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The objective of this paper is to present an analytical solution for describing the head distribution in an
unconfined aquifer with a single pumping horizontal well parallel to a fully penetrating stream. The
Laplace-domain solution is developed by applying Fourier sine, Fourier and Laplace transforms to the
governing equation as well as the associated initial and boundary conditions. The time-domain solution
is obtained after taking the inverse Laplace transform along with the Bromwich integral method and
inverse Fourier and Fourier sine transforms. The upper boundary condition of the aquifer is represented
by the free surface equation in which the second-order slope terms are neglected. Based on the solution
and Darcy’s law, the equation representing the stream depletion rate is then derived. The solution can
simulate head distributions in an aquifer infinitely extending in horizontal direction if the well is located
far away from the stream. In addition, the solution can also simulate head distributions in confined aqui-
fers if specific yield is set zero. It is shown that the solution can be applied practically to evaluate flow to a
horizontal well.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The stream depletion rate (SDR) is herein defined as the ratio of
infiltrative water from the stream (or lake, stream, etc.) to the total
amount of water produced from the pumping well. The stream
depletion rate increases gradually with pumping time and finally
approaches one, which reflects most of water comes from the
stream, after a certain period of pumping time. Many analytical
models treat the stream as a constant-head boundary to estimate
stream depletion rate [e.g., 1–3,6,17,21]. Some researchers pro-
posed to treat the stream as a variable stream stage represented
by a periodic function for seasonal variations or a function changed
in space and time for flood wave [7]. The articles mentioned above
investigated the behavior of stream depletion rate induced from a
vertical well. In addition, their mathematical model neglects verti-
cal flow to unconfined aquifers.

Recently, the horizontal well becomes popular due to the ad-
vanced technique in drilling the wellbore. There are some advanta-
ges to use the horizontal well. For example, the cost from operating
horizontal wells is half of that from vertical wells [8]. Horizontal
wells have better contact with aquifers and are appropriate to in-
stall in thin aquifers. A shallow drawdown cone will be produced
if adopting a long and deep horizontal well. Some semi-analytical
or numerical solutions are developed to investigate the behaviors
ll rights reserved.

h).
of the groundwater flow induced from horizontal wells [e.g., 9–
12,20]. Zhan et al. [18] provided a method to solve the boundary
problem of groundwater flow to the horizontal well. Their method
is first to consider a pumping point source and then to integrate
the point source solution along the well axis. Based on this ap-
proach, they developed an analytical solution for describing the
groundwater flow induced from horizontal wells in a confined
aquifer. Zhan and Zlotnik [19] developed a semi-analytical solution
requiring numerical inversion to investigate the drawdown due to
slanted wells in an unconfined aquifer. They indicated that the
type curve of drawdown had three stages, including rapid increase
at early time, middle flat stage and rapid increase again at late
time. Sun and Zhan [13] presented semi-analytical solutions to de-
scribe the groundwater flow induced from horizontal wells in an
aquitard-aquifer system beneath a water reservoir. The flow in
aquitard overlying the confined aquifer is represented by a tran-
sient equation with a term accounting for the specific storage.
These articles involved in horizontal wells consider the aquifer
extending infinitely in horizontal direction. Thus they did not
investigate the behavior of stream depletion rate induced from a
horizontal well.

Tsou et al. [14] presented an analytical solution developed by
Fourier transforms to describe the stream depletion rate induced
from the slanted well in confined aquifers. They found that the hor-
izontal well parallel to the stream had less time to reach quasi-
steady stream depletion rate in comparison with various directions
of well axis. Therefore, it is better to install the horizontal well
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parallel to the stream. The difference between this paper and theirs
is mainly that they considered confined aquifers while this paper
considers unconfined aquifers. Accordingly, their solution can not
examine the effects of behaviors of unconfined aquifers on the
stream depletion rate such as specific yield and well depths.

