
系統晶片設計平面規劃之研究
Floorplanning for System-on-a-chip Design

計畫編號：NSC 89-2215-E-009-117
執行期間：89年8月1號至90年7月31日

主持人：張耀文副教授 交通大學資訊科學系

一﹑英文摘要
Due to the increasing complexity in SOC design,

hierarchical design and IP modules are widely used. This
trend makes module floorplanning/placement much more
critical to the quality of a circuit design. In this project, we
develop efficient, flexible, and effective representations for
floorplan designs and explore their applications to the
placement of hard, soft, preplaced, rectilinear, and
symmetry modules. In deep submicron technology,
communication between different blocks has significantly
increased, and interconnect delay has become the dominant
factor in total circuit delay. Therefore, in this project, we
also combine interconnect planning with floorplanning.

二﹑中文摘要
由於 SOC 設計複雜度的與日俱增，階層化設計與 IP

模組已被廣泛地使用。此趨勢使得模組的平面規劃/置放

對電路設計品質的影響變得更為重要。在本計畫中，我

們發展有效、具彈性，且能處理硬、軟、預先置放、 任
意直線及對稱模組的平面表示法。而在深次微米的技術

下，模組間訊號連通量正大幅地增加，且連線延遲變成

決定整體電路延遲的最主要因素；因此，本計畫亦探討

連線與平面的整合規劃。

三﹑背景和目的
1. Background

Due to the growth in design complexity, the circuit size
is getting larger. To cope with the increasing design
complexity, hierarchical design and IP modules are widely
used. The trend makes module floorplanning/placement
much more critical to the quality of a design.

A fundamental problem to floorplanning/placement lies
in the representation of geometric relationship among
modules. The representation profoundly affects the
operations of modules and the complexity of
floorplan/placement design process. It is thus desired to find
an efficient, flexible, and effective representation of
geometric relationship for the floorplan/placement design.
z Efficiency: The representation should be easy for

implementation, and its corresponding primitive
operations such as insertion, deletion, and search should
be cheap. Further, the encoding cost for the
representation and transformation time between the
representation and floorplan/placement should be
minimal.

z Flexibility: The representation should be able to handle
all types of modules such as hard, soft, preplaced,
rectilinear, and symmetry modules and consider timing

information. In deep sub-micron technology, in
particular, the blocks are often not rectangular, and their
shapes are not fixed. Most existing
floorplanning/placement algorithms only deal with
rectangles and cannot apply to arbitrary shaped
rectilinear placement directly. New approaches that can
handle arbitrary shaped blocks are essential to optimize
area utilization.

z Effectiveness: The representation should lead to good
area utilization and timing performance.

2. Related Research

Floorplans can be divided into two categories, the
slicing structure [10, 14] and the non-slicing structure [1, 5,
8, 13]. A slicing structure can be represented by a binary
tree whose leaves denote modules, and internal nodes
specify horizontal or vertical cut lines. Wong and Liu
proposed an algorithm for slicing floorplan design [14].
They presented a normalized Polish expression to represent
a slicing structure, enabling the speed-up of the search
procedure. However, this representation cannot handle
non-slicing floorplans. Recently, researchers have proposed
several representations for non-slicing floorplans, such as
sequence pair [5], bounded slicing grid (BSG) [8], and
O-tree [1].

Murata et al. in [5] proposed the sequence pair
representation for rectangular module placement. The main
idea is to use a sequence pair to represent the geometric
relation of modules, place the modules on a grid structure,
and construct corresponding constraint graphs to evaluate
cost. This representation requires 2n nlg space to

encode a sequence pair, where n is the number of modules.
Further, the transformation between a sequence pair and a
placement takes O(n lg n) time. Nakatake el al. in [8]
presented a grid based representation---BSG. The BSG
structure utilizes a set of horizontal and vertical
bounded-length lines to cut the plane into rooms and
represents a placement by these lines and rooms. The
complexity of BSG is similar to that of the sequence pair.
The sequence pair and BSG were then extended to handle
pre-placed modules and soft modules in [2, 6, 5, 9].

Guo et al. in [1] proposed a tree-based representation,
called O-trees. The transformation between the
representation and a floorplan takes only O(n) time.
However, the tree structure is irregular. Thus, this
representation takes more time in tree operations, such as
search and insertion. To reduce the operation complexity,
the tree is encoded by a sequence of 2n bits and a

permutation of n nlg bits. (Note that O-trees are the

fastest representation for non-slicing floorplans in the
literature.)

