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Equal Gain Transmission with Antenna Selection in
MIMO Communications

Shang-Ho Tsai, Member, IEEE

Abstract—The beamforming vectors of an equal gain trans-
mission (EGT) contains phase information only and thereby
enjoys several implementational advantages when compared to
the optimal scheme, i.e. maximum ratio transmission (MRT). The
implementational advantages make EGT a promising solution
for simple transceiver design while offering a performance
comparable to that of MRT. This solution motivates us to explore
how close the performance can be between EGT and MRT. The
maximum SNR loss between EGT and MRT is known to be
1.05 dB in MISO channels. However, little is known about the
SNR loss in MIMO channels, since no closed-form solution is
available for the best EGT in MIMO channels. In this work,
a suboptimal closed-form EGT design for MIMO channels is
proposed and its performance is analyzed. Interestingly, the
maximum SNR loss between the proposed EGT and the MRT
(both employing MRC in receiver) in MIMO channels is shown
to be approximately 1.05 dB as well. Moreover, instead of
applying conventional all transmit antennas, this study proposes
to adopt antenna selection, to further improve the performance
of EGT. Two antenna selection algorithms are proposed and
the corresponding performance is analyzed. When the proposed
antenna selection algorithms are applied to EGT, the SNR loss
between EGT and MRT can be reduced to as low as 0.45-0.65
dB, with the numbers of transmit antennas ranging from 4 to
8. One of the proposals with fixed number of transmit antennas
not only outperforms conventional EGT but also requires fewer
number of RF (radio frequency) components; also, it employs
constant power in each transmit antenna like EGT does. As a
result, hardware complexity can be reduced by this proposal.
Furthermore, design strategies to apply the proposed EGT and
antenna selection algorithms in systems with limited feedback
are also suggested.

Index Terms—Equal gain transmission, EGT, hybrid selec-
tion, (transmit) antenna selection, TAS, beamforming, precoding,
MRT, Lloyd codebook, MIMO.

I. INTRODUCTION

M IMO beamforming/precoding techniques have recently
received extensive attention in wireless communica-

tion systems. If all the elements of a beamforming vector
have equal magnitude, it is usually called the equal gain
transmission (EGT) [1],[2]. Unlike the optimal beamforming,
i.e. maximum ratio transmission (MRT), which demands the
feedback of both magnitude and phase information for its
beamforming vector, the beamforming vector of an EGT
contains phase information only and hence enjoys several
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advantages described as follows: First, in a TDD (Time-
division Duplex) system, where complete channel information
is known to the transmitter, using EGT can greatly relax the
design effort for power amplifier (PA), since the corresponding
peak to average power ratio (PAPR) in EGT is much lower
than that in MRT [3]. Second, in a wireless system where
sufficient feedback is possible due to the low mobility of
users and base stations, the use of EGT not only can ease
PA design, but also can save half of the feedback redundancy
[2]. Although EGT performs worse than the optimal MRT, the
potential implementational benefits of EGT mentioned above
motivate us to explore the following questions: 1.) What is
the maximum performance loss between EGT and MRT? 2.)
Could the performance loss be reduced by applying a good
but simple design on the EGT? 3.) Suppose we have the
solutions for Question 2. What are the design strategies to
use the solutions in non-TDD systems, where only limited
feedback is available?

The answer for Question 1 has been solved for MISO
channels, since the solution for the best EGT in MISO
channels can be easily obtained from the channel phase (see
e.g. [2],[3]); the maximum SNR loss between the best EGT
and MRT was shown to be 1.05 dB in MISO channels [4].
For MIMO channels, however, no simple closed-form solution
is currently available for the best MIMO EGT [1],[3]; hence,
little is known about the performance loss between EGT and
MRT in MIMO channels. In this study, a suboptimal EGT
design for MIMO channels is proposed and its performance is
theoretically analyzed. The maximum SNR loss between the
proposed EGT and the MRT is shown to be approximately
1.05 dB in MIMO channels with an approximation error that
is less than 0.003 dB.

Could the maximum 1.05 dB performance loss be further
reduced, as Question 2 mentioned? To answer the question,
it is shown in this paper that using all transmit antennas in
EGT does not guarantee the best performance; that is, for a
fixed transmit power constraint, wasting power in the transmit
antennas with bad channel conditions is less effective than
allocating the power in those with good conditions. For this
reason, we propose to select antennas properly, rather than
always using all transmit antennas, to further improve the
performance of EGT; the best performance can be achieved by
selecting 𝐿 out of the 𝑁𝑡 branches, where 𝑁𝑡 is the number
of transmit antennas, the value 𝐿 and the 𝐿 selected branches
depend on channel conditions, and are generally different
for different channel realizations. This selection concept is
similar to antenna selection [5],[6],[7],[8] or hybrid selec-
tion [9],[10],[11],[12]. However, some differences need to be
pointed out; that is, the antenna selection problems generally
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attempt to select a predetermined number 𝐿 of branches from
𝑁𝑡 so as to maximize the channel capacity via the singular
value decomposition (SVD). The value 𝐿 in antenna selection
is hence fixed and the transmit power is not equal in individual
branches due to the use of the SVD.

The computational complexity to select the best 𝐿 branches
from 𝑁𝑡 antennas is generally high, see e.g. [8]. To enhance
the performance of EGT while maintaining a low computa-
tional complexity, two simple antenna selection algorithms are
proposed for EGT in this study. The corresponding perfor-
mance is also analyzed theoretically; the SNR gap between
MRT and the proposed EGT with antenna selection can be
reduced to as low as 0.45 dB for 𝑁𝑡 = 4, and to 0.65 dB for
𝑁𝑡 = 8 in MIMO channels. Additionally, as mentioned earlier,
the number 𝐿 of the selected antennas in EGT should be
determined according to channel conditions, so as to maximize
the SNR. However, if a slight performance loss is tolerable
(less than 0.1 dB loss for 𝑁𝑡 ≥ 16 compared to flexible 𝐿),
a fixed number 𝐿𝑜 of the strongest branches can be used in
the proposed MIMO EGT. 𝐿𝑜 for different 𝑁𝑡 is derived. The
theoretical result shows that the suggested 𝐿𝑜 is independent
of the number of receive antennas. It is worth to point out that
the proposed EGT with fixed number of transmit antennas not
only outperforms conventional EGT but also requires fewer
number of RF (radio frequency) components; moreover each
of the selected transmit antennas employs constant power
like conventional EGT does. As a result, this scheme enjoys
better performance as well as lower hardware complexity than
conventional EGT.

In non-TDD systems where only limited feedback is avail-
able, design strategies for the proposed EGT and antenna
selection algorithms are also suggested for answering Question
3. Simulation results show that with fewer number of feedback
bits, the proposed EGT and antenna selection designs can still
outperform conventional EGT.

The rest of this paper is organized as follows: The sys-
tem model and background of beamforming are presented
in Sec. II. The proposed EGT in MIMO channels and its
performance analysis are introduced in Sec. III. Antenna selec-
tion algorithms are proposed for EGT and the corresponding
performance is analyzed theoretically in Sec. IV. Remarks on
the proposed EGT and antenna selection algorithms are given
in Sec. VI, and the corresponding design strategies to use these
proposals in a limited-feedback environment are discussed in
Sec. VII. Simulation results are provided in Sec. VIII. Finally,
concluding remarks are given in Sec. IX.