This paper develops a mathematical model for describing head
distributions in unconfined aquifers for pumping from a single
horizontal well parallel to the stream. A first-order free surface
equation is used as the upper boundary condition. The time-do-
main solution of the model is derived based on the methods of Fou-
rier sine, Fourier and Laplace transforms. This solution can be used
to simulate head distribution in a confined aquifer when the spe-
cific yield is set zero or in an aquifer extending infinitely in hori-
zontal direction if the well is located far away from the stream.
Based on Darcy’s law, this solution can also be used to derive an
equation for estimating stream depletion rate at any time for the
well installed at any location and with any length. The effects of
specific yield, well depth and anisotropic hydraulic conductivity
on the stream depletion rate are examined. Spatial head distribu-
tions for various depths are also investigated. In addition, the
hydraulic head evaluated from the solution is compared with the
observed field data of Mohamed and Rushton [12]. The solution
is useful for designing a horizontal well near a stream.
2. Method

2.1. Mathematical model

Fig. 1 shows the three-dimensional (3D) conceptual model for
an anisotropic unconfined aquifer with a horizontal well parallel
to a fully penetrating stream. The origin of coordinate system is lo-
cated at the interface between the stream and aquifer and the x
axis passes through the middle of the well. The top of the stream
is considered as reference datum. The thickness of the aquifer is
H and the depth of the well is D as shown in Fig. 1(b). In addition,
the distance measured from the stream to the well is d and the well
length is L as indicated in Fig. 1(a).

Three assumptions introduced for the model are: (1) The aqui-
fer is homogeneous. (2) The stream stage does not change during
the pumping period, implying that the stream has a large quantify
of water in comparison with that drawn from the well. (3) The
stream bed has the same hydraulic conductivity as aquifers. Note
that Intaraprasong and Zhan [7] had addressed the effects of vari-
able stream stage and low-permeable stream bed on the stream
depletion rate.

To acquire the solution for pumping from a horizontal well, we
start with the development of a point source solution of the model
[e.g., 14,19]. The governing equation for describing 3D transient
Fig. 1. Schematic diagrams of an unconfined aquifer with a horizo
hydraulic head distribution h(x,y,z, t) in the unconfined aquifer
with a point source can be expressed as

Kx
@2h
@x2 þ Ky

@2h
@y2 þ Kz

@2h
@z2 ¼ Ss

@h
@t
þ Qdðx� x0Þdðy� y0Þdðzþ z0Þ

ð1Þ

where Kx, Ky and Kz are hydraulic conductivities in the x, y and z
direction, respectively; Ss is specific storage; Q is a positive constant
pumping rate of the point source; d() represents the Dirac delta
function and (x0,y0,z0) is the location of the point source.

The water table before the pumping is considered to be horizon-
tal and thus the initial condition is formulated as

h ¼ 0 at t ¼ 0: ð2Þ

The stream is hydraulic contact with the aquifer and considered as a
constant-head boundary. The boundary condition at x = 0 is there-
fore expressed as

h ¼ 0 at x ¼ 0: ð3Þ

The remote boundary conditions in x and y directions are consid-
ered as constant-head boundaries

lim
x!1

h ¼ 0; ð4Þ

lim
y!�1

h ¼ 0; ð5Þ

where the groundwater is not affected by the pumping. Consider
the aquifer lies on an impermeable layer such that

@h
@z
¼ 0 at z ¼ �H: ð6Þ

The equation describing the change in water table with the absence
of a surface recharge can be written by neglecting the second-order
terms as [16]

Sy
@h
@t
¼ �Kz

@h
@z

at z ¼ h; ð7Þ

where Sy is specific yield. Note that the stream provides water to the
well and consequently avoids significant deformation of the free
surface due to pumping. The largest drawdown due to pumping is
much smaller than the aquifer thickness. The domain in z direction
(�H � h) is hence approximated from �H to 0, where the head dis-
tribution at z = 0 is the water table. Eq. (7) is further simplified as
[19]

Sy
@h
@t
¼ �Kz

@h
@z

at z ¼ 0: ð8Þ

Except Eq. (3), the mathematical formulation herein is identical to
Zhan and Zlotnik [19] where they considered an unconfined aquifer
infinitely extending in the horizontal direction.
ntal well near a stream. (a) Top view, (b) cross section view.
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Based on the following dimensionless variables [14]:

xD ¼
x
H
; yD ¼

y
H
; zD ¼

z
H
; x0D ¼

x0

H
; y0D ¼

y0

H
; z0D ¼

z0

H
;

dD ¼
d
H
; DD ¼

D
H
; tD ¼

Kx

H2Ss

t; hD ¼
pKxH

Q
h;

ð9Þ

where the subscript D denotes a dimensionless symbol, Eq. (1) can
be expressed as

