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Abstract
This paper presents a piezoelectric energy harvester by which the vibration energy induced by a
moving mass is converted to electrical energy through the piezoelectric effect. An
electromechanically coupled finite element model (FEM) based on the Euler–Bernoulli beam
theory is employed to estimate the electrical energy that can be generated by the energy
harvester. The effects of mass ratio, beam length, travel time and load resistance on the energy
output are examined. Experiments are conducted to verify the numerical model. The
experimental results are in good agreement with the numerical prediction. In the design stage,
the nonlinear conjugate gradient (CG) algorithm is applied for the calculation to maximize the
energy throughput from the energy harvester. Results have shown that the harvested energy
depends heavily upon the optimal choice of load resistance and travel time of the moving mass.
In addition, the longer the beam or the higher the mass ratio, the higher the energy throughput
that can be achieved.

(Some figures in this article are in colour only in the electronic version)

Nomenclature

A cross-section area
a length of the beam element
C damping matrix
c elastic matrix
cp capacitance of the piezoelectric ceramic
D global degree of freedom vector
d vector of nodal degree of freedom
d31 piezoelectric constant
E dielectric displacement
e elastic constant matrix
E Young’s modulus
E I bending rigidity
f vector of external force
J cost function
K stiffness matrix
L beam length
M mass matrix
m moving mass

N raw shape function vector of transverse displacement
N shape function of longitudinal displacement
n number of element
RL electrical resistive load
S strain vector
s vector of design parameter
T stress vector
Γ dielectric vector
T kinetic energy
Tf resonant period (reciprocal of the resonant frequency)
t1 distance between the bottom of the piezoelectric

layer and the neutral axis
t2 distance between the top of the piezoelectric

layer to the neutral axis
tb thickness of the substrate layer
tz thickness of the piezoelectric layer
U raw shape function vectors for longitudinal

displacement
U shape function for longitudinal displacement
u longitudinal displacement
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VT strain energy
V volume
vp voltage output
Wb width of the beam
We electrical energy
w lateral displacement
α damping coefficient
αC(i) step size of the nonlinear CG
β damping coefficient
βm mass ratio
� electromechanical coupling matrix
θ rotation on y-axis
ρ density
δ dynamic deflection of the beam subjected

to the moving mass
τ total travel time of the mass moving from

the left end to the right end
Subscript
b substrate layer property
z piezoelectric layer property
Superscript
E parameters are measured under constant

electric field
S parameters are measured under constant strain

1. Introduction

In recent years, the idea of energy harvesting has received
much research attention due to its prospective applications
in self-powered microsystems. Examples of such systems
are wireless sensors, biomedical implants, military moni-
toring devices, structure-embedded instrumentation, remote
controllers, calculators, watches, etc. Various approaches
of electromechanical transduction such as electromechanical
transduction [1], electrostatic transduction [2, 3], piezoelec-
tric transduction [4], magnetostrictive transduction [5] and
thermoelectric transduction [6] have been exploited to serve
as alternative energy sources. In the last decade, numerous
approaches to vibration-based energy harvesting have been
suggested [4, 7, 8]. Piezoelectric transduction has played
a key role among these studies for a wide spectrum of
vibration-based energy harvesters. This is mainly due to
the unique ability of piezoelectric materials to efficiently
convert mechanical energy into electrical energy. Various
approaches to modeling energy harvesters have been suggested
in literature. Umeda et al [9] proposed an equivalent circuit
based on a single-degree-of-freedom (SDOF) model consisting
of a mass, a spring and a damper. Roundy et al [10], du
Toit et al [11] and Ajitsaria et al [12] all employed the SDOF
model for analysis. Although the SDOF model provides
useful insights into harvesting systems, it is essentially an
approximation limited to modeling a single mode of vibration,
which tends to overlook important aspects such as dynamic
mode shapes, strain distribution and electrical responses.
Erturk et al [13] provided necessary modifications to the elec-
tromechanical modeling. Other researchers tried to improve
the models. Hagood et al [14] conducted an electromechanical

