constants bl ,bo ,  then A8 holds for any 6 as long as tM is small enough. 

Pro05 (3.14) is proved by energy L2 estimate. By means of a local co-ordinate change 
and a partition of unity, it is sufficient to prove (3.14) in a half space. The estimate in 
a half-plane can be obtained as follows: Multiplying (3.13) by W integrating the 
resulting equation over Rt, and employing assumptions of boundary conditions of this 
lemma. 

(3.15) can be proved in a similar way as (3.14). A8(b) holds by using Friedrichs' 
mollifiers and arguing as the proof for (3.14). 

5. Existence results for linear problems 

In this section, we present existence results for a parabolic equation (Lemma 5.1) 
and for a linear symmetric hyperbolic system (Lemma 5.4). These are used to show the 
existence of a fixed point of system (3.5-3.9) in section 6. Lemma 5.1 is a standard 
result. Lemma 5.4 is established by Lemmas 5.2, 5.3. Lemma 5.2 gives an a priori 
estimate for a linear symmetric hyperbolic system (5.3) by energy method. Lemma 5.3 
is to present approximate systems of (5.3) so that the solutions of these approximate 
systems exist. Lemma 5.4 is to show that the solutions of the approximate systems 
converge (by a priori estimate obtained in Lemma 5.2). Furthermore, we show the 
limit is a solution of (5.3). Domain R will be assumed in Rd. 

Lemma 5.1. Consider the following system 

a,U - aAU = F in R', 
u=g on aR', 
U(0 ,X)  =f in R, 

where a is a constant. I f  F E H2(Rt), a:F E L2(H- ' )  and if there exists a function 
@ satisfying 

@laat = 9, a;@ E L ~ ( H ~ - ~ ) ,  i = 0,1,2,3, a;'@ E L ~ ( H -  l), 

af(U - @ ) ( O , X ) E H ; ( R ) ,  i =0,1,2,  a:(u - @ ) ( O , X ) E L ~ ( R ) ,  

then there is a U 6 X3(R') such that af U E L2(H4-'), i = 0,1,2,3, and 

i = O  L i = O  

Proof: This lemma can be proved by employing the results in [14,15]. 
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Lemma 5.2. Consider the system 

(5.3) 

I f  the following conditions hold: 

1. R is open, bounded, and smooth in Rd, 
2. A', A', B E X,(R') are j x j matrices, A%' E H"(aR'), and s 2 [d/2] + 2, 
3. A', A' are symmetric and 0 < a, < A' < a. in R', 
4. Aa := 1 Ajn j  is nonsingular on aR' and 0 < a3 < I Ah I < a2 on aR', 
5. F E Hm(R'), f E Hm(R), g E Hm(aR'), 1 G m d S, 

6. for any U E H'(R x n), 0 d t l  < t 2  < t ~ ,  and alcl 2 ~ ( l l L ( ( ( ~ , ~ ~ ~ ) ,  (3.14) holds for 
(5.3), i.e. 

(5.4) 

Proof: By means of a local co-ordinate change and a partition of unity, it is sufficient 
to prove (5.5) in a half-space. The estimate in a half plane will be obtained by 
differentiating the equation (5.3), to estimate tangential derivatives and then, using 
det Aa # 0 to solve for the normal variables in terms of the tangential ones. 

For convenience, we assume (5.4) holds in a half plane. (5.5) is proved by induction. 
Proof of this lemma is close to that of Lemma 3.2 in [17], so similar arguments will 
not be repeated here. The main difference between the two proofs is the estimate for 
/I Aa,Tx,u - a Y x , ( A U )  IIO:anr,n. 

Consider the following in a half space { ( t ,  x l ,  . . . , xd)( x 1  2 O} 



1498 Li-Ming Yeh 

where a/,x, is the y derivative with respect to t ,  x' = (x2, .. . , xd) and I y (  = 0,1, .. . , s. By 
(5.41, (5.6) 

+ a0 II a : x J J  ll;n(O). (5.7) 

By Holder inequality, embedding theorem, using det Aa # 0 to solve for the normal 
variables in terms of the tangential ones, and an argument similar to (3.20-3.28) of 
[17], one can show that, for 0 6 t 6 t M ,  

Next we assume the following inequality holds: 

+ a0 I1 u Il;n(O). (5.10) 

By Holder inequality, (5.9), and arguing as (3.31-3.38) of [17], one can show that 