II. SYSTEM MODEL AND PRELIMINARIES

The block diagram of a beamforming system is shown in
Fig. 1. When beamforming is used in TDD systems, the trans-
mitter is assumed to know complete channel state information
(CSI); while in non-TDD systems, the transmitter is assumed
to know only partial CSI. Let the number of transmit antennas
be 𝑁𝑡. At the first stage, one transmit symbol 𝑥 is multiplied
by a 𝑁𝑡×1 beamforming vector f . The square of the 𝐿2 norm
for the beamforming vector is usually normalized to unity,
i.e. ∥f∥22 = 1, where ∥f∥22 = ∣𝑓1∣2 + ∣𝑓2∣2 + ⋅ ⋅ ⋅ ∣𝑓𝑁𝑡 ∣2 [13].
For an EGT beamforming vector, all the elements in f have

Fig. 1. A MIMO beamforming system.

equal magnitude, i.e. 𝑓𝑖 = 𝑒𝑗𝜃𝑖/
√
𝑁𝑡. After the beamforming

processing, the signal is transmitted to a 𝑁𝑟 × 𝑁𝑡 MIMO
channel, denoted by H. The elements of H is assumed to
have i.i.d. complex Gaussian distribution with zero mean. The
received signal vector is combined by a 𝑁𝑟 × 1 combining
vector g and form a scalar 𝑧, i.e.

𝑧 = g†Hf𝑥+ g†n, (1)

where A† is the Hermitian of A and n is a 𝑁𝑟 × 1 noise
vector. Let the power of 𝑥 be 𝐸𝑥 and the noise power be 𝑁0.
The instantaneous SNR of 𝑧 is shown to be

𝜌 =
𝐸𝑥
𝑁0

∣g†Hf ∣2
∥g∥22

=
𝐸𝑥
𝑁0

∣g†Hf ∣2, (2)

where ∥g∥22 is assumed to be unity without losing the gen-
erality [1]. The optimal beamforming system is given by
[14]: f𝑜 = v1 and g𝑜 = u1, where u1 and v1

are the left and the right singular vectors corresponding to
the maximum singular value, 𝜎1, respectively; the optimal
instantaneous SNR: 𝜌𝑜 = 𝐸𝑥

𝑁0
𝜎2
1 , can then be obtained using

(2). The beamforming vector f𝑜 and combining vector g𝑜 are
usually called MRT and MRC (maximum ratio combining),
respectively.

For EGT and the corresponding MRC design, the problem
to design the beamforming and combining vectors so as to
maximize the instantaneous SNR of 𝑧 is as follows:

(f𝑒, g𝑒) = arg max
g, f

∣g†Hf ∣2, with 𝑓𝑖 = 𝑒𝑗𝜃𝑖/
√
𝑁𝑡. (3)

The solution for (3) exists for MISO channels and is not
unique. Let ∠ℎ𝑖 = 𝜓𝑖. One solution is (see [1],[3]):

f𝑒−𝑚𝑖𝑠𝑜 =
1√
𝑁𝑡

(
1 𝑒−𝑗(𝜓2−𝜓1) 𝑒−𝑗(𝜓3−𝜓1) ⋅ ⋅ ⋅ 𝑒−𝑗(𝜓𝑁𝑡−𝜓1)

)𝑡
and

𝑔𝑒−𝑚𝑖𝑠𝑜 =
h𝑡f𝑒−𝑚𝑖𝑠𝑜
∣h𝑡f𝑒−𝑚𝑖𝑠𝑜∣ ,

where A𝑡 is the transpose of A. The instantaneous SNR:
𝜌𝑒−𝑚𝑖𝑠𝑜 = 𝐸𝑥

𝑁0

∥h∥2
1

𝑁𝑡
, can be obtained using the above solution

and (2), where ∥x∥21 is the square of the 𝐿1 norm for vector
x defined by ∥x∥21 = (∣𝑥1∣+ ∣𝑥2∣+ ⋅ ⋅ ⋅ ∣𝑥𝑛∣)2 [13]. In MISO
channels, 𝜎2

1 = ∥h∥22; hence the average SNR loss between
MRT and EGT in MISO channels is given by [4]

𝐸 {𝜌𝑜}
𝐸 {𝜌𝑒−𝑚𝑖𝑠𝑜} =

𝑁𝑡𝐸
{∥h∥22}

𝐸 {∥h∥21}
=

𝑁𝑡

1 + (𝑁𝑡 − 1)𝜋4
. (4)
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The maximum SNR loss in (4) is 1.05 dB, when 𝑁𝑡 tends
to infinity [4]. It is worth pointing out that Brennan showed
the SNR loss between the receive MRC and the receive EGC
is also 1.05 dB [15]. In MIMO channels, unfortunately, there
is no simple closed-form solution for (3) (see Sec. V in [1]);
hence, little knowledge is available about the performance loss
of EGT in MIMO channels. Is the SNR loss still at most 1.05
dB for EGT in MIMO channels? Interestingly, the answer is
positive and this is introduced in the following section.

III. PROPOSED MIMO EGT AND ITS PERFORMANCE

ANALYSIS

A MIMO EGT that applies cyclic optimization skill was
proposed by Zheng et. al. in [3]; the cyclic MIMO EGT
requires computing phase vector iteratively to obtain the
solution. In this section, we propose a suboptimal MIMO EGT
that does not need iterations. Later simulation result shows
the performance gap between the proposed MIMO EGT and
the cyclic MIMO EGT is only around 0.01-0.035 dB. The
proposed MIMO EGT design is motivated by the optimal EGT
design in MISO channels. That is, in MISO channels, one
optimal EGT design is 𝑒−𝑗∠h/

√
𝑁𝑡, which uses the phase

of h∗. h∗/∥h∥2 is actually the right singular vector of the
MISO channel h𝑡. Similarly, in MIMO channels, the phase of
the right singular vector v1 (corresponding to the maximum
singular value) of H may be used for MIMO EGT design.
The proposed EGT, f𝑒−𝑚𝑖𝑚𝑜, and the corresponding MRC,
g𝑒−𝑚𝑖𝑚𝑜, for MIMO channels are then as follows:

f𝑒−𝑚𝑖𝑚𝑜 =
1√
𝑁𝑡

(
1 𝑒𝑗(𝜃2−𝜃1) 𝑒𝑗(𝜃3−𝜃1) ⋅ ⋅ ⋅ 𝑒𝑗(𝜃𝑁𝑡−𝜃1)

)𝑡
,

(5a)

g𝑒−𝑚𝑖𝑚𝑜 =
Hf𝑒−𝑚𝑖𝑚𝑜

∥Hf𝑒−𝑚𝑖𝑚𝑜∥2 , (5b)

where (𝜃1 𝜃2 ⋅ ⋅ ⋅ 𝜃𝑁𝑡) is the phase of v1. From (2), the
instantaneous SNR using (5) is

𝜌𝑒−𝑚𝑖𝑚𝑜 =
𝐸𝑥
𝑁0

∥Hf𝑒−𝑚𝑖𝑚𝑜∥22
𝑁𝑡

. (6)

Lemma 1: The instantaneous SNR of the proposed EGT in
(5) is lower bounded by

𝜌𝑒−𝑚𝑖𝑚𝑜 ≥ 𝐸𝑥
𝑁0

𝜎2
1∥v1∥21
𝑁𝑡

. (7)

Proof. Let p = (𝑒𝑗𝜃1 𝑒𝑗𝜃2 ⋅ ⋅ ⋅ 𝑒𝑗𝜃𝑁𝑡 )𝑡/
√
𝑁𝑡. Using the

fact that ∥u1∥22=1, and the Cauchy-Schwarz inequality, i.e.