analysis using the Rayleigh–Ritz approach and the generalized
Hamilton principle. The discrete model obtained using this
approach provides a more accurate approximation than the
SDOF model. Lu et al [15] introduced a single-mode model
into the piezoelectric constitutive relation to calculate the
electric displacement. The relation between the electrical
output and the mechanical mode shape is established in this
work. Erturk and Inman [16] derived an analytical solution
for a cantilevered piezoelectric harvester on the basis of Euler–
Bernoulli beam theory. Their analysis has taken internal
strain rate damping and external air damping into account.
Marqui et al [17] presented a finite element model to predict
the electrical power output from a piezoelectric plate. A
generator wing spar with embedded piezoelectric ceramics is
designed using optimization techniques. Traditional vibration-
based piezoelectric energy harvesters are in general designed
by matching their fundamental natural frequency and the
base excitation frequency. Challa et al [18] proposed a
resonance frequency tunable energy harvester using magnetic
force. The magnets are placed at the free end of the
cantilevered piezoelectric beam, where the attractive and
repulsive magnetic forces can be exerted on each side of the
beam to adjust the natural frequency. Wickenheiser and Garcia
[19] proposed a magnetic rectification approach to make the
energy harvesting performance more robust against broadband
random excitation at the base. The system is most effective
when the driving frequencies are well below its fundamental
frequency, enabling a more compact design over traditional
systems.

In contrast to traditional harvesters that take advantage
of base excitation, the present work proposes a unimorph
piezoelectric beam device aimed at harvesting energy from
moving mass excitation [20]. In the literature, many
researchers have attempted various techniques to harvest
vibration energy efficiently and effectively. Most designs are
focused on a single resonance frequency. Therefore, their
performance is limited to a narrow range of frequencies. In
order for these energy harvesting devices to be commercially
viable in practical applications, they have to function over
a wide range of frequencies without sacrificing energy
output. By scavenging energy from the environment, the
transient response of the energy output can be more important
than excitation at a single frequency. That motivates
the development of an energy harvester for moving mass
induced vibration. Potential applications based on this
principle are, for example, bridges, road bumps, railways,
mass rapid transit (MRT), overhead cranes and toll stations.
The electromechanical equations of motion are derived for
transverse vibrations based on the Euler–Bernoulli beam
theory. The resulting FEM is solved via the Newmark-β
method [21]. In order to maximize the harvested energy,
optimization based on the nonlinear conjugate gradient (CG)
algorithm [22, 23] is employed to determine the optimum travel
time of the moving mass and the optimum load resistance
for a specified beam length. The optimum parameters of the
present system are discussed in detail. In addition, the effects
of velocity, acceleration, mass ratio and beam length variation
are also examined.
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Figure 1. The simply supported piezoelectric energy harvester for moving mass induced vibration.

2. Finite element models of a piezoelectric energy
harvester

In this section, the equations of motion for the piezoelectric
energy harvester are derived based on the Euler–Bernoulli
beam theory, followed by the electromechanical FEM
formulations.

2.1. Linear piezoelectric constitutive relationships

The energy method in conjunction with the FEM is employed
to derive the equations of motion for the energy harvester.
The linear-electroelastic constitutive relation for piezoelectric
ceramic materials is [24]

{
T
Γ

}
=

[
cE −eT

e εS

]{
S
E

}
, (1)

where T is the mechanical stress vector, Γ is the electric
displacement vector, S is the mechanical strain vector, and
E is the electric field vector. Matrices c, e and ε are the
elastic stiffness matrix, the piezoelectric parameter matrix, and
permittivity. Superscripts E and S indicate that the parameters
are measured under constant electric field and constant strain
conditions.