@2hD

@x2
D

þ jy
@2hD

@y2
D

þ jz
@2hD

@z2
D

¼ @hD

@tD
þ pdðxD � x0DÞdðyD

� y0DÞdðzD þ z0DÞ; ð10Þ

where jy = Ky/Kx and jz = Kz/Kx.
Accordingly, the initial and boundary conditions are denoted as

hD ¼ 0 at tD ¼ 0; ð11Þ
hD ¼ 0 at xD ¼ 0; ð12Þ
lim

xD!1
hD ¼ 0; ð13Þ

lim
yD!�1

hD ¼ 0; ð14Þ

@hD

@zD
¼ 0 at zD ¼ �1; ð15Þ

a
@hD

@tD
¼ �jz

@hD

@zD
at zD ¼ 0; ð16Þ

where a = Sy/(SsH).

2.2. Head distribution solutions

Applying Fourier and Laplace transforms to Eqs. (10)–(16) and
then inverting the result yield the point source solution shown be-
low. Readers can refer to Appendix A for the detailed derivation.

ha ¼
4
p

Z 1

0

Z 1

0
Ua þ

X1
n¼1

Wa

 !
sinðwxDÞ cos½ðyD � y0DÞn�dndw for � DD 6 zD 6 0;

ð17Þ

hb ¼
4
p

Z 1

0

Z 1

0
Ub þ

X1
n¼1

Wb

 !
sinðwxDÞ cos½ðyD � y0DÞn�dndw for � 1 6 zD 6 �DD;

ð18Þ

with

Ua ¼
c0 cosh½b0ð1� z0DÞ�ðe�k0tD � 1Þ

k0g0
; ð19Þ

Wa ¼
cn cos½bnð1� z0DÞ�ðe�kntD � 1Þ

kngn
; ð20Þ

Ub ¼
c0 cosh½ð1þ zDÞb0�ðe�k0tD � 1Þ

k0g0
; ð21Þ

Wb ¼
cn cos½ð1þ zDÞbn�ðe�kntD � 1Þ

kngn
; ð22Þ

k0 ¼ w2 þ jyn
2 � jzb

2
0; ð23Þ

kn ¼ w2 þ jyn
2 þ jzb

2
n; ð24Þ

g0 ¼ jzb0ð1þ 2aÞ cosh b0 þ ½jz � ak0� sinh b0; ð25Þ
gn ¼ jzbnð1þ 2aÞ cos bn þ ½jz � akn� sin bn; ð26Þ
c0 ¼ sinðwx0DÞ½jzb0 coshðb0zDÞ þ ak0 sinhðb0zDÞ�; ð27Þ
cn ¼ sinðwx0DÞ½jzbn cosðbnzDÞ þ akn sinðbnzDÞ�; ð28Þ

where w and n are the dummy variables for Fourier sine and Fourier
transform, respectively; the subscripts a and b represent the solu-
tion for the aquifer above and below the horizontal well, respec-
tively; b0 and bn are respectively the roots of following two
equations
e2b0 ¼ jzb0 � ak0

jzb0 þ ak0
; ð29Þ

tan bn ¼ �
akn

jzbn
: ð30Þ

Note that Eq. (30) has infinite roots due to the periodical function
tanbn. The roots of these two equations are easily found by New-
ton’s method [15]. Only the positive roots of these two equations
are chosen for evaluation. The suggested initial guesses for b0 and

bn are ½jz þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

z þ 4jza2 w2 þ jyn
2� �q
�=ð2ajzÞ and (2n � 1)p/2,

respectively, where n is an integer from 1, 2, 3, . . . ,1. For the reason
of choosing the positive roots, please refer to Appendix C.

The solution of the head distribution for pumping from a hori-
zontal well can then be acquired by integrating the point source
solution, Eqs. (17) and (18), along the well axis and then multiply-
ing a reciprocal of well length [e.g., 13,18,19]. The point source
therefore becomes a line sink representing a horizontal well along
which the uniform pumping rate is Q/LD. The solution for such a
horizontal well is expressed as

hDa ¼
1
LD

Z LD=2

�LD=2
hady0D for � DD 6 zD 6 0; ð31Þ

hDb ¼
1
LD

Z LD=2

�LD=2
hbdy0D for � 1 6 zD 6 �DD: ð32Þ

Eq. (31) developed based on Eq. (17) implicitly includes Ua and Wa

while Eq. (32) developed from Eq. (18) implicitly includes Ub and
Wb. Note that x0D and z0D in Ua, Wa, Ub and Wb should be replaced
by dD and DD, respectively.