∣x†y∣2 ≤ ∥x∥22∥y∥22, we have:
∣∣∣u†

1Hp
∣∣∣2 ≤ ∥u1∥22∥Hp∥22 =

∥Hp∥22. Since ∥Hp∥22 = ∥Hp𝑒−𝑗𝜃1∥22 = ∥Hf𝑒−𝑚𝑖𝑚𝑜∥22, it
leads to ∣∣∣u†

1Hp
∣∣∣2 ≤ ∥Hf𝑒−𝑚𝑖𝑚𝑜∥22. (8)

The inequality: 𝜌𝑒−𝑚𝑖𝑚𝑜 ≥ 𝐸𝑥

𝑁0

∣u†
1Hp∣2
𝑁𝑡

can then be obtained
from (6) and (8). The SVD of H can also be expressed as:
H =

∑𝑟
𝑖=1 𝜎𝑖u𝑖v

†
𝑖 , where 𝑟 is the rank of H. The result in

(7) can then be obtained by applying this decomposition into
the above inequality.

The following lemmas are introduced for analyzing the
lower bound in (7).

Lemma 2: Let 𝜎𝑖 and v𝑖 be the singular values and the
right singular vectors of H, where H†H is with the Wishart
distribution. Then, 𝜎𝑖 is distributed independently of v𝑖.
Moreover, v𝑖 has the conditional Haar invariant distribution
(see pp. 536-538 in [16]).

Lemma 3: Let h𝑡 be a 1 × 𝑁𝑡 vector with i.i.d. complex
Gaussian distributed elements. Then, the following approxi-
mation can be made:

𝐸

{∥h∥21
∥h∥22

}
≈ 𝐸

{∥h∥21}
𝐸 {∥h∥22}

= 1 +
𝜋

4
(𝑁𝑡 − 1). (9)

Proof. Please see Appendix.
Note that the approximation in (9) is very accurate. The

approximation error is less than 0.003 dB, verified by the
Monte Carlo simulation for 𝑁𝑡 ≤ 64.

Theorem 1: The maximum SNR loss between the MRT
and the proposed EGT in MIMO channels is approximately
1.05 dB.

Proof. From (7), the average SNR loss between the
MRT and the proposed EGT in MIMO channels is up-

per bounded by: 𝐸{𝜌𝑜}
𝐸{𝜌𝑒−𝑚𝑖𝑚𝑜} ≤ 𝑁𝑡𝐸{𝜎2

1}
𝐸{𝜎2

1∥v1∥2
1} . From Lemma

2, the distribution of 𝜎1 and v1 are independent; hence
𝐸
{
𝜎2
1∥v1∥21

}
= 𝐸

{
𝜎2
1

}
𝐸
{∥v1∥21

}
. The upper bound can

therefore be rewritten as 𝐸{𝜌𝑜}
𝐸{𝜌𝑒−𝑚𝑖𝑚𝑜} ≤ 𝑁𝑡

𝐸{∥v1∥2
1} . Moreover,

v1 and h∗/∥h∥2 both have the conditional Haar invariant
distribution, because v1 and h∗/∥h∥2 are the right singular
vectors of H and h𝑡, respectively. Hence, the upper bound can
be expressed as 𝐸{𝜌𝑜}

𝐸{𝜌𝑒−𝑚𝑖𝑚𝑜} ≤ 𝑁𝑡

𝐸{∥h∥2
1/∥h∥2

2} . From Lemma

3, the upper bound may be approximated by

𝐸 {𝜌𝑜}
𝐸 {𝜌𝑒−𝑚𝑖𝑚𝑜} ≤ 𝑁𝑡

1 + (𝑁𝑡 − 1)𝜋4
. (10)

The term 𝑁𝑡/(1+(𝑁𝑡−1)𝜋4 ) is the same with that in (4), and
it is a monotonically increasing function of 𝑁𝑡. The maximum
value is approximately 1.05 dB as 𝑁𝑡 approaches ∞.

The SNR loss in MIMO channels may be even smaller than
that in MISO channels, since the loss in (10) is an approximate
upper bound with approximation error that is less than 0.003
dB, while that in (4) is an equality.

IV. PROPOSED TRANSMISSION ANTENNA SELECTION

(TAS) FOR EGT

When the transmit power is fixed, selecting transmit anten-
nas can move the transmission power of the unselected anten-
nas to the selected antennas. Consequently, antenna selection
can improve the performance of EGT. Similar concept was
used to improve channel capacity in [5]. In this section, two
TAS algorithms with low computational complexity for EGT
are proposed.

A. Proposed TAS for MISO EGT

For the EGT with TAS in MISO channels, the problem is to
find a subvector h𝑠 from h so that the resulting instantaneous
SNR is maximized, i.e. 𝜌𝑒−𝑚𝑖𝑠𝑜−𝑎𝑠 = 𝐸𝑥

𝑁0
maxh𝑠⊂h

{ ∥h𝑠∥2
1

𝑙𝑜

}
,

where 𝑙𝑜 is the number of elements in h𝑠. At first glance, the
required number of searches seems to be 2𝑁𝑡 − 1 (minus 1
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skips the case that all antennas are off). However, the compu-
tational complexity can be greatly reduced by reordering the
elements of the channel vector according to their power or
magnitude. This is described in Algorithm 1.

Algorithm 1 Proposed TAS for EGT in MISO channels.
1: Reorder the MISO channel h according to the power or

magnitude. Let the reordered channel vector (in increasing
order) be (ℎ𝑛1 ℎ𝑛2 ⋅ ⋅ ⋅ℎ𝑛𝑁𝑡

).

2: 𝑙𝑜 = argmax1≤𝑙≤𝑁𝑡

{
1
𝑙 (
∑𝑁𝑡

𝑘=𝑁𝑡−𝑙+1 ∣ℎ𝑛𝑘
∣)2
}
.

3: Select the strongest 𝑙𝑜 branches from the reordered chan-
nel as the 𝑁𝑡 × 1 beamforming vector, denoted by
f𝑒−𝑚𝑖𝑠𝑜−𝑎𝑠. The 𝑛𝑘-th element of f𝑒−𝑚𝑖𝑠𝑜−𝑎𝑠 is thus
given by

[f𝑒−𝑚𝑖𝑠𝑜−𝑎𝑠]𝑛𝑘
=

{
𝑒−𝑗∠ℎ𝑛𝑘√

𝑙𝑜
, 𝑁𝑡 − 𝑙𝑜 + 1 ≤ 𝑘 ≤ 𝑁𝑡;

0, otherwise.

If the Bubble sorting [17] is used in Step 1, the worst
computational order is 𝒪(𝑁2

𝑡 ). For Step 2, the computational
order is 𝒪(𝑁𝑡). Hence, the overall computational order for
Algorithm 1 is 𝒪(𝑁2

𝑡 ). The resulting instantaneous SNR is

𝜌𝑒−𝑚𝑖𝑠𝑜−𝑎𝑠 =
𝐸𝑥
𝑁0

max
1≤𝐿≤𝑁𝑡

{
1

𝐿
(

𝑁𝑡∑
𝑖=𝑁𝑡−𝐿+1

∣ℎ𝑛𝑖 ∣)2
}
. (11)

B. Proposed TAS for MIMO EGT

For the EGT in MIMO channels, the goal of TAS is to
find the best submatrix H𝑠 from H such that 𝜌𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠 =
𝐸𝑥

𝑁0
max g𝑒,f𝑒

{ ∣g†
𝑒H𝑠f𝑒∣2
𝑙𝑜

}
, where 𝑙𝑜 is the number of columns

in H𝑠, and the elements of f𝑒 are either 0 or 𝑒𝑗𝜙𝑖/
√
𝑙𝑜. Again,

no simple closed-form solution is available. Additionally, even
if there was a closed-form solution, selecting the best subma-
trix also demands a lot of computational effort. To overcome
this problem, we notice that once the combining vector g𝑒 is
determined, the equivalent channel g†

𝑒H may be regarded as a
1×𝑁𝑡 MISO channel vector; the proposed TAS in Algorithm
1 can then be applied to reduce the computational complexity
for this equivalent MISO channel. The procedure is introduced
as follows: First, let the combining vector be g𝑒 = u1. The
equivalent MISO channel is hence u†

