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Equipped with better sensing and learning capabilities, robots nowadays are meant 

to perform versatile tasks. To remove the load of detailed analysis and programming from 
the engineer, a concept has been proposed that the robot may learn how to execute the task 
from human demonstration by itself. Following the idea, in this paper, we propose an ap-
proach for the robot to learn the intention of the demonstrator from the resultant trajectory 
during task execution. The proposed approach identifies the portions of the trajectory that 
correspond to delicate and skillful maneuvering. Those portions, referred to as motion fea-
tures, may implicate the intention of the demonstrator. As the trajectory may result from so 
many possible intentions, it poses a severe challenge on finding the correct ones. We first 
formulate the problem into a realizable mathematical form and then employ the method of 
dynamic programming for the search. Experiments based on the pouring and also fruit jam 
tasks are performed to demonstrate the proposed approach, in which the derived intention 
is used to execute the same task under different experimental settings. 
 
Keywords: intention learning, human demonstration, motion feature, robot imitation, skill 
transfer 
 
 

1. INTRODUCTION 
 

Robot applications nowadays are extended from the organized factories to the un-
certain home environments, thanks to the progress of the sensing and learning techniques. 
Meanwhile, as the robot may face many complicated tasks in daily life, it will then demand 
much effort from the human operator for detailed task analysis and program coding. To 
avoid this, researchers have proposed letting the robot learn how to execute the task from 
observing human demonstration by itself [1]. Among them, Asfour, et al. proposed inte-
grating multiple human demonstrations for robot motion generation using Hidden Markov 
models [2]. Dautenhahn and Nehaniv proposed an approach for the robot to learn from 
human demonstration by imitation, referred to as the correspondence problem [3], and later 
the team developed the JABBERWOCKY system for 2D arranging tasks [4, 5]. Aleotti, 
et al. [6, 7] and also Ekvall and Kragic [8] proposed methods for the robot to learn the 
pick-and-place task from human demonstrations. And, Ogawara, et al. proposed a hybrid 
frame-work which combines the reusable symbol task and precise skill in trajectory level 
for general 3D object-operating tasks [9, 10]. In these researches, one issue of focus is 
how to cut the motions correctly to match with the corresponding human intentions. Some 
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proposed cutting the motions at the points of low speeds [11, 12]. However, the human 
operator may then have to slow down the motion intentionally during demonstration. As 
an alternative, Chalodhorn, et al. proposed a motion cutting method corresponding to cy-
clic motions, which demands the operator to perform certain type of motions [13]. Bald-
win and Baird claimed that babies of 7-8 month old can cut motions by regular pattern, 
while it is still unclear of the cutting process [14]. Calinon, et al. [15] presented a pro-
gramming by demonstration framework for generically extracting the relevant feature of 
a given task and for addressing the problem of generalizing the acquired knowledge to 
different contexts. 

In this paper, we also propose an approach for the robot to learn the human intention 
from her/his demonstration. The proposed approach does not constrain the human opera-
tor to perform the task with certain motion speed or motion type, and also allows the order 
of the events to be altered during demonstration. The approach identifies the portions of 
the trajectory corresponding to the delicate and dexterous maneuver of the demonstrator, 
referred to as motion features. These motion features, in some sense, exhibit the human 
skill in executing a certain task. The challenge for the proposed approach is how to find 
those correct intentions, among all possible ones, that lead to the demonstrated trajectories. 
To tackle the complexity in search, we first formulate the problem into the mathematical 
form and then apply the method of dynamic programming for the search [16]. Experiments 
based on the pouring task are performed to demonstrate the proposed approach first. Dur-
ing the experiments, the locations of the vessels and the pouring sequence may vary, and 
the motion features derived from the demonstrated trajectories are used to execute the 
pouring task under different experimental settings. To further explore its generality, we 
also apply the proposed approach for a fruit jam task, in which the robot learns how to 
spread fruit jam on toast. 