2.2. Modeling a simply supported piezoelectric beam

Consider a simply supported beam subjected to a moving mass
load, as shown in figure 1. The lateral displacement w is
interpolated using cubic polynomials of the physical coordi-
nates, whereas the longitudinal displacement is interpolated by
linear polynomials. An Euler–Bernoulli beam element with
two nodes and three degrees of freedom per node shown in
figure 2 is used. The displacement fields within an element are
interpolated as [25]

w = Nd, u = Ud, (2)

where
N = [ 0 N1 N2 0 N3 N4 ],

U = [ U1 0 0 U2 0 0 ],
d = [ u1 w1 θ1 u2 w2 θ2 ]T,

(3)

Figure 2. A two-node Euler–Bernoulli beam element with three
degrees of freedom per node.

and

N1 = 1 − (3ax2 − 2x3)/a3,

N2 = (a3x − 2a2x2 + ax3)/a3,

N3 = (3ax2 − 2x3)/a3, N4 = (−a2x2 + ax3)/a3,

U1 = (a − x)/a, U2 = x/a,

(4)
θ = ∂w

∂x and u denote the cross-section rotation and
longitudinal displacement, respectively; N and U denote 1 ×
6 shape function vectors for transverse displacement and
longitudinal displacement, respectively; d is the vector of the
nodal degrees of freedom; a is the length of the beam element;
and x is the coordinate along the longitudinal direction of
the beam element. Thus, the kinetic energy, strain energy
and electrical energy for the piezoelectric harvester can be
expressed as

T = 1

2

∫
V b

ρbḊTD dVb + 1

2

∫
V z

ρzḊTD dVz + 1

2
m

(
∂u

∂ t

)2

,

(5)

VT = 1

2

∫
Vb

STT dVb + 1

2

∫
Vz

STT dVz + 1

2

∫
Vb

Eb
∂u

∂x
dVb

+ 1

2

∫
Vz

Ez
∂u

∂x
dVz, (6)

We = 1
2

∫
Vz

ETΓ dVz, (7)

where D denotes the vector of global degree of freedom,
mb, and mz are the mass per unit length for the substrate
and the piezoelectric ceramic, respectively, ρb and ρz are the
mass per unit volume for substrate and piezoelectric ceramic,
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respectively, Eb and Ez are Young’s moduli for substrate and
piezoelectric ceramic, respectively, and m is the mass of the
moving object. The force acted by the moving load can be
written as

f = mg − mẅ, (8)

where

ẅ(x, t) = ∂2w

∂x2
ẋ2 + 2

∂2w

∂x∂ t
ẋ + ∂w

∂x
ẍ + ∂2w

∂ t2
. (9)

By using the Lagrange equation, the electromechanical
equations of motion can be written in a matrix form as

MD̈ + CḊ + KD − Θvp = f, (10a)

cpv̇p + vp

RL
+ ΘTḊ = 0, (10b)

where

M =
n∑

k=1

{∫ a

0
(mb + mz)NTN dx +

∫ a

0
(mb + mz)UTU dx

+
∫ a

0
(ρb + ρb)I NT

x Nx dx + mUTU + mNTN
}

k

, (10c)

C =
n∑

k=1

{Cs + 2mNTNx ẋ}k, (10d)

K =
n∑

k=1

{∫ a

0
E I NT

xx Nxx dx

+
∫ a

0
E AUT

x Ux dx + mNTNxx ẋ2 + mNTNx ẍ

}
k

, (10e)

Θ =
n∑

k=1

{
d31 EzWb(t2

1 − t2
2 )

2tz

∫ a

0
NT

xx dx

}
k

, (10 f )

f =
n∑

k=1

{NTmg}k . (10g)