1 1  ~ a T x ~ u  - a y x , z u  ll;nh 

< ~(111~lllx,,a2)(ll~ll;-I.n',a + l l ~ y x ~ ~ l l ; * h  + I1 U/l;-,,nf,d 



Well-posedness of the Hydrodynamic Model for Semiconductors 1499 

m- 1 

< c C I I a ~ ~ p ~ I I t ~ ~ ( a n ~ ) I / a [ x , U e - * '  IItyant), (5.11) 

where for (i) m = s, p = 0 case we pick p = 1,  q = co in (5.11), and for (ii) m < s, or for 
(iii) m = s, p > 0 case we pick p ,  q 2 1 in (5.1 1) in such a way that 

p = o  

1 1 1 d - 2 ( s - m + p )  1 d - 2 ( m - p - l / 2 )  
d - 1  I = - + - ,  - 2  > P 4  P d - 1  

For case (i), inequality (5.1 1 )  implies that 

llAa?x,U - aG,.,d~llo2,an~,, G max lU12 lla?x~~llo2,iJnh 
n' 

(5.12) 

For cases (ii), (iii), inequality (5.1 1 )  implies that 

By using det A, # 0 to estimate lla~x,,x, U Il&e-2"' as (3.39-3.42) in [17] and combin- 
ing (5.10-5.13), we complete the proof. 

Remark 3. Consider system (5.3). Besides the assumptions of Lemma 5.2, we assume: 
1. compatibility conditions for (5.3) hold up to m - 1, 2 < m < s, 
2. there are B k , A k ,  and symmetric { A t ,  A: }  c C m ( n f )  such that, as k -+ co, 

{ A ~ , A : ,  B ~ }  -+ ( A O , A ~ ,  B }  in x,(cY), 
A k  + 4 on Hs(aQt). 

By {A:, A:, B k , A k }  above we consider the following: 

(5.14) 

I t  is clear that if k is large, assumptions 2-4 of Lemma 5.2 hold in (5.14), where 
(A', A', B , 4 ,  A,} are replaced by { A t ,  A { ,  Bk,J%Lk, Ak,,(  :=A[n j ) } .  Let S?:, A: be the 
adjoint operators of Zk,Ak of(5.14) (see section 2). W e  also assume: 
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3. for U E H'(R x Q, 0 < t l  < t2 < t M ,  and alcl 3 C ( ( ~ A O , A ~ , B ~ ~ ~ ~ , ( ~ I , ,  (5.4) and the 
following hold for (5.14): 

Zat 2 + a0 II u e llL2(n,(tz). 

Assumption 3 above is similar to A8(b) but for (5.14). 

(5.15) 

Lemma 5.3. Under assumptions of Lemma 5.2 and Remark 3, there exist a sequence of 
functions {Fk,fk,gk} such that Fk E H"+'(R'),fk E ff"+2(n), g k  E Hrn''(afif), 

Fk -+ F in H"(R') 
fk+f in H"(R) as k - i c o ,  
g k  -+g on Hm(aRt) 

and, if we consider the following (replacing F 7 J g  of (5.14) by F k , f k , g k )  

z k  uk = A j a t  u k  f Akjax, u k  + Bk uk = Fk in a', 
A k  uk = g k  on aili (5.16) 

u k  (07 = f k  ( x )  in R, 

then (5.4), (5.15), and compatibility conditions up to m also hold in (5.16). 

Remark 4. First let us give definition (for (5.3)) for Gi,f,: 

Gi := -(ai[(Ao)-1AJ])8j - a:[(Ao))- ' B ] ,  i 3 0, 

fo := U(0,x)  =f; 

f p : =  pi' ( p  7 l )G i (O ,x ) fp - l - i  + (ap-'[(Ao)-'F])(O,x), p 2 1. (5.17) 
i = O  

By definition, f ,  corresponds to "apU(0,x)". W e  define B,, E, as 

Bo f := f o  = f and B, f + E,(A0)- 'F := f,, p 2 1 ,  

where 

B, f := Gt(0 ,  x )  f + term of the form GG GI, . . . GZq(O, x )  f (5.18) 

w i thy+i ,+  ... + i , d p - l a n d  

E,(Ao)- 'F := sum ofthe terms of the form GLG,, ... Glq(0)C$'[(Ao)-lF](O) 
(5.19) 

with y + i ,  + ... + i, + p b p  - 1 

Proofi ( 1 )  That (5.4), (5.15) hold in (5.16) is because (5.4), (5.15) hold in (5.14). 
By assumption 2 of Remark 3, there are smooth functions A;,Akj,Bk,Ak which 