For rectilinear block floorplanning/placement, Preas et
al. in [12] proposed a graph model for the topological
relationship among rectangular and arbitrarily shaped blocks.
Wong and Liu in [15] extended the Polish expression to
represent slicing floorplans with rectangular and L-shaped
blocks. Lee in [4] extended the zone refinement technique to
rectilinear blocks. A bounded 2D contour searching
algorithm is proposed to find the best position for the block.
Kang and Dai in [2] proposed a BSG-based method to solve
the packing of rectangular, L-shaped, T-shaped, and soft
blocks. The algorithm combines simulated annealing and a
genetic algorithm for general non-slicing floorplans. Xu,
Guo, and Cheng in [17] presented an approach extending the
sequence-pair approach for rectangular block placement to
arbitrarily sized and shaped rectilinear blocks. The
properties of L-shaped blocks are examined first, and then
arbitrarily shaped rectilinear blocks are decomposed into a
set of L-shaped blocks. Kang and Dai in [3] proposed a
method based on the sequence-pair structure for the
rectilinear block placement. Three necessary and sufficient
conditions for a sequence pair to be feasible are derived. A
stochastic search is applied on the optimization of convex
block floorplanning.

3. Objective

In this project, we intend to develop efficient, flexible,
and effective representations for floorplan designs and
explore their applications to the placement of hard, soft,
preplaced, rectilinear, and symmetry modules. In deep
submicron technology, communication between different
blocks has significantly increased, and interconnect delay
has become the dominant factor in total circuit delay.
Therefore, in this project, we also combine interconnect
planning with floorplanning.

To handle general (slicing as well as non-slicing)
floorplans, we proposed at 2000 Design Automation
Conference (DAC-2K) a new ordered binary-tree based
representation, called B*-trees. Given an admissible
placement [1], we can represent it by a unique horizontal
and a unique vertical B*-trees. (See Figure 1(b) for the
horizontal B*-tree for the placement shown in Figure 1(a).)
The admissible placement here means that it is compacted
and can neither move down nor move left (see Fig. 1(a) for
an admissible placement).

Figure 1: (a) An admissible placement. (b) The B*-tree
representing the placement.

四﹑研究方法
We shall discuss the formulation, underlying techniques

and approaches, procedures, and potential challenges and

solutions for handling the floorplanning problems.

1. Formulation

Let B={b1, b2,..., bn} be a set of n rectangular modules,
and wi, hi, and ai the width, height, and area of bi, 1 ≤ i ≤ n.
The aspect ratio of bi is given by hi / wi. We denote rmin and
rmax as the minimum and maximum aspect ratios, i.e., hi / wi
∈ [rmin, rmax]. A placement P={(xi,yi)| 1 ≤ i ≤ n} is an
assignment of the rectangular modules bi's with the
coordinates of their bottom-left corner. Being assigned to (xi,
yi) so that no two modules overlap. We consider in this
paper three kinds of modules: hard modules, pre-placed
modules, soft modules and rectilinear modules. A hard
module is not flexible in its shape but free to rotate. A
pre-placed module is inflexible in both its shape and
coordinate. It has to be located at a fixed position. A soft
module is free to move and change its shape within the
range [rmin, rmax].

A rectilinear block can be represented by four profiles,
called the top profile sequence, the bottom profile sequence,
the left profile sequence, and the right profile sequence,
specifying the profiles viewed from the top side, the bottom
side, the left side, and the right side of the block,
respectively. The top (bottom) profile sequence of a
rectilinear block uses the leftmost horizontal segment on the
top (bottom) boundary of the block as a base and records
the length of the succeeding horizontal segments on the top
(bottom) boundary and the relative height. Specifically, the
top profile sequence consists of the length of the base
followed by a sequence of two-tuples composed of the
lengths of the succeeding horizontal segments and their
relative heights to the base (could be negative). For
example, Figure 2 shows a rectilinear block with the top
profile sequence (4, [5, 7], [7, 4], [6, -1], [8, 4]). The base of
the sequence is segment a which has the length of 4 units.
The second horizontal segment is c which has the length of
5 units and is 7 units higher than the base a. The other three
profile sequences are similarly defined.