2. PROPOSED APPROACH 

Many daily works involve the interactions between tools and objects [9]. The resul-
tant trajectory during the working process can be basically divided into two types of mo-
tions: delicate motion (D) for delicate maneuver and move motion (M) between the deli-
cate motions [10]. The delicate motion is more of the focus, since it serves to achieve the 
goal of the work; by contrast, the move motion is not that critical. Therefore, in this paper, 
we take the intention finding problem to be that of locating the delicate motion from the 
demonstrated trajectory. Fig. 1 shows the conceptual diagram of the proposed approach for 
intention learning from human demonstration. In Fig. 1, the robot first observes a series of 
human demonstrations and records the corresponding trajectories and environmental states. 
From these recorded motion data, the robot searches for the possible intentions that lead to 
the delicate motions. The derived intentions can then be used to generate new trajectories  

 
Fig. 1. The conceptual diagram of the proposed approach for intention learning from human dem-

onstration. 
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(a) The setting of the vessels.  (b) Pouring vessel A to vessel B.  (c) Pouring vessel A to vessel C. 

Fig. 2. A pouring task with its motion sequence. 

 
responding to new environmental states. Take the pouring task shown in Fig. 2 as an ex-
ample. In Fig. 2 (a), three vessels A, B, and C are arbitrarily located on the table. In Figs. 
2 (b) and (c), the operator pours the content from vessel A to vessels B and C, respectively, 
and then places vessel A back on the table. During the demonstrations, the initial locations 
of the vessels may vary, and so does the pouring sequence. From the recorded trajectories 
and corresponding initial locations of the vessels (environmental states), the proposed 
approach will identify the intention of the operator, i.e., the portions of the trajectory that 
correspond to the pouring action. With the derived intention, the robot is now ready to 
execute the pouring task with the vessels located at various locations and possibly altered 
pouring sequences. 

Fig. 3 (a) shows the proposed motion generation process under new environmental 
states, and Fig. 3 (b) an illustrative example based on the pouring task shown in Fig. 2. In 
Fig. 3 (a), the inputs are the environmental states and the demonstrated motion for which 
the optimal intention is derived. The demonstrated motion serves to provide the delicate 
motions associated with the intention. However, this demonstrated motion cannot be used 
for reference directly, for being facing different environmental states. As illustrated in Fig. 
3 (b), in responding to the new initial locations of vessels B and C, two reference motions 
are generated according to the demonstrated motion. It is because we do not know which 
object each of the delicate motions is associated with in advance, we thus generate these 
two reference motions by assuming all the delicate motions are associated with either Obj1 
or Obj2 alone. Meanwhile, the height of Obj1 being higher than that of Obj2 is just for sim-
plicity in illustration. Obj1 can be higher, equal to, or lower than Obj2, depending on its 
actual location. In the next step, the intention is sent into the delicate motion editing mod-
ule, which will then cut out the delicate motions from those reference motions accordingly. 
Fig. 3 (b) shows that the input intention identifies the parts of the motions containing the 
lower heights (marked by the grey box) as the delicate motions (indicating the pouring 
action). Up to now, we have a motion template filled with several isolated delicate motions, 
as shown in Fig. 3 (b). The move motions are then used to connect these delicate motions. 
As its accuracy is not that critical, the move motion is generated using the cubic polyno-
mial. Finally, a feasible trajectory corresponding to the new environmental state is gen-
erated. 

One point that deserves discussions for this trajectory generation process is about the 
delicate motion editing. Because the operator may perform the demonstrations in different 
speeds and possibly with different orders for the events involved, the corresponding deli-
cate motions are likely to be with various sampling rates, or to appear in different portions 
of the demonstrated trajectories. Therefore, the delicate motion editing may not always be 
as straightforward as that shown in Fig. 3 (b). Fig. 4 shows another two possible cases for  
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(a) The process.        (b) An illustrative example based on the pouring task. 

Fig. 3. Motion generation from the derived intention under new environmental states. 

           
(a) Motion swapping.                (b) Motion resampling. 

Fig. 4. Two cases for delicate motion editing. 

 
delicate motion editing. Fig. 4 (a) shows the situation that the two delicate motions swap 
their mapping during motion editing, corresponding to the alternation of the event order. 
Fig. 4 (b) shows that for the resampling of the delicate motions, corresponding to the dif-
ferent motion speeds during task execution. Consequently, it can be expected that there 
will be many possible matches present between the intention and the corresponding deli-
cate motions, which highly complicates the following intention finding process. 
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Fig. 5. The process of intention finding from the recorded demonstrations. 