converge to Ao,AJ ,  B , A .  Consider system (5.14) for each k .  Let us use f k $  Bk,p,Ek,p to 
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denote the f p ,  B,, E ,  of (5.14) (see (5.17-5.19)). By the assumption of compatibility 
conditions for (5.3), on boundary asZ, for 0 < p < rn - 1, 

where f p - p  is the ( p  - p)th derivative, "af-"U(O,x)", of (5.3). Since 

we may choose k such that 

Let q 2 rn + 2 be an integer. For fixed k,  we choose sequences F: E H"+q(sZ'), 
4; E H"+q(R), and g: E Hm+q(aC2f) such that 

(5.21) 

Then we want to find i ( k )  and such that, for 0 < p < rn, 

(5.22) 
1 

2k' hi'k' E H"+2(R), j l  h p  IIHyn) d - 

i ( ~ ) a : & k ( B k , p - p ( - h i ( k '  + 4;'") + E k , p - p ( A t ) - l F L ( k ) )  - a p g k  i'k) = 0 9 

p = O  

(5.23) 

for ( t ,  x) E {O] x an. Suppose is available, we define 
f k i ( k )  = - h l ( k )  + 4 i ( k )  

Then we see, when i(k) is large, 

I /  F f ( k )  - F I I H ~ R ' )  < c / k  II f k i ( k )  -f Ilwyn) < c / k  II g:'k' - IIHyaR') < c / k  
and system (5.16) satisfies compatibility conditions up to m. So Lemma 5.3 holds true. 
Next step is to search for 

(2) Equation (5.23) can be written as, for 0 < p < m, ( t , x )  E (0) x an, 

(5.24) 
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Let Rk be the inverse of d k  when it is restricted to the orthogonal complement of the 
kernel of d k .  Note a:gf(o,x) is in the image of &k. For o < p < m on (t,x) E (0 )  x an, 
to solve (5.24) is sufficient to solve 

(5.25) 

The left-hand side of equation (5.25) can be written as 

P- 1 

p =  1 y = o  
Bk,ph: + R k  (;)ardkBk,p-uhL =Dkqaa:hf + ck,p,p-ya$hi ,  

where Dk,ii:= -(A;)-'A{nj, a;h: denotes the normal derivative of h: on an, and 
C k , p , p -  an operator of order ( p  - y) which only contains derivatives tangential to an. 
So equation (5.25) becomes 

(5.26) 

where aqhh := bp,i,k. Since a p .  I ,  . k E Hmtq-p-1/2 (an), it follows that 

(an). b . E ~ m + q - ~ - 1 / 2  
p . i , k  

Also by (5.20-5.21) and (5.25-5.26), there is a large i ( k )  such that 

IIbp,i(k),k IlHm-p-1/2(aq < c /k ,  0 d P d m - 1. 

Furthermore, by a trace theorem [lo], there is a u k  E Hm+q(Q) such that 

= bp,i(k),k, 0 d p d m - 1, / /  u k  / / H y q  d c/k.  

Finally, we write hLfk' = u k  + wk, where wk is required to satisfy wk E H~(R), and, 

/ I  wk / I H " ( R )  < c / k ;  arwklan = bm,i(k),k - arVk; a$Wkla f i  = 0, 0 < p < m - 1. 

To find such a wk, we refer the reader to the proof of Lemma 3.3 of [8]. Therefore the 

Lemma 5.4. Under the assumptions of Lemma 5.3, system (5.3) has  a unique solution 
U E X,(n')  n Hm(i3Qt) and  there is a polynomial P such that  

desired hi(k' can be obtained. 

I / /  uIII&(Qfi + II u II&aoll 

e 2 a h  

< ~ ~ ( l l l ~ l I l X S ( * ~ ) 9  l l ~ l l ~ ~ ~ ~ ~ ~ ) ~ ~ 2 ~ ~ l l ~ l l i ~ i * ~ )  + lIglI~-(aa) + llflli~i*)l~ 
a1 

(5.27) 

where L = { A o , A J , B )  and c1 is a constant with alcl 2 P(JIJLlllXs~~~,, l / A ' l l ~ g ( ~ ~ ~ ~ , a ~ ) .  
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Proof: (1) By Lemma 5.3, there exist & and symmetric matrices A f , A :  E Cm(Cl'), 
d k  E cm(aQ'), Fk E H""(a'),f, E H"+'(R), and g k  E f f m + 2 ( 8 Q * )  such that 