2.3. Stream depletion rate

Based on Darcy’s law, the infiltration rate from the stream can
be written as

q ¼
Z

Xy

Z
Xz

KxidzDdyD at xD ¼ 0; ð33Þ

where i represents hydraulic gradient in x direction; Xy and Xz are
the whole domain of the stream in y and z direction, respectively. In
the case that the stream fully penetrates the aquifer, substituting
i = @hDb/@xD for �1 6 zD 6 DD and i = @hDa/@xD for DD 6 zD 6 0 into
Eq. (33) yields the stream depletion rate as

SDR ¼ q
Q
¼ 1

p

Z 1

�1

Z �DD

�1

@hDb

@xD
dzD þ

Z 0

�DD

@hDa

@xD
dzD

� �
dyD at xD ¼ 0:

ð34Þ

Eq. (34) implicitly includes DD in Ua, Wa, Ub and Wb, indicating that
the stream depletion rate in unconfined aquifers is dependent of the
depth of the horizontal well.

2.4. A special case: Tsou et al.’s solution [14]

If Sy = 0 (i.e., a = 0), the present solution, Eqs. (17) and (18),
reduces to Tsou et al.’s solution [14] which describes groundwater
flow induced from a point source in confined aquifers. For the
detailed derivation, readers can refer to Appendix B.

Based on Darcy’s law, the stream depletion rate from a horizon-
tal well for Tsou et al.’s solution [14] is expressed as

SDR ¼ 2
p2LD

Z LD=2

�LD=2

Z 1

�1

Z 1

0

Z 1

0

�
w sinðwx0DÞ cos½ðyD � y0DÞn� e�ðw

2þjyn2ÞtD � 1
� �

w2 þ jyn
2 dndwdyDdy0D:

ð35Þ
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Note that the stream depletion rate in confined aquifers is indepen-
dent of the well depth because of no DD in Eq. (35).
3. Results and discussion

The numerical integrations for Eqs. (31), (32) and (34) can be
done by Gaussian quadrature [5, p. 301]. The integrands in these
three equations have oscillatory patterns with consecutive roots
determined by cos[(yD � y0D)n] = 0. Each area between two consec-
utive roots is evaluated by the 16-term Gaussian quadrature for-
mula. The result of the numerical integration is equal to the total
areas which is the sum of each area along the n axis. Accordingly,
the total areas can be expressed in terms of an infinite series.
The series converges quite fast and usually takes only few terms
to achieve accuracy to centimeter.
3.1. Effect of specific yield on stream depletion rate

The unconfined aquifer has an effect of instantaneous drainage
from water table on the stream depletion rate. Consider that the
aquifer has anisotropic hydraulic conductivity falling in the range
Table 1
The default dimensional value for each
parameter.

Parameter Value

Kx (m/day) 1
Ky (m/day) 1
Kz (m/day) 0.1
Ss (m�1) 10�5

Sy 0.3
Q (m3/day) 100
H (m) 10
D (m) 8
d (m) 40
L (m) 50
t (day) 2

Fig. 2. The temporal stream depletion rate for Sy = 0.1 and 0.3.
of 0.01–100 m/day if the aquifer consists of silty sand [4, p.604].
The other parameter values used for evaluation are shown in Table
1. Fig. 2 shows the stream depletion rate obtained from Eq. (34)
versus dimensionless time tD for various Sy (= 0.1 and 0.3). The
curves exhibit three segments: rapid increase at early time, middle
flat stage, and rapid increase again at late time. The curve with lar-
ger Sy has longer flat stage. The first and third segments indicate
that the flow from the stream increases with time. However, in
the second segment the stream depletion rate maintains constant,
indicating that the pumping well obtains the water from the pore
Fig. 3. The temporal stream depletion rate for DD = 0.2 and 0.8.

Fig. 4. The temporal stream depletion rate for isotropic and anisotropic aquifers.
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drainage. When the dimensionless time is larger than 3 � 105, the
stream depletion rate curve of Sy = 0.1 approaches one, implying
that the water all comes from the stream. In addition, the figure
indicates that a larger specific yield (Sy = 0.3) leads to a less stream
depletion rate after the second segment.
Fig. 5. The spatial water table distribution at yD = 0 for isotropic and anisotropic
aquifers.