2.1 Intention Finding 
 

Fig. 5 shows the process of intention finding from the recorded demonstrations. It is 
assumed that each of the demonstrated trajectories includes all the delicate motions, but 
some of them are allowed to be with extra or redundant motions. And, the duration of the 
delicate and move motions is set to be longer than 0.3 second, as human cannot cognize 
an event until it happens 0.3 second later [17]. In Fig. 5, among all the recorded demon-
strations, one demonstration is first selected as the validation demonstration, and the rest 
as the training demonstrations, for each sequence of the process. The process will be re-
peated until each of the recorded demonstrations serves as the validation demonstration 
once. The reasoning behind the design in Fig. 5 is that the optimal intention derived from 
the training demonstrations should lead to a generated motion that best matches a valida-
tion demonstration involving only necessary delicate motions. During the process, the dot-
ted block in Fig. 5 is used for the comparison between the validation motion and the gen-
erated motion from the motion generation module, discussed in the previous section. The 
inputs to this motion generation module are the training motion and the environmental 
states corresponding to the validation motion, along with a guessed intention, acting as a 
possible intention for the validation motion. Because the proposed approach does not con-
strain the human operator to perform the task with certain motion speed or motion type, 
and also allows the order of the events to be altered during demonstration, there is in fact 
no prior knowledge for the selection of the guessed intention. Therefore, we take every 
portion of the trajectory of the validation demonstration as the candidate for the guessed 
intention, if only its duration is longer than 0.3 second. Consequently, there will be a huge 
number of possible intentions to serve as the guessed intentions for each of the training- 
validation demonstration pairs. The method of dynamic programming is thus employed for 
the search. Finally, judging from all those motion differences, the intention finding mod-
ule determines the optimal intention for the recorded demonstrations. 

For mathematical formulation of this intention finding process [16], we start with 
the representation of the intention I. Assume that there are N delicate motions and S ob-
jects involved in a demonstrated task. Because the intention is closely related to the deli-
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cate parts of the maneuver, I is formulated as a set of delicate motions, Dn(t), associated 
with the corresponding objects Objs: 
 

I = {D1(t), D2(t), …, DN(t); Obj1, Obj2, …, Objs}                          (1) 
 
where Dn(t) stands for the part of the demonstrated trajectory for delicate motion n and 
Objs the position and orientation of an object s. Note that, because an object may corre-
spond to one, several, or no delicate motion, the number of delicate motions may not be 
equal to that of the objects. Following the process shown in Fig. 5, IV, as a guessed inten-
tion for a given validation motion QV(t), is sent into the motion generation module, along 
with the training motion QT(t) and the environmental states Objs for QV(t). A given deli-
cate motion DVi(t) for IV can then be formulated as 

 
DVi(t) = {{Qv(ni), Qv(ni + 1), …, Qv(ni + Lni)}, si}                          (2) 

 
where DVi(t) stands for the part of the demonstrated trajectory for a delicate motion i, QV(t) 
the point on DVi(t) with ni and Lni the starting time and time length for DVi(t), respectively, 
and si the index linking DVi(t) to the object s. For each Objs, the motion generation module, 
shown in Fig. 3 (a), first generates reference motions based on QT(t). According to IV, the 
module will then cut out the corresponding delicate motions DG(t) from these reference 
motions. Finally, move motions MG(t) are employed for smooth connection between every 
two adjacent DG(t), and DG(t) and MG(t) together form the trajectory QG(t) for IV. As its 
demand on accuracy is not strict, MG(t) is formulated as the cubic polynomial, described 
by 

MG(t) = at3 + bt2 + ct + d  (3) 
 
where parameters a ~ d can be determined by the four constraints resulting from the re-
quirement that the positions and velocities of the points connecting MG(t) with the two 
adjacent DG(t) must be continuous. 