(A: ,  A:, & }  - {A', A',B} in X,(CY) 
d k  --t &? on Hs(aR') 
Fk --* F in H"(Rt) as k +co. 
.ti -f in Hm(R) 
gk - on Hm(aRt) 

Furthermore (5.4), (5.15), and the compatibility conditions up to m hold for system 
(5.16) for each k .  Consider the system (5.16). By Proposition 5.1 of [ 8 ] ,  one can show 
that system (5.16) has a solution uk EX,, By Lemma 5.2, {Uk)  is bounded, i.e., 

] / I  U k l l l X ,  + 11 Uk lIH"(af2') 6 c, v k .  (5.28) 

Let us consider the following: 

p(vk - u/) = Fk - FI + (9 - 9 k ) U k  - (9 - 9 l ) U l  in R', 
d ( U k  - U,)  = (A - A k )  uk + (Ai - d) u, + gk - gl on aiz', 
( U k  - U/)(o,x) = f k  -fi in iz. 

(5.29) 

Inequality (5.4) of Lemma 5.2 applied to { Uk - U , }  shows that { uk} converges in 
C ( L 2 ) .  Let U be the limit of { U , } ,  then U E C(L'). By (5.28), I1 U IIHm(an~) 6 c. 

By (5.28) and the Sobolev's interpolation theorem [l, 61, we have for arbitrary 
v >o ,  

1 - v i m  11 Uk - U /  llHm-*'(Q)(t) 6 /I Uk - U/ 11 Uk - uI \/H"(R) (t)? 

so 

Uk + U in C ( H m - " )  as k -+a. 

By (5.3) and (5.16), we see that 
m -  1 

Uk -+ UE C i ( H m - i - v )  as k +a, 
i = O  

a# E L"(Hm-i ) ,  i = 0 ... m. 

By ( 5 . 3 ,  we see U satisfies the estimate (5.27).  Equation (5.27) implies solution of (5.3) 
is unique. So the proof is complete as long as we know af U E C ( H m P i ) ,  i = 0 ... m. 

( 2 )  That afU E C ( H m - i ) ,  i = 0 ... m, is proved by three steps: 
Step 1 :  As t -+to, afU(t;) -+ alU( t0; )  weakly in H m - i ( Q )  for all i 6 m. 
Step 2: arxU(t; )  is continuous at t = 0 in L2(iz). 
Step 3: U E Xm(Cl'). 

Proofof Step 1. If q < m and € ( H q ( Q ) ) ' ,  by (5.30), $ l ( u k ( t , . ) ) - + $ t ( U ( t , . ) )  uni- 
formly in t as k -+ co. Now if $ E (H")',  there is a $ I  E ( I f q ) ' ,  for some q < m, such that 

1 )  $ - $1 Il(Hm), d 1/2k for any k .  By (5.28), for all t, 

/ $ ( U k ( t ? ' ) )  - $ ( ' ( t , ' ) ) I  
6 l$(uk) - $l(uk)l + l $ l ( u k )  - $l (U) l  + 1$1(U) - $ ( U ) /  

6 C / 2 k - '  + I $ l ( U k )  - $ l ( U ) l .  

(5.30) 
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This implies that $(&) -+ $ ( U )  uniformly in t. Because $(&) is continuous in t, $( V )  
is also continuous in t for all $ E (H"(R))'; that is, as t --+ to ,  V ( t ; )  -+ LJ(t0;) weakly in 
H"(R). Similarly, one can show that if t + to and 1 d i < m, then af U ( t )  -+ af U ( t o )  
weakly in H"-'(R) by (5.30). Then, by (5.3), we see that a?U(t;) - a ~ U ( t 0 ; )  weakly 
in L2(Q) as t -+ to. 

Proof of Step 2. To prove this step, we will show the convergence result in an 
equivalent norm / /  . I / O , A O ( 0 ) .  By differentiating (5.16) with respect to tangential vectors 
or time a:,,, we have 

- % k a ~ , t U k = a ~ , t - % k U k  + ( - % k a ~ , t u k - a y , t - % k U k )  in R', 
&ka;.tuk =a:,t(&kUk) + ( A h a y , t u k  - a y , t ( & k u k ) )  on (5.31) 

a;,, U k ( 0 ,  x) = a:,, uk(o, x) in R. 