Fig. 6. The spatial water table distribution for (a) 3D view and (b) top view.
3.2. Effect of well depth on stream depletion rate and head distribution

The stream depletion rate for unconfined aquifers is dependent
of the depth of the horizontal well. Fig. 3 shows stream depletion
rate versus dimensionless time tD for shallow well (DD = 0.2) and
deep well (DD = 0.8), indicating that the deep well has a larger
stream depletion rate. On the other hand, the shallow well requires
longer time to acquire the same amount of stream water as the
deep one.

3.3. Effect of anisotropy on stream depletion rate and head distribution

Generally speaking, an anisotropic aquifer has smaller vertical
hydraulic conductivity than horizontal one. The value of Kz has
an effect on stream depletion rate and head distribution. Consider
that an isotropic aquifer has Kx = Ky = Kz = 1 m/day and an aniso-
tropic aquifer has Kx = Ky = 1 m/day and Kz = 0.1 m/day. The com-
parison of stream depletion rate between these two aquifers
shown in Fig. 4 indicates that the anisotropic aquifer has larger
stream depletion rate than the isotropic one. This is because smal-
ler Kz makes less water form pore drainage and more water from
the stream. A shallow drawdown cone can therefore be expected
for the anisotropic aquifer as shown in Fig. 5.

3.4. Spatial head distribution for various depths

Figs. 6 and 7 demonstrate spatial head distribution predicted
from Eq. (31) for zD = 0 and zD = �DD, respectively. For fixed xD

and yD, the head at zD = �DD is smaller than that at zD = 0, indicat-
ing that the aquifer has downward flow induced from a pumping
Fig. 7. The spatial head distribution at zD = �DD for (a) 3D view and (b) top view.



C.-S. Huang et al. / Advances in Water Resources 34 (2011) 640–648 645
horizontal well. The minimum head occurs at the center of the hor-
izontal well (xD = 4, yD = 0, zD = �DD). It is interesting to note that
the head distribution shown in Fig. 7 can reflect a line sink (hori-
zontal well) obviously where the head changes dramatically.
Fig. 9. The predicted drawdown from present solution and observed drawdown
3.5. Potential applications of the present solution

The present solutions can be applied to various types of ground-
water problems associated with pumping in unconfined aquifers.
For example, the present point source solution can also be used
to develop the solutions for different type of wells such as slanted
well and vertical well with full or partial penetration when inte-
grating Eqs. (17) and (18) along the well axis. In addition, if the
stream is located very far away from the well so that the draw-
down cone never reaches the stream, the result evaluated from
the present solution reduces to that of Zhan and Zlotnik’s solution
[19, Eq. (23)] describing the head distribution for the aquifer of
infinite extent in the horizontal direction. Fig. 8 shows a compari-
son of spatial head distributions at yD = 0 predicted by the present
solution and Zhan and Zlotnik’s solution [19]. This figure indicates
that the drawdown cone has not reached the stream and the pres-
ent solution has a good agreement with Zhan and Zlotnik’s solution
[19].
Fig. 8. Comparison between the predicted head by the present solution and Zhan
and Zlotnik’s solution [19].

Table 2
The field data and aquifer parameters [12].

Parameter Value

Kx (m/day) 10
Ky (m/day) 10
Kz (m/day) 0.06
Ss (m�1) 0.033
Sy 0.3
H (m) 5
D (m) 4.85
d (m) 350
L (m) 300
x (m) 350
z (m) �4.85

from Mohamed and Rushton [12].
3.6. Comparison of present solution with observed field data

Mohamed and Rushton [12] carried out a field experiment with
a horizontal well in a shallow aquifer in Sarawak, Malaysia. The
aquifer can be considered to extend infinitely in the horizontal
direction because the drawdown cone never reaches the boundary
of the aquifer during early pumping period. The measured pump-
ing rates are 230 m3/day at 1.25 day, 160 m3/day at 3.875 day,
and 280 m3/day at 4.5 day. In fact, the designed pumping rate is
240 m3/day for long-term water requirement. The other field data
and aquifer parameters are listed in Table 2. Fig. 9 shows the ob-
served field data taken from Sarawak [12] and the predicted draw-
down from the present solution based on the designed pumping
rate and data given in Table 2. The figure shows that the predicted
drawdown from present solution has a good agreement with the
observed drawdown at t = 6 days except at the middle and ends
of the well (y = �150, 0, 150 m). This discrepancy may mainly arise
from the energy loss at the caisson (middle) and the entrance loss
at the ends of the field well. However, the predicted drawdown
from present solution is obviously smaller than the observed draw-
down at t = 3.5 days. The differences may come from the fact that
the present solution is evaluated based on the designed pumping
rate of 240 m3/day which is larger than the measured early pump-
ing rates given above.
4. Concluding remarks