1H = 𝜎1v
†
1. Then, apply

Algorithm 1 to this equivalent channel and determine the cor-
responding TAS for EGT, i.e. f𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠. Finally, replace the
initial combining vector u†

1 by f†𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠H
†, since this is

the MRC and it results in higher instantaneous SNR using the
following property: ∥Hf𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠∥22 ≥ ∣u†

1Hf𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠∣2,
where the derivation of the above inequality is similar to that
in Lemma 1. The proposed TAS algorithm for MIMO EGT is
concluded in Algorithm 2:

Algorithm 2 is a suboptimal solution. In fact, the per-
formance can be improved if we iteratively use g𝑒 =
Hf𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠 as a new combining vector and perform antenna
selection on the new equivalent MISO channel g†

𝑒H. However,
later simulation result show the improvement is only around
0.002-0.02 dB. Hence, Algorithm 2 without using iteration
may already provide a sufficiently good performance. The
computational order of the proposed TAS for MIMO EGT

Algorithm 2 Proposed TAS for EGT in MIMO channels.
1: Conduct the SVD to the 𝑁𝑟×𝑁𝑡 MIMO channel H. Let

u1 be the left singular vector corresponding to the largest
singular value. Let the equivalent channel be h̃ = u†

1H.
2: Reorder the equivalent channel h̃ according to the power

or magnitude. Let the reordered channel vector (in in-
creasing order) be (ℎ̃𝑛1 ℎ̃𝑛2 ⋅ ⋅ ⋅ ℎ̃𝑛𝑁𝑡

).

3: 𝑙𝑜 = argmax1≤𝑙≤𝑁𝑡

{
1
𝑙 (
∑𝑁𝑡

𝑘=𝑁𝑡−𝑙+1 ∣ℎ̃𝑛𝑘
∣)2
}
.

4: Select the strongest 𝑙𝑜 branches from the reordered chan-
nel as the 𝑁𝑡 × 1 beamforming vector, denoted by
f𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠. The 𝑛𝑘-th element of f𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠 is thus
given by

[f𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠]𝑛𝑘
=

{
𝑒−𝑗∠ℎ̃𝑛𝑘√

𝑙𝑜
, 𝑁𝑡 − 𝑙𝑜 + 1 ≤ 𝑘 ≤ 𝑁𝑡;

0, otherwise.

in Algorithm 2 is still 𝒪(𝑁2
𝑡 ). Moreover, let the reordered

vector of v1 be (𝑣𝑛1 𝑣𝑛2 ⋅ ⋅ ⋅ 𝑣𝑛𝑁𝑡
)𝑡. The instantaneous SNR

of the EGT with TAS is lower bounded by

𝜌𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠 ≥ 𝐸𝑥
𝑁0

∣𝜎1v†
1f𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠∣2

=
𝐸𝑥
𝑁0

𝜎2
1 max
1≤𝐿≤𝑁𝑡

{
1

𝐿
(

𝑁𝑡∑
𝑖=𝑁𝑡−𝐿+1

∣𝑣𝑛𝑖 ∣)2
}
.

(12)

The lower bound of the resulting instantaneous SNR in Algo-
rithms 1 and 2, i.e. (11) and (12), are analyzed theoretically
in the following section.

V. PERFORMANCE ANALYSIS OF PROPOSED TAS FOR

EGT

A. Performance analysis of proposed TAS in MISO EGT.

Consider the performance of Algorithm 1 first. From (11),
the average SNR is 𝐸 {𝜌𝑒−𝑚𝑖𝑠𝑜−𝑎𝑠}. Obtaining a closed-form
representation for 𝐸 {𝜌𝑒−𝑚𝑖𝑠𝑜−𝑎𝑠} may not be easy, since
the values 1

𝐿 (
∑𝑁𝑡

𝑖=𝑁𝑡−𝐿+1 ∣ℎ𝑛𝑖 ∣)2 corresponding to different
𝐿 are not i.i.d. The analysis for non-i.i.d. order statistics is
complicated (see Chapter 5 in [18]). Here a lower bound for
𝐸 {𝜌𝑒−𝑚𝑖𝑠𝑜−𝑎𝑠} is derived instead. 𝐸 {𝜌𝑒−𝑚𝑖𝑠𝑜−𝑎𝑠} can be
lower bounded by

𝐸 {𝜌𝑒−𝑚𝑖𝑠𝑜−𝑎𝑠} ≥ 𝐸𝑥
𝑁0

max
1≤𝐿≤𝑁𝑡

𝐸

{
1

𝐿
(

𝑁𝑡∑
𝑖=𝑁𝑡−𝐿+1

∣ℎ𝑛𝑖 ∣)2
}
.

(13)
That is, the lower bound is achieved by selecting a fixed
number 𝐿𝑜 of branches, where 𝐿𝑜 can be obtained by using
the Monte Carlo simulation of the following equation.

𝐿𝑜 = arg max
1≤𝐿≤𝑁𝑡

{
𝐸{ 1

𝐿
(

𝑁𝑡∑
𝑖=𝑁𝑡−𝐿+1

∣ℎ𝑛𝑖 ∣)2}
}
. (14)

𝐿𝑜 for different 𝑁𝑡 is tabulated in Tab. I, which is obtained
by running 600,000 channel realizations using (14). The EGT
with fixed number 𝐿𝑜 of transmit branches using Tab. I is
called the “EGT with fixed TAS” for short.
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TABLE I
OPTIMAL 𝐿 FOR FIXED NUMBER OF TRANSMIT BRANCHES.

Using Jensen’s Inequality, i.e. 𝐸 {𝑔(𝑥)} ≥ 𝑔(𝐸 {𝑥}), (13)
can be rewritten as

𝐸 {𝜌𝑒−𝑚𝑖𝑠𝑜−𝑎𝑠} ≥ 𝐸𝑥
𝑁0

1

𝐿𝑜
(𝐸{

𝑁𝑡∑
𝑖=𝑁𝑡−𝐿𝑜+1

∣ℎ𝑛𝑖 ∣})2

=
𝐸𝑥
𝑁0𝐿𝑜

(

𝑁𝑡∑
𝑖=𝑁𝑡−𝐿𝑜+1

𝐸 {∣ℎ𝑛𝑖 ∣})2 .(15)

Obtaining the lower bound for 𝐸 {𝜌𝑒−𝑚𝑖𝑠𝑜−𝑎𝑠} in (15) re-
quires

∑𝑁𝑡

𝑖=𝑁𝑡−𝐿𝑜+1 𝐸 {∣ℎ𝑛𝑖 ∣}, which is actually the same
problem of deriving the mean SNR of the receive EGC
with the 𝐿𝑜 strongest branches. Deriving the PDF of∑𝑁𝑡

𝑖=𝑁𝑡−𝐿𝑜+1 ∣ℎ𝑛𝑖 ∣ is difficult; in fact, even a closed-form PDF
result for

∑𝐿
𝑖=1 ∣ℎ𝑖∣ has not been solved for 𝐿 > 2, see [9],

[10] and [15]. However, deriving an accurate approximation
for the mean of

∑𝑁𝑡

𝑖=𝑁𝑡−𝐿𝑜+1 ∣ℎ𝑛𝑖 ∣ may be possible. The
derivation needs the following lemma.