Multiplying above by a;,, V k ,  and integrating the resulting equation over R, we derive, 
for I y I  d m, 

(5.34) 

Now, since U k ( t , ' )  converges weakly to U(t; )  in H"(R) for each t, Uk( t ; )  converges 
weakly to U(r;) in H"(Q) in an equivalent norm for each t. So for all I y I  d m, 

(5.35) 

(5.36) 
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Let RE be the intersection of R and a E-neighborhood of an ,  and let $& be a half bell 
function satisfying cl/"(x) = 1 for x E aR and with support in a'. Multiplying (5.31) by 
I,P, then applying (5.4) to the resulting equation, one can show that, for any E, 

lim 1's (e-2af$Ea;,,Uk(2dodt 
k - m  0 an 

< c ( i l $ %  u IILa(n)(0) + 1' 1 le-2afa;,,g12 dadt  + R(z)dz , (5.38) 

for some constant c. To obtain the result (5.38), we need to control the boundary term 
1 1  uk - a;,r(Ak uk) / 1 , & 1 , ~ .  It can be estimated by the same technique as 
(5.1 2-5.13). (5.38) implies that 

o an l ) 

_ -  
lim lim 1' 1 la:, ukAk,aay,t ukl dodt  < cjl  pay,, u i ~ ~ ~ ( ~ , ( o ) .  

5-0' 5-0' !n 

(5.39) 
5 + 0 + k + ~  o an 

The right-hand side goes to 0 as E approaches 0. Since the left-hand side is independent 
of E,  it equals 0. By the continuity of A', we get, for JyI  Q rn, 

lim In a;,tuAOa;,,u(~,X)dx = lim a~,tu(r,x)~O(o,x)ay,,u(~,X)dx. 
(5.40) 

By (5.37-5.40), we have, for J y J  Q rn, 

lim S, a:, t ~ ( ( 7  x ) ~ o ( ~  x ) ~ ,  t ~ ( 5 ,  dx Q 11 a:,, ~ ( 0 )  1102,Ao(o). 
5-0' 

(5.41) 

Combining the result of Step 1, Theorem 3.8 in [l], and (5.41), we see a:,, U ( t ; )  is 
continuous at  t = 0 in L2(R) for all / y J  = m. 

Next we show that a?,U(t;) is also continuous at t = 0 in L2(R). By partition of 
unity, we can reduce the problem to the boundary aR. By using det Aa # 0 on aR', we 
can solve for the normal variables in terms of the tangential ones and time. Because 
a:,, U(t;) is continuous at t = 0 for ( y I  = rn, a;,U(t;) is also continuous at t = 0 in L2 
around the boundary aR. Therefore, we conclude that U(t,. ) is continuous at t = 0 
in L2(R). 

ProofofStep 3. By the same argument as that in Step 2, one can prove strong right 
continuity at any point t E [O,t,). Note that equation (5.3) and the argument of 
Step 2 are reversible in time, so the proof of strong right continuity in [0, t M )  implies 
strong left continuity on (0, t M ] .  Therefore, we conclude that U E X,(R'). 

6. Existence of a unique local-in-time solution 

In this section we prove the existence of a unique local-in-time solution of the 
system (1.1-1.7) under assumptions Al-8 of section 3. That is equivalent to showing 
the existence of a fixed point of the system (3.5-3.9). By A3-5, we know K6,1, (see 
(3.12)) is not an empty set for some 6. Given ( Q , q , S )  E K6, t y ,  we are able to solve 
(3.5-3.9) to obtain ( V , p ,  T )  by A1-8 of section 3 and Lemmas 5.1, 5.4. Set 
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n(Q, q, S) = ( V ,  p ,  T) .  The existence of a unique local-in-time solution of the system 
(1.1-1.7) is proved as follows: First we show that, as tM is small enough, there exists 
a 6 such that II is a map from K6, [ ,  to itself (Lemma 6.1). Next we prove that n is 
a contractive map in some weak spaces. So we obtain a fixed point in these weak 
spaces. Then we show the fixed point is a smooth solution of the system (3.5-3.9) 
(Lemma 6.2). The existence and uniqueness of classical solution of system (1.1-1.7) 
follows the result of Lemma 6.2. 