A general analytical solution is developed for describing flow to
a horizontal well. The stream bed is assumed to have the same
hydraulic conductivity as the aquifer and the stream is considered
to maintain a constant stage during the pumping period. The pres-
ent solution reduces to Tsou et al.’s solution [14] if the specific
yield equals zero. Moreover, the present solution will give good
approximation to Zhan and Zlotnik’s solution [19] if the pumping
well is located far away from the stream. It is found that a larger
specific yield of an unconfined aquifer results in a longer middle
flat stage and a less stream depletion rate to the pumping horizon-
tal well. An unconfined aquifer with a deeper horizontal well has
more stream depletion rate than those with a shallower one. An
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aquifer with a smaller vertical hydraulic conductivity produces
more stream depletion rate and shallower drawdown cone to the
aquifer. In addition, the predicted drawdown from the present
solution agrees with the observed drawdown in a horizontal well
reported in Mohamed and Rushton [12].
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Appendix A. The derivation of Eqs. (17) and (18)

Applying Fourier sine, Fourier and Laplace transforms to Eqs.
(10)–(16) results in an ordinary differential equation (ODE) and
boundary conditions in terms of zD as

jz
@2�hD

@z2
D

� ðw2 þ jyn
2 þ pÞ�hD ¼

1
p

einy0D sinðwx0DÞdðzD þ z0DÞ; ðA:1Þ

@�hD

@zD
¼ 0 at zD ¼ �1; ðA:2Þ

jz
@�hD

@zD
¼ �ap�hD at zD ¼ 0; ðA:3Þ

where w, n, p are the variables of the Fourier sine, Fourier and La-
place transform, respectively. Due to Dirac delta function, Eq.
(A.1) is divided into the two homogeneous ODEs as

jz
@2�hDa

@z2
D

� ðw2 þ jyn
2 þ pÞ�hDa ¼ 0 for � z0D 6 zD 6 0; ðA:4Þ

jz
@2�hDb

@z2
D

� ðw2 þ jyn
2 þ pÞ�hDb ¼ 0 for � 1 6 zD 6 �z0D: ðA:5Þ

There are two continuity requirements at zD = �z0D. One is the
continuity of the hydraulic head expressed as

�hDa ¼ �hDb at zD ¼ �z0D: ðA:6Þ

Integrating Eq. (A.1) from zD ¼ �z�0D to zD ¼ �zþ0D obtains the other
continuity requirement which reflects hydraulic gradient disconti-
nuity as

@�hDa

@zD
� @

�hDb

@zD
¼ 1

p
einy0D sinðwx0DÞ at zD ¼ �z0D: ðA:7Þ

Solving Eqs. (A.4) and (A.5) with boundary conditions, Eqs. (A.2)
and (A.3), as well as continuity requirements, Eqs. (A.6) and (A.7),
simultaneously results in
�hDa ¼ GðpÞ � KaðpÞ for � z0D 6 zD 6 0; ðA:8Þ
�hDb ¼ GðpÞ � KbðpÞ for � 1 6 zD 6 �z0D; ðA:9Þ
where

GðpÞ ¼ 1
p
; ðA:10Þ
KaðpÞ ¼
sinðwx0DÞ cosh kð1� z0DÞ½ �sech½kðzD þ z0DÞ�½�jzk coshðkzDÞ þ pa

jzkðpa cosh kþ jzk sinh kÞ

KbðpÞ ¼
sinðwx0DÞ cosh½kð1� zDÞ�sech½kðzD þ z0DÞ�½�jzk coshðkz0DÞ � pa

jzkðpa cosh kþ jzk sinh kÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ jyn

2 þ p
jz

s
: ðA:13Þ

Taking inverse Laplace transform to Eq. (A.10) yields

gðtDÞ ¼ L�1fGðpÞg ¼ 1; ðA:14Þ

where L�1{} represents inverse Laplace transform.
Both Eqs. (A.11) and (A.12) are a single value function. Based on