The matrices M, C, and K denote the structural mass, damping,
and stiffness matrices of the beam; Θ is the electromechanical
coupling matrix; f is the external load vector; structure
damping Cs = αM + βK is assumed [26]. A is the cross-
section area and E I is the bending rigidity [27]. vp, cp,
and RL represent the voltage output, capacitance of the
piezoelectric ceramic, and resistive load. The parameter d31

is the piezoelectric constant, subscripts 1 and 3 denote the
directions coincident with x and y directions, respectively. Wb

is the width of the beam; tz is the thickness of the piezoelectric
layer; t1 is the distance between the bottom of the piezoelectric
layer and the neutral axis; t2 is the distance between the top of
the piezoelectric layer to the neutral axis (figure 1); and n is
the number of elements. It should be noted that the matrices
associated with the moving mass in equations (10c), (10d)
and (10e) are null matrices except for those corresponding to
the nodal displacements of the element on which the mass is
moving.

3. Optimal design of the piezoelectric harvester

In order to maximize the harvested energy, the nonlinear
conjugate gradient (CG) algorithm is employed to determine

the design parameters appropriate for the energy harvester.
It can be regarded as an intermediate approach between the
steepest descent method and Newton’s method. The basis for
the nonlinear conjugate gradient method is to effectively apply
the linear conjugate gradient method, where the residual is
replaced by the gradient. A model objective function is never
explicitly formed and it is always combined with a ‘line search’
method. The advantage of the conjugate gradient method is
that it requires relatively little memory space for large-scale
problems, virtually no numerical linear algebra, and no need
to compute Hessian of objective function. The computation in
each step can be accomplished within a very short time. This
method has proved to be extremely effective in dealing with
general objective functions and is considered among the best
general purpose optimization methods currently available.

The basic idea of the CG method is that the searching
directions have to be orthogonal [22] to all previous search
directions. The nonlinear CG algorithm can be derived from
the linear algorithm by considering three aspects: the recursive
formula for the residual calculation cannot be used; to compute
the step size αC becomes more complicated; various choices
for βC are available. The nonlinear CG procedure can be
formulated by maximizing the cost function J (s) of the design
parameter vector s = s(s1,s2, . . . , sn):

(1) Choose initial gradient h(0) = r(0) = [∂ J (s(0))

∂s1
. . .

∂ J (s(0))

∂sn
]T.

(2) Find the step size αC(i) that maximizes J (s(i) + αC(i)h(i))

by using the golden section search with parabolic
interpolation (GSS–PI) [28].

(3) Calculate the gradient for the next step. s(i+1) = s(i) +
αC(i)h(i), r(i+1) = J ′(s(i+1)).

(4) Calculate βPR
C(i+1) = rT

(i+1) (r(i+1)−r(i) )

rT
(i)r(i)

(Polak–Ribiere

formula), βC(i+1) = max{βPR
C(i+1), 0}, h(i+1) = r(i+1) +

βC(i+1)h(i).
(5) Terminate the algorithm if ‖r(i)‖ � ε‖r(0)‖, ε < 1;

otherwise, go to step 2.

Note that, in step 2, line search based on the GSS–PI
algorithm is performed to choose αC(i) that maximizes the
cost function J along a line. The GSS–PI algorithm is
a bracketing method well suited to finding the extremum
of a unimodal function. One advantage of the method is
that it enables an efficient search for an extremum with a
finite number of steps without having to evaluate numerical
gradients. Several expressions for the value βC are equivalent
in the linear CG algorithm. However, these expressions are
no longer equivalent in the nonlinear CG algorithm. In step
4, the Polak–Ribiere formula [22] is adopted to compute
βC for subsequent numerical simulations. Furthermore, the
convergence of the algorithm can be ensured by choosing
βC(i+1) = max{βPR

C(i+1), 0}. Using this value is tantamount to
restarting CG if βPR

C < 0. To restart CG is to forget the past
search direction, and start CG anew in the direction of steepest
descent.