Lemma 4: Let 𝜇𝑁𝑡:𝑟 be the mean of the 𝑟-th smallest value
from 𝑁𝑡 samples, and 𝜇𝑖:𝑖 be the mean of the maximum value
from 𝑖 samples. 𝜇𝑁𝑡:𝑟 can be expressed by (see p. 45 in [18])

𝜇𝑁𝑡:𝑟 =

𝑁𝑡∑
𝑖=𝑟

(−1)𝑖−𝑟
(
𝑖− 1

𝑟 − 1

)(
𝑁𝑡

𝑖

)
𝜇𝑖:𝑖. (16)

If the distribution is Rayleigh, 𝜇𝑁𝑡:𝑁𝑡 = 𝐸
{∣ℎ𝑛𝑁𝑡

∣}.
Theorem 2: Let h𝑡 be a 1 × 𝑁𝑡 channel vector whose

elements have i.i.d. complex Gaussian distribution with zero
mean and variance 𝜎2

ℎ. The average SNR of the EGT with
TAS can be approximately lower bounded by

𝐸 {𝜌𝑒−𝑚𝑖𝑠𝑜−𝑎𝑠} ≥ 𝐸𝑥
𝑁0

1

𝐿𝑜
(

𝑁𝑡∑
𝑖=𝑁𝑡−𝐿𝑜+1

𝐸 {∣ℎ𝑛𝑖 ∣})2

≈ 𝐸𝑥
𝑁0

𝜎2
ℎ

𝐿𝑜

(
𝑁𝑡∑

𝑟=𝑁𝑡−𝐿𝑜+1

𝑁𝑡∑
𝑖=𝑟

(−1)𝑖−𝑟
(
𝑖 − 1

𝑟 − 1

)(
𝑁𝑡

𝑖

)

⋅
(√

𝛼(𝑖)− 1

8
𝛽(𝑖)

√
1

𝛼3(𝑖)

))2

, (17)

where

𝛼(𝑖) = (1 +

𝑖∑
𝑛=2

1

𝑛
) and 𝛽(𝑖) = (1 +

𝑖∑
𝑛=2

1

𝑛2
). (18)

Proof: The mean value of the function 𝑔(𝑥) can be approx-
imated by (see p. 150 in [19])

𝐸 {𝑔(𝑥)} ≈ 𝑔(𝐸 {𝑥}) + 𝑔′′(𝐸 {𝑥})𝑉 𝑎𝑟 {𝑥}
2

. (19)
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Fig. 2. Approximation error for the mean value of the order statistics from
Rayleigh distribution.

Letting 𝑔(𝑥) =
√
𝑥 leads to the following approximation:

𝐸
{∣ℎ𝑛𝑁𝑡

∣} ≈
√
𝐸
{∣ℎ𝑛𝑁𝑡

∣2}− 1

8
𝑉 𝑎𝑟

{∣ℎ𝑛𝑁𝑡
∣2}

⋅
√

1

(𝐸
{∣ℎ𝑛𝑁𝑡

∣2})3 . (20)

The value of 𝐸{∑𝑁𝑡

𝑖=𝑁𝑡−𝐿+1 ∣ℎ𝑛𝑖 ∣2} was first derived in [11],
and later a simpler derivation using virtual branch analysis was
given in [12] to find the follows:

𝐸{
𝑁𝑡∑

𝑖=𝑁𝑡−𝐿+1

∣ℎ𝑛𝑖 ∣2} = 𝐿(1 +

𝑁𝑡∑
𝑛=𝐿+1

1

𝑛
)𝜎2
ℎ, (21a)

𝑉 𝑎𝑟{
𝑁𝑡∑

𝑖=𝑁𝑡−𝐿+1

∣ℎ𝑛𝑖 ∣2} = 𝐿(1 +

𝑁𝑡∑
𝑛=𝐿+1

1

𝑛2
)𝜎4
ℎ. (21b)

Letting 𝐿 = 1 in (21) and using (18) results in the following
equalities:

𝐸
{∣ℎ𝑛𝑁𝑡

∣2} = 𝛼(𝑁𝑡)𝜎
2
ℎ and 𝑉 𝑎𝑟

{∣ℎ𝑛𝑁𝑡
∣2} = 𝛽(𝑁𝑡)𝜎

4
ℎ.
(22)

Applying (22) to (20) leads to 𝐸
{∣ℎ𝑛𝑁𝑡

∣} ≈
𝜎ℎ

(√
𝛼(𝑁𝑡)− 1

8𝛽(𝑁𝑡)
√

1
𝛼(𝑁𝑡)3

)
. The result in (17)

can therefore be reached, by using (15), (16) and the above
approximation.

The approximation of 𝐸
{∣ℎ𝑛𝑁𝑡

∣} is accurate. The approxi-
mation error for 𝐸

{∣ℎ𝑛𝑁𝑡
∣} is shown in Fig. 2, by the Monte

Carlo simulation for 600,000 channel realizations. For𝑁𝑡 ≥ 8,
the approximation error is less than 0.01 dB. Additionally, the
approximation error of (

∑𝑁𝑡

𝑖=𝑁𝑡−𝐿𝑜+1𝐸 {∣ℎ𝑛𝑖 ∣})2 in (17) is
less than 0.1 dB for 𝑁𝑡 > 3. From Theorem 2, the SNR
loss between MRT and the proposed EGT with TAS in MISO
channels is approximately upper bounded by

𝐸 {𝜌𝑜}
𝐸 {𝜌𝑒−𝑚𝑖𝑠𝑜−𝑎𝑠} ≤ 𝐿𝑜𝐸

{∥h∥22}
(
∑𝑁𝑡

𝑖=𝑁𝑡−𝐿𝑜+1𝐸 {∣ℎ𝑛𝑖 ∣})2
. (23)
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B. Performance analysis of proposed TAS in MIMO EGT.

Using Lemma 2 and similar procedure for MISO case, (12)
can be expressed as

𝐸 {𝜌𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠}

≥ 𝐸𝑥
𝑁0

𝐸
{
𝜎2
1

}
max

1≤𝐿≤𝑁𝑡

{
𝐸{ 1

𝐿
(

𝑁𝑡∑
𝑖=𝑁𝑡−𝐿+1

∣𝑣𝑛𝑖 ∣)2}
}
.(24)

The lower bound of 𝐸 {𝜌𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠} is achieved by using
fixed TAS with fixed number 𝐿𝑜 of antennas. 𝐿𝑜 can be
determined by running the Monte Carlo simulation of the
following equation:

𝐿𝑜 = arg max
1≤𝐿≤𝑁𝑡

{
𝐸{ 1

𝐿
(

𝑁𝑡∑
𝑖=𝑁𝑡−𝐿+1

∣𝑣𝑛𝑖 ∣)2}
}
. (25)

When 𝐿𝑜 is applied to (24), the resulting SNR is exactly the
average SNR of MIMO EGT with fixed TAS, which can be
regarded as the lower bound SNR for MIMO EGT with TAS.
A much easier alternative to determine 𝐿𝑜 for MIMO channels
is introduced in the following theorem.

Theorem 3: Assume the equivalent channel h̃ = u1H
† is

used to perform antenna selection. Let 𝐿𝑜 be the best fixed
number of transmit antennas for EGT with fixed TAS. The 𝐿𝑜
values are independent of number of receive antennas; that is,
the 𝐿𝑜 values in Tab. I originally designed for MISO channels
are also the best values for MIMO channels.

Proof. From (25), v1 has the same distribution with
h∗/∥h∥2. Hence, 𝐿𝑜 is determined by

𝐿𝑜 ≡ arg max
1≤𝐿≤𝑁𝑡

{
𝐸{ 1

𝐿
(

𝑁𝑡∑
𝑖=𝑁𝑡−𝐿+1

∣ℎ𝑛𝑖 ∣
∥h∥2 )

2}
}

≡ arg max
1≤𝐿≤𝑁𝑡

{
𝐸{ 1

𝐿
(

𝑁𝑡∑
𝑖=𝑁𝑡−𝐿+1

∣ℎ𝑛𝑖 ∣)2}
}
. (26)

The theorem is proved since the final expression in (26) is the
same with that in (14).