Bromwich integral, the results of inverse Laplace transform for
these two equations can therefore be, respectively, expressed as

kaðtDÞ ¼
1

2pi

Z rþi1

r�i1
KaðpÞeptD dp; ðA:15Þ

kbðtDÞ ¼
1

2pi

Z rþi1

r�i1
KbðpÞeptD dp; ðA:16Þ

where i is an imaginary unit and r is a real constant which is so large
that all of the real parts of the singularities are smaller than it. The
pathway of Bromwich integral contains a close contour with a semi-
circle and straight line parallel to the imaginary axis. According to
Jordan’s Lemma, the value of the integration for the semicircle tends
to zero if its radius approaches infinity. Based on the residue theory,
the result of the integration for Eqs. (A.15) and (A.16) can be ex-
pressed as summation of the residue for each pole. Therefore, ka(tD)
and kb(tD) can respectively be further expressed as

kaðtDÞ ¼
X1
N¼1

Res

					
p¼pN

; ðA:17Þ

kbðtDÞ ¼
X1
N¼1

Res

					
p¼pN

; ðA:18Þ

where pN is the pole in complex plane and Res represents the resi-
due for each pole.

Let the denominator of Eq. (A.11) or (A.12) equal zero and the
roots of this equation represent the location of poles in complex
plane. Note that the poles exist only at the real axis. Only one pole,
p0, exists between p = 0 and p = �w2 � jyn

2 while infinite poles, pn,
happen behind p = �w2 � jyn

2.
For the residue without imaginary unit, the pole at p = p0 should

be expressed as p0 = jzb0 � jyn
2 � w2 obtained from letting k = b0.

Similarly, the poles at p = pn is expressed as pn = �jzbn � jyn
2 � w2

obtained from letting k = ibn. Substituting k = b0 and p = p0 =
jzb0 � jyn

2 � w2 into the denominator of Eq. (A.11) or (A.12)
results in Eq. (29). Similarly, substituting k = ibn and p = pn =
�jzbn � jyn

2 � w2 into denominator of Eq. (A.11) or (A.12) yields
Eq. (30).

The residues of Eqs. (A.17) and (A.18) can respectively be deter-
mined from the following formulas

Resjp¼pN
¼ lim

p!pN

KaðpÞ eptDðp� pNÞ; ðA:19Þ

Resjp¼pN
¼ lim

p!pN

KbðpÞ eptDðp� pNÞ; ðA:20Þ
sinhðkzDÞ�einy0D

; ðA:11Þ

sinhðkz0DÞ�einy0D

; ðA:12Þ
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Substituting Eqs. (A.11) into Eq. (A.19) and applying L’Hopital’s rule
results in
Resjp¼pN
¼ lim

p!pN

sinðwx0DÞ cosh½kð1� z0DÞ�½�jzk coshðkzDÞ þ pa sinhðkzDÞ�einy0DþptD

jzk 1
2 cosh kþ a cosh kþ sinh k

2k þ
pa sinh k

2jzk

� � : ðA:21Þ
Similarly, substituting Eq. (A.12) into Eq. (A.20) and applying
L’Hopital’s rule yields
Resjp¼pN
¼ lim

p!pN

sinðwx0DÞ cosh½kð1� zDÞ�½�jzk coshðkz0DÞ � pa sinhðkz0DÞ�einy0DþptD

jzk 1
2 cosh kþ a cosh kþ sinh k

2k þ
pa sinh k

2jzk

� � : ðA:22Þ
With pN = p0 and k = b0, Eq. (A.21) leads to

Resjp¼p0
¼ �2c0 cosh½b0ð1� z0DÞ�

g0
einy0D�k0tD : ðA:23Þ

Similarly, substituting pN = pn and k = ibn into Eq. (A.21) results in

Resjp¼pn
¼ �2cn cos½bnð1� z0DÞ�

gn
einy0D�kntD : ðA:24Þ

Note that the sum of Eqs. (A.23) and (A.24) is the result of integra-
tion of Eq. (A.15).

With pN = p0 and k = b0, Eq. (A.22) yields

Resjp¼p0
¼ �2c0 cosh½b0ð1� zDÞ�

g0
einy0D�k0tD : ðA:25Þ

Similarly, substituting pN = pn and k = ibn into Eq. (A.22) yields

Resjp¼pn
¼ �2cn cos½bnð1� zDÞ�

gn
einy0D�kntD : ðA:26Þ

The sum of Eqs. (A.25) and (A.26) is the result of integration of Eq.
(A.16).