Figure 2: The top profile sequence consists of the length of
the base followed by a sequence of two-tuples composed of
the lengths of the succeeding horizontal segments and their
relative heights to the base (could be negative).

Definition 1 A rectilinear block placement is feasible if and
only if no two blocks overlap with each other and all profile
sequences remain unchanged after placement (i.e., all
blocks are in their original shapes).

2. Approaches
2.1 The B*-tree Representation

We propose a new representation, B*-trees, to represent
an admissible placement. A B*-tree is an ordered binary tree
whose root is the left-bottom corner module. We define two
kinds of B*-tree: horizontal B*-tree and vertical B*-tree. A
placement can be represented by a horizontal B*-tree and a
vertical B*-tree at the same time. We denote a B*-tree, a
horizontal B*-tree, and a vertical B*-tree by T, Th, and Tv

respectively. In the following, we detail the correspondence
between a placement P and a horizontal B*-tree Th, and that
between P and a vertical B*-tree Tv. Fig. 3(a) and (b) shows
the Th and Tv which represent the placement P in Fig. 1(a).

For each module bi in P, we introduce a node ni in Th
and Tv. We first describe the construction of Th. Let Ri
denote the set of modules located on the right-hand side and
adjacent to module the bi, and Ui denote the set of modules
above and adjacent to the module bi. Then, the left child of
node ni is the corresponding node of the lowest module in Ri,
and the right child of node ni is the module in Ui whose
x-coordinate is equal to that of . bi. Similarly, for the node ni
in Tv, its left child is the corresponding node of the lowest
module in Ui, and the right child is the module in Ri whose
y-coordinate is equal to that of bi.

Figure 3: (a) The horizontal B*-tree Th of the placement
shown in Figure 1(a); (b) The vertical B*-tree Tv.

2.2 Coping with Rotated, Pre-placed, soft, and
Rectilinear Modules

In this section, we discuss the potential solutions to
handling rotated, pre-placed, soft, rectilinear, and symmetry
modules placement problem and coping with interconnect
planning.

2.2.1 Rotated Modules

The rotation process can be executed in the inserting
step. When inserting a deleted node into a B*-tree, we can
perform the operation twice at each position to find a better
solution, one is for the original shape, and the other is for
the rotated shape.

2.2.2 Pre-placed Modules

We propose the approach: if there exists a pre-placed
module that cannot be located on its fixed positions during
compaction, we exchange the pre-placed module with
another so that the pre-placed module could be located on
its fixed positions. There are two subproblems to be solved:
(1) how to choose the module that swaps with the pre-placed
module, and (2) how to locate the pre-placed one on its
fixed position.

We define that a module is ahead (behind) another if its
left-bottom x-coordination is smaller (larger) than that of
another. Similarly, a module is below (above) another if its
left-bottom y-coordination is smaller (larger) than that of

another. Let bi be a pre-placed module, and (x
if , y

if)
denote its fixed coordinate. The modules that are ahead and

below bi and their coordinations are smaller than x
if and

y
if are denoted by i

exS . If there are many modules ahead

or below bi so that bi cannot be located at (x
if , y

if), we

would exchange bi with the module in i
exS that is most

close to (x
if , y

if).. After deciding the elements in i
exS ,

we shall choose the one that is most close to (x
if , y

if) as
the exchanged module.

2.2.3 Soft Modules

A soft module is flexible in its shape. With the fixed
area, it is free to change the width and height in the range of
its aspect ratio. We propose a heuristic algorithm to handle
the placement problem with soft modules. The heuristic
consists of two stages: the first stage picks a soft module for
processing (deleting and inserting a node associated with the
module), and the second stage adjusts the shapes of all other
modules except the processed one.

2.2.3 L-shaped Modules
Let bL denote an L-shaped block. bL can be partitioned into
two rectangular sub-blocks by slicing bL along its middle
vertical boundary. After partitioning and placement, the
rectilinear block bL might not conform to its top profile
sequence, as illustrated in Figure 4. Figure 4(a) shows a
B*-tree and its corresponding placement. We can pull
sub-block b2 up to align with the sub-block b1, so that the
block bL can maintain its top profile sequence without
changing the overall topology of the blocks. However, there
might not be enough room to do so; see Figure 4(b) for such
an example. It is obvious that a feasible placement can be
generated from the B*-tree shown in Figure 4(a) with a local
adjustment, but it is impossible for the case shown in Figure
4(b). Therefore, if we represent an L-shaped block by two
sub-blocks, we must guarantee that the two sub-blocks abut.
To ensure that the left sub-block b1 and the right sub-block
b2 of an L-shaped block bL abut, we impose the following
location constraint (LC for short) for b1 and b2:

 LC: Keep b2 as b1's left child in the B*-tree.