Lemma 6.1. Under assumptions A1-8 of section 3, as tM is small enough, there exists 
6 such that (3.5-3.9) is uniquely solvable and the solution of (3.5-3.9) is in K6,[,  for all 

ProoJ: Given (Q, q, S) E we solve the system (3.5-3.9) to obtain ( V ,  p, T )  by A1-8 
of section 3 and Lemmas 5.1, 5.4. By Lemma 5.1, the solution of (3.6) satisfies 

(Q, V ,  S) E Kd,r,. 

TEX~(CF) ,  afTEL2(H4-i), i=O,1,2,3, 

afT(o,x) = Ti, i = 0,1,2. 

By (5.2), 111 T - 
To, T ,  , T2,  T,, no, Vo but is independent of 6. 

+ 11 T - To (IH3(ant) d dl. If tM is small enough, d1 depends on 

By Lemma 5.4 for d = m = s = 3, we see that the solution (3.7-3.9) satisfies 

( ~ , p ) ~ x ~ ( n I ) n ~ ~ ( a n I ) ,  (a:v,a:p)(o,x) =(c,pi), i = 0,1,2. 

BY (5.271, IIt(v,p) - VO,1nno)III& + II(V,p) - (~O,lnno)li&an~, G 6 2 .  If tM is small 
enough, we see that d2 is dependent on no, Vo, To,"* but independent of 6. If we take 
do := max{6,61,62}, repeat the above procedure, and let tM smaller, we see 
( V ,  p, T )  E KGo,tm for all (Q, q, S) E KdOlfy. That is, II is a map from Kd,, tM to itself. W 
Lemma 6.2. Under assumptions A1-8 of section 3, system (3.5-3.9) has a uniquefixed 
point if tM is small enough. Moreover, the solution satisfies 

(afv,ajp,afT)E L " ( H ~ - ~ ) ,  a f T  E L ~ ( H ~ - ~ ) ,  afw E L " ( H ~ - ' ) ,  (6.1) 
for i = 0,1,2,3. 

Proof. By Lemma 6.1, II(Q,y, S) = (V,p,  T )  is a map from Kd,t, to for some 6. 
Given (Ql ,q l ,S l )  and ( Q 2 , q 2 , S 2 ) ,  by solving (3.5-3.9) we get two solutions 
( V l , p l ,  Tl ,Yl)  and (V2,pz,  T 2 , Y 2 ) .  Subtracting one solution from the other, multi- 
plying the difference of (3.6) by (T I  - T2)e-2"', integrating the resulting equations 
over Q', using (5.4) for the difference of system (3.7-3.9), we see, if c( is large and t M  is 
small enough, II is a contractive map in V ,  p E C(L2)nL2(aR'), T E L2(Q'). That is, 

/ I  Ti - GIl;n',. + Il(v1 - V2,PI - P2)e-2a'11Z~cn, + IlVI - V29Pl - Pz)ll;ant,. 
2at 2 < c / I  Si - S 2  Il;n',, + II (Qi - Q 2 ,  ~1 - V Z ) ~ -  1 / ~ 2 ( n )  

2 + ll(Qi - Q 2 , ~ 1  - ~ 2 ) 1 / 0 . a n ~ , ~ ~  

for some constant c < 1. 
By the above, if we define n(Vk- 1,  pk- 1, Tk- 1) = ( v k ,  pk, Tk), then sequence 

{ Vk, P k ,  Tk} converges to the unique fixed point { V , p , T }  where 
v,pEc(L2)nL2(af21), TeL2(fit). Since {Vk,pk,Tk} c ( V , ~ , T ) E  
L"(H3)nH3(aS2'). By Lemma 5.1, we know that a:Tk E L ' ( H ~ - ~ ) ,  i = 0,1,2,3, so 
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a f T  E L 2 ( H 4 - i ) ,  i = 0,1,2,3. By Sobolev's interpolation theorem [1,6], we have for 
arbitrary v > 0 (set w k  := ( V k , P k ) )  

1 1  w k  - IIH"-'(12)(t) I /  wk - wi IIti:l2)(s 11 wk - w i  i i ,$ iA{3(ct )7  

which implies that I/, p E C ( H 3 - " ) .  By equation (3.7), we see a: V ,  alp E 

C(H3-v-i). Therefore { V , p ,  T )  is the unique classical solution of system 
(3.5-3.9). Moreover, by (3.1-3.4), we see the fixed point satisfies, for i = 0,1,2,3, 

(afv,afP,a:T)EL")(H3-'), a f ~  € L ~ ( H ~ - ~ ) ,  a f y  P(H~-'). 

Theorem 1.1 is a direct result of Lemma 6.2. 
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