The results of inverse Laplace transform for Eqs. (A.8) and (A.9)
can be obtained, respectively, by the convolution theorem.

hDa ¼
Z tD

0
gðtD � sÞ � kaðsÞds; ðA:27Þ

hDb ¼
Z tD

0
gðtD � sÞ � kbðsÞds: ðA:28Þ

The result of integration of Eq. (A.27) leads to the sum of Eqs. (19)
and (20) and the result of integration of Eq. (A.28) leads to the sum
of Eqs. (21) and (22). The final solutions expressed as Eqs. (17) and
(18) can then be obtained after taking inverse Fourier and Fourier
sine transform.

Appendix B. The derivation of reducing to Tsou et al.’s solution
[14]

Substituting a = 0 into Eqs. (29) and (30) yields e2b0 ¼ 1 and
tanbn = 0, respectively. Obviously, the roots of these two equations
are b0 = 0 and bn = np where n is an integer from 1, 2, 3, . . . ,1. Mul-
tiplying the numerator and denominator of Eq. (19) by 1/b0 and
substituting a = 0 into Eq. (19) leads to

Ua ¼
sinðwx0DÞ coshðb0zDÞ cosh½b0ð1� z0DÞ� e�ðw

2þjyn2�jzb
2
0ÞtD � 1

� �
ðw2 þ jyn

2 � jzb
2
0Þ cosh b0 þ sinh b0

b0

n o :

ðB:1Þ
Applying L’Hopital’s rule to sinh (b0)/b0 in the denominator of Eq.
(B.1) first and then substituting b0 = 0 into Eq. (B.1) results in
Ua ¼
sinðwx0DÞ e�ðw

2þjyn2ÞtD � 1
� �

2ðw2 þ jyn
2Þ

: ðB:2Þ

Alternatively, Eq. (B.2) can be obtained from substituting a = 0 and
b0 = 0 into Eq. (21).

With a = 0 and bn = np, Eq. (20) leads to

Wa ¼
sinðwx0DÞnp cosðnpzDÞ cos½npð1� z0DÞ� e�ðw2þjyn2þjzn2p2ÞtD � 1

� �
ðw2 þ jyn

2 þ jzb
2
nÞ½np cosðnpÞ þ sinðnpÞ�

:

ðB:3Þ

Substituting sin (np) = 0 and cos[np(1 � z0D)] = cos(np)
cos(npz0D) � sin(np)sin(npz0D) into Eq. (B.3) yields

Wa ¼
sinðwx0DÞ cosðnpzDÞ cosðnpz0DÞ e�ðw

2þjyn2þjzn2p2ÞtD � 1
� �

w2 þ jyn
2 þ jzn2p2

:

ðB:4Þ

Alternatively, Eq. (B.4) can be obtained after substituting a = 0 and
bn = np into Eq. (22). Accordingly, Tsou et al.’s solution [14, Eq.
(16)] with a point source can be obtained from substituting Eqs.
(B.2) and (B.4) into Eq. (17) as

hTsouðxD; yD; zD; tDÞ

¼ 2
p

Z 1

0

Z 1

0
sinðwxDÞ cos½ðyD � y0DÞn�

�
sinðwx0DÞ e�ðw

2þjyn2ÞtD � 1
� �

w2 þ jyn
2

2
4

þ
X1
n¼1

2 sinðwx0DÞ cosðnpzDÞ cosðnpz0DÞ e� w2þjyn2þjzn2p2ð ÞtD � 1
� �

w2 þ jyn
2 þ jzn2p2

3
5dndw:

ðB:5Þ
Appendix C. The reason of choosing positive roots b0 and bn

Eqs. (29) and (30) for the roots of b0 and bn are derived,

respectively, based on setting
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw2 þ jyn

2 þ pÞ=jz

q
¼ b0 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðw2 þ jyn
2 þ pÞ=jz

q
¼ ibn. The values of jy, jz, w and n are posi-

tive while p is negative. The value of w2 + jyn
2 + p could therefore

be greater or smaller than zero. We let
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw2 þ jyn

2 þ pÞ=jz

q
¼ b0
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if w2 + jyn
2 + p > 0 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw2 þ jyn

2 þ pÞ=jz

q
¼ ibn if w2 + jyn

2 +

p < 0. Thus, both b0 and bn must be positive for any value of
w2 + jyn

2 + p.
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