The LC relation ensures that the x-coordinate of the left
boundary of b2 is equal to that of the right boundary of b1.

Figure 4: Placing the L-shaped block shown in Figure 8(a)
by two sub blocks: (a) a feasible placement; (b) an
infeasible placement.

2.2.3 Multilevel Floorplanning

Design complexities are growing at a breathtaking
speed with the continuous improvement of the nanometer IC
technologies. On one hand, designs with tens of million
gates are already in production, IP modules are widely
reused, and a large number of buffer blocks are used for
delay optimization in very deep-submicron
interconnect-driven floorplanning/placement, which all
drive the need of a tool to handle very large-scale modules.
On the other hand, the highly competitive IC market
requires faster design convergence, faster design turnaround,
and better silicon area utilization. Efficient and effective
hierarchical design methodology and tools capable of

placing and optimizing very large-scale mixed modules and
cells are essential for such large designs.

We propose to adopt a two-stage technique, clustering
followed by unclustering. (1). Clustering: The clustering
stage iteratively groups a set of (primitive or cluster)
modules (say, two modules) based on a cost metric defined
by area utilization, wirelength, and connectivity among
modules, and at the same time establishes the geometric
relations among the newly clustered modules by
constructing a corresponding B*-subtree. The clustering
procedure repeats until a single cluster containing all
modules is formed, denoted by a one-node B*-tree that
bookkeeps the entire clustering scheme. (2). Unclustering:
The unclustering stage iteratively ungroups a set of
previously clustered modules (i.e., expanding a node into a
subtree according to the B*-tree topology constructed at the
clustering stage) and then refines the
placement/floorplanning solution based on a simulated
annealing scheme. The refinement shall lead to a “better”
B*-tree structure that guides the unclustering at the next
level. It is important to note that we always keep only one
B*-tree for processing at each iteration, and the multilevel
B*-tree based placer/floorlanner preserves the geometric
relations among modules during unclustering (i.e., the tree
expansion), which makes the B*-tree an ideal data structure
for the multilevel placement/floorplanning framework.

2.2.4 Interconnect Planning

As the process technology advances into the deep
submicron era, interconnect plays a dominant role in
determining circuit performance and signal integrity.
Crosstalk-induced noise has been attracting increasing
attention when technology improves, spacing diminishes
and coupling capacitance/inductance increases. Buffer
insertion/sizing is one of the most effective and popular
techniques to reduce interconnect delay and decouple
coupling effects. It is traditionally applied to post-layout
optimization. However, It is obviously infeasible to
insert/size hundreds of thousands buffers during the
post-layout stage when most routing regions are occupied.
Therefore, it is desirable to incorporate buffer planning into
floorplanning to ensure timing closure and design
convergence. In this project, we first derive formulae of
buffer insertion for timing and noise optimization, and then
apply the formulae to compute the feasible regions for
inserting buffers to meet both timing and noise constraints.

五﹑成果 (Publications)
1. G.-M. Wu, Y.-C. Chang, and Y.-W. Chang, ``Rectilinear

block placement using B*-trees," in Proc. of IEEE
International Conference on Computer Design
(ICCD-00), pp. 351-356, Austin, TX, Oct. 2000.

2. J.-M. Lin and Y.-W. Chang, ``TCG: A transitive closure
graph based representation for non-slicing floorplans," in
Proc. of ACM/IEEE Design Automation Conference
(DAC-2001), pp. 764--769, Las Vegas, NV, June 2001.

3. C.-Y. Chang, H.-R. Jiang, and Y.-W. Chang, "Formulate
for performance optimization and their applications to
interconnect-driven floorplanning," to appear in 2002
IEEE International Symposium on Quality of Electronic
Design (ISQED 2002), San Jose, CA, March 2002.

4. G.-M. Wu, Y.-C. Chang, and Y.-W. Chang, ``Rectilinear
block placement using B*-trees," submitted to ACM
Trans. on Design Automation of Electronic Systems

5. S.-C. Lee, J.-M. Hsu, and Y.-W. Chang, “Multilevel

large-scale module floorplanning,” to be submitted to
ACM Int’l Symp. On Physical Design..