With the result in Theorem 3, if the equivalent channel h̃ =
u1H

† is used to perform antenna selection, there is no need
to determine 𝐿𝑜 for different 𝑁𝑟 in MIMO channels. This
not only simplifies the off-line computational effort but also
reduces the memory requirement to store 𝐿𝑜 for different 𝑁𝑟,
if EGT with fixed TAS is used. From (24) and using the fact
that h∗/∥h∥2 and v𝑖 have the same distribution, the SNR loss
is upper bounded by

𝐸 {𝜌𝑜}
𝐸 {𝜌𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠} ≤ 𝐿𝑜

(
∑𝑁𝑡

𝑖=𝑁𝑡−𝐿𝑜+1𝐸{∣ℎ𝑛𝑖 ∣/∥h∥2})2
.

(27)

VI. REMARKS ON EGT WITH TAS AND EGT WITH FIXED

TAS

For description convenience, let us call the proposed
EGT with TAS as “EGT+TAS”, and EGT with fixed TAS
as“EGT+fixed TAS”. The proposed EGT+fixed TAS has sev-
eral advantages. First, its SNR loss is smaller than EGT.
Second, each antenna employs constant power like EGT does;
hence, design effort for PAs can be greatly reduced, compared
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Fig. 3. PAPR comparison of MRT and EGT+TAS, and the corresponding
PAPR reduction scheme.

to MRT. Third, except for 𝑁𝑡 ≤ 3, the required number of RF
components is fewer than that of EGT because 𝐿0 < 𝑁𝑡.

Although the proposed EGT+TAS outperforms EGT+fixed
TAS, it does not have the second and the third advantages
of EGT+fixed TAS. EGT+TAS does not have constant power
since each antenna needs to support a dynamic range of
transmit power 𝐸𝑥/𝐿, where 𝐿 = 1, 2, ⋅ ⋅ ⋅𝑁𝑡. Nevertheless,
even if EGT+TAS does not have constant power, its PAPR
is still smaller than MRT. The PAPR comparison between
EGT+TAS and MRT for 𝑁𝑡 = 4 and QPSK modulation is
shown in Fig. 3. Let 𝐸𝑥 = 1; the power levels for EGT+TAS
are 1/4, 1/3, 1/2 and 1. Since the four power levels do not
occur in equal probability, we use Morte Carlo simulation
to obtain the average power, which is 0.3535. Hence, the
PAPR can be obtained by using the formula 𝐸𝑥/𝐿

0.3535 , and they
are −1.49 dB, −0.24 dB, 1.52 dB and 4.53 dB, which are
shown in Fig. 3. From the figure, EGT+TAS (circle-curve)
outperforms MRT (solid-curve) in terms of PAPR.

If a slight performance degradation is allowed, the PAPR
for EGT+TAS can be considerably reduced. That is, if the
numbers of selected antennas that are fewer than 𝑃 are not
considered in EGT+TAS, where 𝑃 is a non-negative integer,
the performance does not degrade much while the PAPR can
be reduced. Taking 𝑁𝑡 = 4 for instance, if 𝑃 = 1, the possible
numbers of selected antennas are 2, 3 and 4; selecting only
one antenna is not considered in this case. Tab. II shows
the suggested 𝑃 values for different 𝑁𝑡 that degrade system
performance by less than 0.01 dB and 0.025 dB, respectively.
Please note that ‘less than’ is used because actual performance
loss is smaller than these two values. For instance, for 𝑁𝑡 = 8,
the actual loss by letting 𝑃 = 3 is 0.006 dB (< 0.01 dB), and
letting 𝑃 = 4 is 0.02 dB (< 0.025 dB). Using this method
and letting 𝑃 = 1, the PAPR performance of EGT+TAS with
𝑁𝑡 = 4 is greatly improved as shown in the triangular-curve in
Fig. 3; the power levels in this case are 1/4, 1/3 and 1/2, and
the average power is 0.33. Hence the corresponding PAPR are
−1.21 dB, 0.04 dB and 1.8 dB. For description convenience,
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TABLE II
SUGGESTED 𝑃 FOR EGT+TAS WITH PAPR REDUCTION.

we called this method “EGT+TAS/PAPR” in the following
sections.

VII. DESIGN STRATEGIES FOR NON-TDD SYSTEMS

For all the four proposed EGT schemes, i.e. the MIMO EGT
in Sec. III, EGT+fixed TAS, EGT+TAS, and EGT+TAS/PAPR,
multiplying 𝑒𝑗𝜙 does not affect the resulting instantaneous
SNR, i.e. ∥𝑒𝑗𝜙Hf𝑒∥22 = ∥Hf𝑒∥22, where f𝑒 denotes the
proposed beamforming vectors. Take EGT+TAS in MIMO
channels for instance; some elements of the equivalent MISO
channel h̃ may not be selected if EGT+TAS is applied. Let ĥ
be the 𝑙𝑜× 1 vector that eliminates the unselected elements of
h̃ without reordering. Let ℎ̂1 be the first element of ĥ. The
𝑛𝑘-th element of f𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠 becomes (refer to Algorithm 2)

[f𝑒−𝑚𝑖𝑚𝑜−𝑎𝑠]𝑛𝑘
=

{
𝑒−𝑗(∠ℎ̃𝑛𝑘

−∠ℎ̂1)

√
𝑙𝑜

, 𝑁𝑡 − 𝑙𝑜 + 1 ≤ 𝑘 ≤ 𝑁𝑡;
0, otherwise.

(28)
From (28), the phase quantization for antenna 1 of the selected
antennas can be waived.

To conduct beamforming, the transmitter needs to know 1.)
antenna indices of the selected antennas, and 2.) quantized
beamforming vectors. Let us discuss these two items as
follows:

Item 1: Index representations of selected antennas.
For EGT+TAS, it demands 𝑁𝑡 bits to indicate the selection
status of each antenna. When 𝑁𝑡 is large, many bits are
required. Fortunately, both EGT+TAS/PAPR and EGT+fixed
TAS can somewhat overcome this issue. For EGT+TAS/PAPR,
the number of selected antennas should be greater than 𝑃 .
Hence, there are totally 2𝑁𝑡 −∑𝑃

𝑖=0

(
𝑁𝑡

𝑖

)
possible selection

combinations. Taking 𝑁𝑡 = 4 and 𝑃 = 1 for instance, if
each bit indicates the selection status of one antenna and
1 represents the status “selected”, then, 0000, 1000, 0100,
0010 and 0001 denote the selection combinations that are not
considered. Hence there are totally 11 selection combinations
in this case. For EGT+fixed TAS, the number of selected
antenna 𝐿𝑜 is fixed. Thus there are

(
𝑁𝑡

𝐿𝑜

)
possible selection

combinations. Take 𝑁𝑡 = 4 for instance; 𝐿𝑜 = 3 by Tab. I;
hence there are

(
4
3

)
= 4 possible selection combinations.

Now consider Item 2. Phase information can be quantized
by vector quantization (VQ) or scalar quantization (SQ) as
follows.

Item 2.1: Quantizing beamforming vectors using VQ.
For VQ, we use the optimal Lloyd codebook for EGT pro-
posed by Murthy and Rao in [2]. Let the number of Lloyd
codewords be 𝑀 , the code rates 𝐵 including Items 1 and 2

are log2𝑀2𝑁𝑡 for EGT+TAS, log2𝑀(2𝑁𝑡 −∑𝑃
𝑖=0

(
𝑁𝑡

𝑖

)
) for

EGT+TAS/PAPR, and log2𝑀
(
𝑁𝑡

𝐿𝑜

)
for EGT+fixed TAS.