To determine the optimal intention IV
* for the selected validation motion, QV(t) will be 

compared with all QG(t) generated according to every guessed intention IV. Because we 
are looking for an intention that may induce all the necessary delicate motions, IV

* should 
not cause too much deviation between QV(t) and every QG(t) generated for each training 
motion. By taking Emax as the maximum difference between QV(t) and those QG generated 
for all the training motions corresponding to some intention IV, we determine IV

*, among all 
IV, to be the one that leads to the smallest Emax, and formulate the criterion as 

maxarg min
V

V I
I E∗ =                                                   (4) 

with 

2
max max || ( ) ( )||i

V Gi
E Q t Q t= −                                           (5) 

where the function argmin yields the value of the given argument for which the value of 
the given expression attains its minimum value and i is the index for the training motions. 
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Because each recorded demonstration will serve as the validation demonstration once, the 
optimal intention IV

** for the demonstrator will be further chosen as that IV
*, among those 

for each validation motion, with the smallest corresponding Emax, denoted as E*. To note 
that, E* for each IV

* needs to be normalized before the comparison, since the length LV for 
each validation motion may not be the same. IV

** is then formulated as 

*arg min / .
V

V V
I

I E L
∗

∗∗ =                                                 (6) 

The key to the success of this intention finding process is to efficiently find IV
* de-

scribed in Eq. (4). However, the search involved in Eq. (4) is of high complexity. Let us 
evaluate the comparison between QV(t) and QG(t) first. As mentioned before, the operator 
may execute the demonstrations with different speeds or event orders. Consequently, for 
an intention IV guessed for QV(t), the search for finding its corresponding delicate motions 
from those reference motions for QT(t) will face way too many alternatives. To reduce the 
search complexity, we performed the comparisons only for those involving similar DV(t) 
and DG(t) (an approach analogous to that of dynamic time warping [18]), which would 
lead to small differences. To further reduce the complexity, we also propose dividing the 
comparison of QV(t) and QG(t) into those of their delicate motions, DV(t) and DG(t), and 
move motions, MV(t) and MG(t), respectively, and revise Eq. (4) to be 

12 2
1 1arg min( max || ( ) ( )|| max || ( ) ( )|| ).

j j j j
V

N Ni i
V V G V Gj jI i i

I D t D t M t M t+∗
= =

= − + −∑ ∑     (7) 

In Eq. (7), the matches between IV and its corresponding delicate motions are, in a 
sense, executed within several smaller search spaces. As a further attempt to enhance 
search efficiency, we go on to reformulate Eq. (7) into Eq. (8), described by 

2 2
1 1

12 2
1 1

arg min(( max || ( ) ( )|| max || ( ) ( )|| )

        ( max || ( ) ( )|| max || ( ) ( )|| )).

j j j j
V

j j j j

k ki i
V V G V Gj jI i i

N Ni i
V G V Gj k j ki i

I D t D t M t M t

D t D t M t M t

∗
= =

+
= + = +

= − + −

+ − + −

∑ ∑

∑ ∑
    (8) 

The formulation in Eq. (8) exhibits an appealing feature very suitable for realization via 
dynamic programming, for being able to be tackled through an expansion into several 
sub-searching ones recursively [16]. In Eq. (8), its first part is intended to find the Emax 
for j from 1 to k, and the second part that for j from k + 1 to N (plus that for the last move 
motion). A recursive formulation for computing E* can then be established by assuming k 
to be an N, starting from k = 1, described as  

1  
min ( ( ) ( , ))

N
R N M N ND all D

E E D E D D∗
+

∈
= +                                 (9) 

with 

1
1 1( ) min( ( ) ( , )) ( )

k
R k R k M k k D kD

E D E D E D D E D
−

− −= + +                      (10) 

where ER stands for the minimum difference between the motions from the first move mo-
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tion to a given (assumed to be N) delicate motion (in Eq. (9), it is DN; in Eq. (10), it is Dk 
or Dk-1), EM the difference for the move motion between two delicate motions, and ED the 
difference for a given delicate motion. Note that, the first move motion is generated be-
tween D0 and D1, and the last one between DN and DN+1, with D0 and DN+1 taken as the 
first and last point of the trajectory, respectively. In Eq. (9), E* is derived as the minimum 
for all ER(DN) with ER(DN) computed recursively from Eq. (10). With Eqs. (9) and (10), 
dynamic programming can take advantage of those tables generated for ER(Dk) to sim-
plify the computation in deriving IV