六﹑參考文獻
1. Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu,

“B*-trees: A new representation for non-slicing floorplans,”
Proc.IEEE/ACM Design Automation Conference, 2000.

2. P.-N. Guo, C.-K. Cheng, and Takeshi Yoshimura, ``An O-Tree
Representation of Non-Slicing Floorplan and Its Applications,''
Proc.IEEE/ACM Design Automation Conference, 1999.

3. M. Z. Kang and W. Dai., ``General floorplanning with L-shaped,
T-shaped and soft blocks based on bounded slicing grid
structure,'' Proc. Asia and South Pacific Design Automation
Conf., pp. 265-270, 1997.

4. M. Z. Kang and W. Dai., ``Arbitrary Rectilinear Block Packing
Based on Sequence Pair,'' Proc. International Conference on
Computer-Aided-Design, pp. 259--266, 1998.

5. T. C. Lee, ``An Bounded 2D Contour Searching Algorithm for
Floorplan Design with Arbitrarily Shaped Rectilinear and Soft
Modules,'' Proc.IEEE/ACM Design Automation Conference, pp.
525--530, 1993.

6. H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani,
``Rectangle-Packing Based Module Placement,'' Proc.
International Conference on Computer-Aided-Design, pp.
472-479, 1995.

7. H. Murata, K. Fujiyoshi, and M. Kaneko, ``VLSI/PCB
Placement with Obstacles Based Sequence Pair,'' Proc. Internal
Symposium on Physical Design, pp. 26-31, 1997.

8. H. Murata, Ernest S. Kuh, ``Sequence Pair Based Placement
Method for Hard/Soft/Pre-placed Modules,'' Proc. Internal
Symposium on Physical Design, pp. 167-172, 1998.

9. S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, ``Module
Placement on BSG-Structure and IC Layout Applications,'' Proc.
International Conference on Computer-Aided-Design, pp.
484-491, 1996.

10. S. Nakatake, M. Furuya, and Y. Kajitani, ``Module Placement
on BSG-Structure with Pre-Placed Modules and Rectilnear
Modules,'' Proc. Asia and South Pacific Physical Design
Automation Conf., pp. 571-576, 1998.

11. R. H. J. M. Otten, Automatic Floorplan Design,''
Proc.IEEE/ACM Design Automation Conference,
pp.261-267,1992.

12. Christos H. Papadimitriou, and Kenneth Steiglitz,
Combinatorial Optimization, prentice Hall, 1982.

13. B. T. Preas, and W. M. vanCleemput, ``Placement Algorithms
for Arbitrarily Shaped Blocks,'' Proc. IEEE/ACM Design
Automation Conference, pp.474-480, 1979.

14. T. C. Wang, and D. F. Wong, ``An Optimal Algorithm for
Floorplan and Area Optimization,'' Proc. IEEE/ACM Design
Automation Conference, pp.180-186, 1990.

15. D. F. Wong, and C. L. Liu, ``A New Algorithm for Floorplan
Design,'' Proc. IEEE/ACM Design Automation Conference, pp.
101--107, 1986.

16. D. F. Wong, and C. L. Liu, ``Floorplan Design for Rectangular
and L-shaped Modules,'' Proc. IEEE International Conference
on Computer-Aided-Design, pp. 520--523, 1987.

17. J. Xu, P.-N. Guo, and C. K. Cheng, ``Cluster refinement for
block placement,'' Proc. IEEE/ACM Design Automation
Conference, pp. 762--765, 1997.

18. Jin Xu, Pei-Ning Guo, and Chung-Kuan Cheng, ``Rectilinear
Block Placement Using Sequence-Pair,'' Proc. Internal
Symposium on Physical Design, pp. 173--178, 1998.

19. F. Balasa and K. Lampaert, “ Module placement for analog
layout using the sequence-pair representation,” Proc. of
ACM/IEEE Design Automation Conference, pp. 274-279, June
1999.

20. J. Cohn, D. Garrod, R. Rutenbar, and L. Carley, Analog
Device-Level Automation, Kluwer Academic Publishers, 1994..

21. H.-M. Chen, et al, “Integrated floorplanning and interconnect
planning,” Proc. of IEEE/ACM International Conference on
Computer-Aided Design, pp. 354-357, Nov. 1999.