It is worth to point out that the numbers of Lloyd codewords
for EGT and for the proposed EGT with antenna selection
schemes are different. For instance, if 𝑁𝑡 = 4 and 𝐵 = 10,
the number of Lloyd codewords for EGT is 1024, but that for
EGT+fixed TAS is 256, since 2 of the 10 bits are used for
antenna selection. Therefore, the proposed EGT+fixed TAS
not only requires smaller memory to store the codebook (thus
fewer computations in exhaustive search), but also requires
fewer number of RF components than EGT. Moreover, later
simulation results show that with smaller 𝐵, EGT+fixed TAS
can still outperform EGT.

Item 2.2: Quantizing beamforming vectors using SQ.
Next, let us discuss SQ. Previous works allocate integer bits
in each antenna to perform scalar quantization, e.g. [3],[4];
hence the number of quantization levels in each antenna is 2𝑏𝑖 ,
where 𝑏𝑖 is the assigned bit number in antenna 𝑖, 1 < 𝑖 ≤ 𝑁𝑡.
Although such scalar quantization always leads to integer bits
to represent the codewords, it may not be efficient due to the
following reasons: First, if 𝑏𝑖 = 𝑏 for 1 < 𝑖 ≤ 𝑁𝑡, each
antenna has the same bits. The allowable code rate in this
case is (𝑁𝑡 − 1)𝑏. Second, if each antenna has different bits,
the transmitter needs to know bit allocation table in advance
[3]. To overcome these issues, we may let the number of
quantization levels in each antenna be a positive integer 𝐶.
Since there are 𝑁𝑡 − 1 elements to be quantized, there are
totally 𝐶𝑁𝑡−1 codewords. For instance, if 𝐶 = 5 and 𝑁𝑡 = 4,
there are 53 = 125 codewords. Such SQ can be conducted as
follows: Let Δ = 2𝜋/𝐶. The quantized phase 𝜙𝑛𝑘

is obtained
by the following equation:

𝜙𝑛𝑘
= (round{𝜙𝑛𝑘

/Δ}) ⋅Δ, for 𝑁𝑡 − 𝑙𝑜 + 1 ≤ 𝑘 ≤ 𝑁𝑡,

where round{.} is the rounding function. Therefore, the code
rates 𝐵 including Item 1 and Item 2 are log2 𝐶

𝑁𝑡−12𝑁𝑡

for EGT+TAS, log2 𝐶
𝑁𝑡−1(2𝑁𝑡 −∑𝑃

𝑖=0

(
𝑁𝑡

𝑖

)
) for

EGT+TAS/PAPR, and log2 𝐶
𝑁𝑡−1

(
𝑁𝑡

𝐿𝑜

)
for EGT+fixed

TAS. Taking EGT+fixed TAS with 𝑁𝑡 = 8 for instance,
𝐿𝑜 = 6; letting 𝐶 = 3 leads to the code rate 𝐵 = 15.9.

VIII. SIMULATION RESULT

Two kinds of performance curves were shown, i.e. the SNR
loss and the BER (bit error rate). The simulation was con-
ducted using the following settings: The channel coefficients
were assumed to be i.i.d. complex Gaussian distributed with
zero mean. 60,000 different channel realizations were used to
evaluate the performance. The 16-QAM modulation was used
for the BER evaluation. The notation 𝑚T𝑛R denotes 𝑁𝑡 = 𝑚
and 𝑁𝑟 = 𝑛.

Example 1: SNR Loss as a function of 𝑁𝑡: The SNR loss
between MRT and various EGT schemes are shown in Figs. 4-
5, for 𝑁𝑟 = 1 (MISO channel) and 𝑁𝑟 = 2 (MIMO channel),
respectively. Observations are summarized as follows: 1.) As
𝑁𝑡 increases, the SNR loss of EGT increases (toward the
upper bound of 1.05 dB). When 𝑁𝑡 = 32, the loss is around
1.01 dB for MISO channel and that is around 0.9 dB for
MIMO channels. This is reasonable because the SNR loss of
the proposed EGT in MIMO channels is smaller than that
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Fig. 4. SNR loss as a function of the number of transmit antennas for
𝑁𝑟 = 1.
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Fig. 5. SNR loss as a function of the number of transmit antennas for
𝑁𝑟 = 2.

in MISO channels (see Sec. III). 2.) The SNR loss between
MRT and the proposed EGT+TAS is around 0.32-0.64 dB in
MIMO channels and around 0.35-0.67 dB in MISO channel;
the improvement of the EGT+TAS is hence more pronounced
in MIMO channels than in MISO channels. 3.) The SNR loss
between the proposed EGT+TAS and EGT+fixed TAS is less
than 0.1 dB for 𝑁𝑡 ≥ 16. More specifically, TAS can improve
the performance of EGT by around 0.3-0.35 dB, and fixed
TAS can improve the performance of EGT by up to 0.3 dB.
4.) From Fig. 5, for large 𝑁𝑡, the performance gap between
the proposed EGT and the cyclic EGT in [3], which requires
iterations and could be served as a benchmark for MIMO
EGT, is only around 0.035 dB. 5.) If iterations are applied
in the proposed EGT+TAS, the performance can be slightly
improved by around 0.02 dB, where the number of iterations
is 20 in this example.

Example 2: BER comparison of MRT, EGT, EGT+fixed
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Fig. 6. BER comparison of MRT and the EGT proposals for 𝑁𝑟 = 1.
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Fig. 7. BER comparison of VQ-EGT and VQ-EGT+TAS in a 3T1R channel.

TAS and EGT+TAS: The BER of MRT and proposed EGT
schemes, as a function of SNR for 𝑁𝑟 = 1 is shown in
Fig. 6. For 𝑁𝑡 = 8, the performance gap between MRT and
EGT+TAS is less than 0.65 dB and that between MRT and
EGT+fixed TAS is less than 0.8 dB; the above performance
gaps decreases from 0.65 to 0.45 dB, and from 0.8 to 0.7 dB,
as 𝑁𝑡 decreases from 8 to 4, respectively.

Example 3: BER comparison of EGT designs with VQ:
In this example, BER performance of various EGT designs are
compared. The Lloyd codebooks for EGT proposed in [2] is
used. Let 𝑁𝑡 = 3 and 𝑁𝑟 = 1. Fig. 7 shows the performance
of EGT and the proposed EGT+TAS. The code rate (number
of feedback bits) is 𝐵. For EGT+TAS, 3 bits of 𝐵 are used
to indicate the selection status. From Fig. 7, EGT+TAS with
𝐵 = 6 outperforms EGT with 𝐵 = 8. Moreover, EGT+TAS
with 𝐵 = 8 outperforms EGT with 𝐵 = 8 by around 0.4 dB.

Now let 𝑁𝑡 = 4 and 𝑁𝑟 = 1. Fig. 8 shows the perfor-
mance of EGT, EGT+fixed TAS and EGT+TAS/PAPR. For
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Fig. 8. BER comparison of VQ-EGT, VQ-EGT+TAS and VQ-
EGT+TAS/PAPR in a 4T1R channel.

