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Abstract

The System-On-Chip (SOC) design
encompasses a large design  space.
Typicaly, the designer explores the possible
architectures, selecting algorithms, choosing
architectural elements, and constructing
candidate architectures. Designing such a

complex system is hard; designing such a
system which will work correctly is even
harder. Design errors should be removed as
early as possible; otherwise, errors detected
a the later stages will result a costly,
time-consuming redesign cycles. Thus, the
designer should face two distinct tasks in
SOC design; carrying out design process
itself and establishing the correctness of a
design. Design correctness is the main
theme of this project. In the first year, the
tasks of this project are: proposing cost
models of architecture elements, developing
cost estimation engine, defining the data
structure  of  performance  modeling,
developing the fundamental performance
models
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Intellectual Property (IP) reuse is
becoming essential in system-on-a-chip
design [1][2][3]. We have developed a
front-end  system  leve verification
environment, that assists designers in
exploring architectures based on a reusable



IP library. The library is composed of generic
components that can be tuned to embrace a
large number of third-party and in-house IP

specifications. Using the library, the
environment maps  agorithms  onto
architectures, alowing for hardware/software
partitioning and  interrupt-based  task
scheduling. The environment then
generates a time-accurate prototype of the
candidate architecture, capturing

performance measures such as processor
utilization, memory size, bus utilization, and
interrupt  overhead. Based on these
measures, the environment helps designers
perform architecture exploration and make
early decisions about IP selection.

Very few tools exist at the front-end,
architectural level of IP-based system design.
Traditionally, designers develop agorithms,
select [P components, and construct
architectures sequentially within separate
design environments. A number of
difficulties can arise from the lack of a
unified design environment: agorithm
development may fall to consider
implementation details; IP selection may
not be the most suitable for certain
architectures; and architecture synthesis
cannot easily experiment with aternative
algorithms.  The gap between agorithm
development and implementation makes
correct and speedy development very
difficult. In order to make good early
decisions on architecture selection, designers
usually need to overcome the integration
problems of CAD tools. Therefore, our
primary goa has been to provide a front-end,
integrated architecture exploration
environment allowing designers to describe
their target systems entirely and estimate
performance measures at avery early stagein
the overall design process.

The proposed verification methodology
partitions the design process into three phases:
cost estimation, performance modeling and
hybrid co-simulation. The first phase
estimates the architecture costs in terms of
power, area, and delay. By interacting with
architectural allocation, the cost estimation
verifies that the architecture adhere to system
requirements. Following the first phase,
performance modeling then simulates

candidate architecture at the performance
level of abstraction. Models at this level of
abstraction do not concern actual data in the
system, but rather the flow of data through
the system. Hence, the second phase takes
the advantage of simplifying the complexity
of the simulation and modeling. Using the
simulation results in terms of time-critical
constraints, the designer is able to verify the
candidate architectures and, if necessary,
refine the design. Once finishing the first
two phases, hybrid co-simulation starts to
perform the simulation of heterogeneous
architectures which contain hardware and
software instances. This phase, therefore,
verifies the behavior of the SOC design. Up
to this point, the system-level verification has
been done and establishes the correctness of
adesign at the system-level.

In the verification environment, we use
three axes, {algorithm, attribution, structure},
to represent architectures. The embedded
architectures can be defined in a
three-dimensional representation space. The
algorithm axis denotes the procedure and
tasks for the solution of a given application.
The attribution axis defines the attributes of
architectura components such as type of
processors, communication protocol, size of
memory, and so on. The structure axis
represents  topology, arrangement  of
components, and connections. Using this
three-dimensional architecture representation,
designers are able to perform different
architectura tradeoffs,  simultaneously
considering algorithm selection, component
specification, and architecture allocation
within an integrated environment.

After describing an  architectura
solution in the  three-dimensiona
representation, the system-level verification
generates a simulation model which consists
of VHDL models from a reusable IP library.
We completely separate the functiona
simulation from the performance simulation,
in order to reduce the complexity and the
time required for performance estimation.
The aspects considered in our modeling



technology are: sizes of processing data,
time-related parameters, and the sources and
destinations of communication tasks.

Each node of the simulation model
consists of three constituent entities: task
model, memory model, and communication
module. These three entities model
computation, data storage, and
communication elements, respectively. The
task model represents the computational and
local data-access-related latencies for local
processing. The latter includes latencies
resulting from requests sent by other nodes
that communicate through the
interconnection. In the system-leve
verification, both hardware and software
instances are modeled as task models; that is,
hardware and software instances are modeled
a the same level of abstraction. Thus,
designers can use either software or hardware
instances to implement function tasks [2].
This modeling strategy, called
hardware-software neutralization, makes our
hardware-software tradeoffs efficient and

handy.

The memory model models memory 1/0,
caching and data access in terms of interface
bandwidth, data block sizes, associated
latencies and so on. The memory model is
used to estimate the usage of memory space
and smulate data exchange in the target
system. The use of the memory model is
optional. Simple nodes, such as DMA,
controller, and display, might not need the
Memory Model.

The communication module represents
the communication protocol and
configurations at a high level of abstraction,
using a set of standard signals. The model
is a timefaithful model that accurately
estimates the  communication and
data-movement overhead for complex
communication  protocols. Using the
standard signals, the model directly
communicates with the task and memory
models in a plug-and-play fashion. This
feature leads to a high degree of modularity;
that is, designers can seamlessly link task and
memory models to communication modules.

The  plug-and-play  feature  benefits
architectural tradeoffs. For instance, the
algorithmic tradeoffs can be done by
plugging in different task models; the
tradeoffs of communication subsystems can
be done by replacing communication
modules.
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Fig.1: A smplified ADSL algorithm

Now we use a simplified ADSL
application to demonstrate the architecture
exploration process and show the capabilities
of the verification environment. Given the
algorithm in Fig.1, architecture exploration
will involve: (1) architecture specification, (2)
timing verification, and (3) performance
estimation.

To start with, we define the structure of
the candidate architecture in terms of
interconnect  topology, = communication
protocol, and node connections. Then, we
use the data flow graph tool to describe
algorithm in terms of task assignment,
execution time, data dependency, and data
volume. Finadly, we use different
user-interface forms to set architectura
attributes for task models, memory models
and communication modules. The fields of
forms vary with the type of component. At
this point, the system-level verification is
ready to generate the ssmulation model.

After architecture specification, we
generate and compile the simulation model.
The model is created in VHDL. Designers
can use a third-party VHDL simulator to
simulate the model and verify the timing
chart. This step helps designers to find
major design oversights and generates output
data for performance estimation.
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Fig.2: Simulation results

Once the simulation has been
successfully done, the simulation model
generates output files which contain
interesting data with respect to computation,
communication and data storage. We then
use the performance estimation function to
analyze the files. As shown in Fig.2, the
system-level verification plots graphs for
performance measures. In the figure, we
can see two different results generated from
two different architecture specifications.
Using these results, designers can make early
design choices. The simulation time of each
architecture is short (< 10 seconds).
According to our experience in applying the
environment to a rather complex application
with six DSP processors, 36 tasks and 1 ms
of smulation, the overall simulation time is
less than ten minutes.
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