*. 
Finally, the time complexity for the process of dynamic programming, which is re-

lated to the number (R) and length (LV) of the demonstrations and the number (S) of ob-
jects involved in the task, is computed to be in the order of O(R ⋅ LV

5 ⋅ S2), discussed below. 
From Eqs. (9) and (10), the time complexity results mainly from generating the tables for 
ER(Dk), which involves LV and S. The table for ER(Dk) has O(LV

2 ⋅ S) elements, and each 
element deals with EM(Dk-1, Dk) and ER(Dk-1) for O(LV

2 ⋅ S) times. The time complexity for 
computing EM(Dk-1, Dk), which involves R and LV, is O(R ⋅ LV), while ER(Dk-1) can be found 
from the tables directly. Therefore, the total time complexity is computed to be approxi-
mately O(R ⋅ LV

5 ⋅ S2). Note that, the number of delicate motions (N) is not shown in O(R ⋅ 
LV

5 ⋅ S2), because the proposed approach takes every portion of the trajectory of the vali-
dation demonstration as the candidate for a possible delicate motion, its effect has been 
incorporated into the formula already. 

Based on the discussions above, the algorithm for intention finding is formulated as 
follows, 
 
Algorithm for intention finding: Find the intention of the demonstrator through R times 
of demonstrations. 
Step 1:  Record the demonstrated trajectories for the R times of demonstrations. Denote 

the recorded trajectory for the ith demonstration as Qi(t). Set i = 1. 
Step 2:  Select Qi(t) among the R recorded trajectories as the validation motion QV and the 

rest as the training motions QT(t). 
Step 3:  Apply the method of dynamic programming, based on Eqs. (9) and (10), to de-

termine the optimal intention IV
* for QV(t). Let i = i + 1. If i ≤ R, go to step 2; oth-

erwise, go to step 4. 
Step 4:  Utilize Eq. (6) to determine the optimal intention IV

** for the demonstrator among 
those for the R validation motions. IV

** is now ready to be used for executing the 
task under new environmental states. 

3. EXPERIMENT 

To validate its feasibility, we applied the proposed approach for the pouring task 
shown in Fig. 2 first. The experiment was divided into two stages: (a) human demonstra-
tion and (b) robot execution. Fig. 6 (a) shows the experimental setup for human demon-
stration, which includes the human operator and the electromagnetic motion tracking sys-
tem (FASTRAK, manufactured by Polhemus, USA). In Fig. 6 (a), the human operator 
held a vessel (vessel A) and poured the content into the two vessels (vessels B and C) on 
the table in an arbitrary order. A total of ten demonstrations of the pouring task had been 
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(a) Human demonstration.          (b) Robot execution. 

Fig. 6. Experimental setups for the pouring task. 

 
performed, with the locations of vessels A, B, and C varied during each demonstration. 
The Polhemus FASTRAK tracking system, with a sampling rate of 40 Hz for each of the 
sensors, was used to measure and record the demonstrated trajectories and positions of 
the objects. These trajectories were recorded as the 7-dimensional sequences, which con-
sist of positions and orientations (in the form of quaternion) in 3 and 4 dimensions, re-
spectively, with the position normalized by its standard deviation. From these recorded 
trajectories, we applied the intention finding algorithm, discussed in section 2.1, to derive 
the intention of the operator from all possible intentions, with a total number approximat-
ing 1022. During intention derivation, we combined two adjacent delicate motions when 
they were related to the same vessel and also executed in the same order for all the ten 
demonstrated trajectories, so as to avoid too many small delicate motions. We then moved 
on to the second stage of the experiment, and let the Mitsubishi RV-2A 6-DOF robot ma-
nipulator follow the derived intention to execute the pouring task under new environ-
mental states, as shown in Fig. 6 (b). 