EGT+fixed TAS, 𝐿𝑜 = 3 for 𝑁𝑡 = 4 according to Tab. I;
hence, 2 bits, i.e. log2

(
4
3

)
, of 𝐵 are used to indicate the

selection status. For EGT+TAS/PAPR, we let 𝑃 = 1 and thus
the performance degradation is less than 0.025 dB according to
Tab. II; that is, there are 24−(40)−(41) = 11 possible selection
combinations and this is equivalent to 3.46 bits; hence, if
the numbers of Lloyd codewords are 𝑀 = 23, 46 and 93,
the corresponding code rates are 𝐵 = log2 11 ⋅ 23 = 7.98,
log2 11 ⋅ 46 = 8.98 and log2 11 ⋅ 93 = 9.99, respectively.
From Fig. 8, both the proposed EGT+fixed TAS with 𝐵 =
8 and EGT+TAS/PAPR with 𝐵 = 7.98 outperform EGT
with 𝐵 = 9; also, the number of required RF components
for the proposed EGT+fixed TAS is smaller than that for
EGT. Moreover, EGT+fixed TAS with 𝐵 = 8 outperforms
EGT+TAS/PAPR with 𝐵 = 7.98. This is reasonable since
EGT+TAS/PAPR uses 𝐵 = 3.46 to indicate selection status,
which is 1.46 bits more than that for EGT+fixed TAS. When 𝐵
increases, more bits are used for Lloyd codebooks. In this case,
EGT+TAS/PAPER with 𝐵 = 9.99 outperforms EGT+fixed
TAS with 𝐵 = 10.

Example 4: Proposed EGT designs with SQ: When the
number of transmit antennas is large, constructing the optimal
Lloyd codebook may become difficult. Scalar quantization is
a suitable solution for this case. The BER performance of
the proposed EGT designs with scalar quantization in 16T2R
and 8T2R channels is shown in Fig. 9. For EGT+TAS/PAPR,
we let the performance loss be less than 0.025 dB; the
corresponding code rate can then be obtained using Tab. II and
the discussion in Sec. VII. Take 𝑁𝑡 = 16 for instance; 𝑃 = 10
according to Tab. II, and there are 216 −∑10

𝑖=1

(
16
𝑖

)
= 6886

different selection combinations. If 𝐶 = 3, the corresponding
code rate is 𝐵 = log2 3

(16−1) ⋅ 6886 = 36.5, which is
shown in the solid-plus curve in Fig. 9. Constructing optimal
codebook in these cases might be difficult; moreover, the
required memory and computational time are also prohibitive.
In contrast, using scalar quantization can waive the memory;
the corresponding computational complexity is also low.
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Fig. 9. BER comparison of the proposed SQ-EGT+TAS and SQ-
EGT+TAS/PAPR in 8T2R and 16T2R channels.

IX. CONCLUSION

An EGT design for MIMO channels was proposed; the
corresponding theoretical results showed that the maximum
SNR loss between the proposed EGT and the optimal MRT
(both employing MRC at the receiver) is approximately 1.05
dB in MIMO channels; the approximated result was compared
to Morte Carlo simulation result, and the difference between
the two results is less than 0.003 dB. Moreover, this study
proposed to adopt antenna selection for further improving the
performance of EGT. Using the proposed antenna selection
algorithms in EGT, the SNR loss between EGT and MRT
could be reduced to as low as to 0.45-0.65 dB for 𝑁𝑡

ranging from 4 to 8 in MIMO channels. As a result, a
transceiver with low complexity could be realized using the
proposed EGT+TAS, EGT+TAS/PAPR and EGT+fixed TAS,
in a penalty of slight performance degradation. Furthermore,
we also discussed the design strategies to use the proposed
EGT and antenna selection algorithms in non-TDD systems.

X. APPENDIX

A. Proof of Lemma 3.

Using the following equality:

∥h∥21
∥h∥22

= 1 +

𝑁𝑡∑
𝑖=1

𝑁𝑡∑
𝑗=1,𝑗 ∕=𝑖

∣ℎ𝑖∣∣ℎ𝑗 ∣
∥h∥22

, ℎ𝑖, ℎ𝑗 ∈ h,

results in

𝐸

{∥h∥21
∥h∥22

}
= 1 +𝑁𝑡(𝑁𝑡 − 1)𝐸

{ ∣ℎ𝑖∣∣ℎ𝑗 ∣
∥h∥22

∣∣∣∣ℎ𝑖, ℎ𝑗 ∈ h

}
. (29)

Let the mean values of 𝑥 and 𝑦 be 𝜇𝑥 and 𝜇𝑦 , respectively.
The mean value of a function 𝑔(𝑥, 𝑦) of two random variables
can be approximated by (see p. 215 in [19]):

𝐸 {𝑔(𝑥, 𝑦)} ≈ 𝑔(𝜇𝑥, 𝜇𝑦) +
1

2

(
∂2𝑔(𝜇𝑥, 𝜇𝑦)

∂𝑥2
𝜎2
𝑥

+ 2
∂2𝑔(𝜇𝑥, 𝜇𝑦)

∂𝑥∂𝑦
𝐶𝑥𝑦 +

∂2𝑔(𝜇𝑥, 𝜇𝑦)

∂𝑦2
𝜎2
𝑦

)
,

(30)



TSAI et al.: EQUAL GAIN TRANSMISSION WITH ANTENNA SELECTION IN MIMO COMMUNICATIONS 1479

where 𝐶𝑥𝑦 is the covariance defined by 𝐶𝑥𝑦 = 𝐸 {𝑥𝑦}−𝜇𝑥𝜇𝑦 .
Let 𝑥 = ∣ℎ𝑖∣∣ℎ𝑗 ∣, 𝑦 = ∥h∥22 and 𝑔(𝑥, 𝑦) = 𝑥/𝑦; (30) can be
rewritten as

𝐸

{
𝑥

𝑦

}
≈ 𝜇𝑥
𝜇𝑦

+
1

2

(−2

𝜇2
𝑦

𝐶𝑥𝑦 +
2𝜇𝑥
𝜇3
𝑦

𝜎2
𝑦

)
, (31)

𝜇𝑥 and 𝜇𝑦 were shown in [15] and [4] to be 𝜇𝑥 =
𝜋
4𝜎

2
ℎ and 𝜇𝑦 = 𝑁𝑡𝜎

2
ℎ, respectively. Since 𝑦 has a chi-square

distribution, 𝜎2
𝑦 is 𝜎2

𝑦 = 𝑁𝑡𝜎
4
ℎ. To determine 𝐶𝑥𝑦 , we first

need 𝐸 {𝑥𝑦}. From the definition of 𝑥 and 𝑦, we have

𝐸 {𝑥𝑦} = 𝐸
{∥h∥22∣ℎ𝑖∣∣ℎ𝑗 ∣ ∣∣ ℎ𝑖, ℎ𝑗 ∈ h

}
= 𝐸

{∣ℎ𝑖∣3∣ℎ𝑗 ∣}+ 𝐸
{∣ℎ𝑖∣∣ℎ𝑗 ∣3}

+

𝑁𝑡∑
𝑘=1,𝑘 ∕=𝑖,𝑗

𝐸
{∣ℎ𝑘∣2∣ℎ𝑖∣∣ℎ𝑗 ∣}

= 2𝐸
{∣ℎ𝑖∣3}𝐸 {∣ℎ𝑗 ∣}

+(𝑁𝑡 − 2)𝐸
{∣ℎ𝑘∣2} (𝐸 {∣ℎ𝑖∣})2. (32)

From [19], 𝐸
{∣ℎ𝑖∣3} = 3

4

√
𝜋𝜎3

ℎ. Hence, we have

𝐸 {𝑥𝑦} =
1

4
𝑁𝑡𝜋𝜎

4
ℎ +

1

4
𝜋𝜎4

ℎ and 𝐶𝑥𝑦 =
𝜋𝜎4

ℎ

4
.

Consequently,
(

−2
𝜇2
𝑦
𝐶𝑥𝑦 +

2𝜇𝑥

𝜇3
𝑦
𝜎2
𝑦

)
in (31) is zero, and thus

𝐸
{ ∣ℎ𝑖∣∣ℎ𝑗∣

∥h∥2
2

∣∣∣ ℎ𝑖, ℎ𝑗 ∈ h
}

= 𝜋
4𝑁𝑡

. The result in (9) can hence
be obtained using (29) and the above equality.
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