Fig. 7 shows the derived intentions for each of the ten demonstrations of the pouring 
task. In Fig. 7, delicate motions related to vessels B and C were identified from the trajec-
tory of vessel A, marked by the blue and green blocks, respectively. It was observed that 
most of the delicate motions were located at those portions with minimum heights, impli-
cating the pouring action. The derived intention for demonstration 5 was determined to be 
optimal among all. We then let the robot manipulator follow this intention to execute the 
pouring task, in which vessels B and C were placed in new locations. For comparison, the 
human operator was also asked to execute the same pouring task. Fig. 8 (a) shows the 
variations of the height of vessel A during task execution, Fig. 8 (b) its trajectories in the 
X-Y plane, and Fig. 8 (c) the variations of its tilt angle. These three trajectories for the hu-
man operator and robot manipulator exhibited certain degree of similarity, but not exactly 
the same. Meanwhile, the robot manipulator successfully accomplished the pouring task. 

To further explore its generality, we also apply the proposed approach for a fruit jam 
task, in which the robot learns how to spread fruit jam on toast. Fig. 9 shows the experi-
mental setup, which was also divided into the stages of (a) human demonstration and (b) 
robot execution. In Fig. 9 (a), the human operator picked up a knife from the table, scooped 
the fruit jam from the jar, spread it on the toast in a zigzag motion, and then placed the  
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Fig. 7. The derived intentions for the ten demonstrations of the pouring task. 

   
(a) Variation of the height of 

vessel A. 
(b) Trajectory of vessel A in the 

X-Y plane. 
(c) Variation of the tilt angle of 

vessel A. 
Fig. 8. Experimental results for the pouring task executed by both the human operator and robot 

manipulator under new environmental states. 

         
(a) Human demonstration.              (b) Robot execution. 

Fig. 9. Experimental setups for the fruit jam task. 

 
knife back on the table. A total of ten demonstrations had been performed, with the loca-
tions of the knife, jar, and toast varied during each demonstration. The intention finding 
algorithm was then applied to derive the intention of the operator from all possible inten-
tions, with a total number approximating 108. 
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Fig. 10. The derived intentions for the ten demonstrations of the fruit jam task. 

   
(a) Variation of the height of 

knife. 
(b) Trajectory of knife in the 

X-Y plane. 
(c) Variation of the tilt angle of 

knife. 
Fig. 11. Experimental results for the fruit jam task executed by both the human operator and robot 

manipulator under new environmental states. 

 
Fig. 10 shows the derived intentions for each of the ten demonstrations. In Fig. 10, 

delicate motions related to the jar and toast were identified from the trajectory of the 
knife, marked by the green and blue blocks, respectively. It was observed that these two 
delicate motions were located at the portions of the first local minimum and a following 
flat region, implicating the scooping and zigzag motions. The derived intention for dem-
onstration 1 was determined to be optimal. We then let the robot manipulator utilize this 
intention to execute the fruit jam task, in which the jar and toast were placed in new lo-
cations. And, the human operator was also asked to execute the same task. Fig. 11 (a) 
shows the variations of the height of the knife during task execution, Fig. 11 (b) its tra-
jectories in the X-Y plane, and Fig. 11 (c) the variations of its tilt angle. Similar to the 
phenomenon exhibited in the pouring task, the trajectories for the human operator and 
robot manipulator were not exactly the same, while the robot manipulator successfully 
accomplished the task. 

4. CONCLUSION 

In this paper, we have proposed an approach for the robot to derive the intention of 



HOA-YU CHAN, KUU-YOUNG YOUNG AND HSIN-CHIA FU 

 

1134 

 

the human operator from her/his demonstration. The proposed approach does not de-
mand the operator to slow down the motion speed or follow a pre-specified order or mo-
tion pattern during task execution, so that the demonstration can be executed in a natural 
manner. For system implementation, we have first formulated this intention finding prob-
lem into a realizable mathematical form, and then applied the method of dynamic pro-
gramming for the search. Experiments based on the pouring and also fruit jam tasks have 
validated its feasibility. Although only three objects and two operations were involved in 
the tasks for demonstration, the proposed approach is not limited by the number of ob-
jects or operations. In future works, we will further investigate its scalability and gener-
ality. We will also apply the proposed approach to derive intentions for more versatile 
and complicated tasks. 
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