In the present energy harvester problem, the cost function
we wish to maximize is

J =
∫ Tp

0

v2
p(t)

RL
dt, (11)
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Figure 3. Experimental result and numerical simulation of the
simply supported piezoelectric energy harvester. (a) Experimental
arrangement. (b) Comparison of the time response of the output
voltage simulation using the FEM and the measurement.

where the Tp is the time duration when the output voltage
magnitude is greater than 10 mV, as shown in figure 3(a).
Clearly, the cost function J to be maximized is equivalent to
the total energy output during the time Tp.

4. Experimental validation and design optimization

This section concerns experimental validation of the FEM and
design optimization based on nonlinear CG. The measured
voltage response is compared with that predicted by the
preceding FEM. The design is optimized for a specified beam
length, with the aid of the on nonlinear CG algorithm. The
effects of velocity, acceleration, mass ratio and beam length
variation on the optimized design are also investigated.

4.1. Experimental validation

Figure 3(a) shows the experimental arrangement for measuring
the voltage response of the energy harvester with pinned–
pinned supports. The energy harvester is a beam structure

Table 1. Parameters of the piezoelectric ceramic, the substrate and
the moving mass used in the experiment.

Material parameters
Phosphor
bronze (C5210)

Lead zirconate
titanate (PZT-5H) Glass

Width, Wb (cm) 1 1 —
Thickness tb (cm) 0.01 0.02 —
Length L (cm) 4 4 —
Density ρb (kg m−3) 8800 7500 —
Young’s modulus,
E (GPa)

110 63 —

Strain constant,
d31 (m V−1)

— −274 × 10−12 —

Capacitance, cp (F) — 30 × 10−9 —
Moving mass, m (g) — — 6.1

Table 2. Parameters of the piezoelectric ceramic and the substrate
used in the simulation.

Material parameters
Phosphor bronze
(C5210)

Lead zirconate
titanate (PZT-5H)

Width, Wb (cm) 1 1
Thickness tb (cm) 0.1 0.2
Length L (cm) 4–15 4–15
Density ρb (kg m−3) 8800 7500
Young’s modulus, E (GPa) 110 63
Strain constant, d31 (m V−1) — −274 × 10−12

Capacitance, cp (F) — 30 × 10−9

composed of two layers: a piezoelectric ceramic (PZT-5H)
layer and a substrate layer made of bronze (C5210), as
previously shown in figure 1. The geometric and material
properties of the piezoelectric layer, the substrate layer and
the moving mass are summarized in table 1. As shown in
figure 3(a), a resistive load of 20 k� and a piezoelectric
layer electrically connected in series is constructed. The
output voltage across the resistive load is measured with an
oscilloscope (Tektronix TDS 2014B). In addition, three pairs
of photosensors located at the center and the two ends of
the energy harvester are utilized to detect the travel time
of the moving mass. A marble traveling with velocity
3.6364 m s−1 served to excite the energy harvester. In
figure 3(b), the measured voltage response is compared with
the simulation result obtained using equations (10). As can be
seen from figure 3(b), the measurement and the prediction of
the voltage responses are in good agreement. The discrepancy
of the amplitude and the frequency could be due to the
deviation of the real end conditions from the ideal simply
supported boundary conditions. In addition, inaccuracy of
material constants and numerical errors introduced by the
shape functions can also contribute to the discrepancies.

4.2. Optimal design obtained using the nonlinear CG
algorithm

In the simulations, the forced vibration response of the
piezoelectric energy harvester with pinned–pinned supports
subjected to a moving mass is examined. The numerical model
is established with eight beam elements (n = 8), and the
structural damping parameters are taken as α = 14.65 and β =
1×10−5. The physical parameters for the piezoelectric ceramic

5
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Figure 4. Time history of the displacement impact factor and the
voltage output under conditions of constant velocity, τ/Tf = 0.847,
βm = 3, RL = 6 k�, and L = 7 cm. (a) Time response of the output
voltage, where Tp is the time duration with the output voltage
magnitude greater than 10 mV. (b) Time response of the
displacement impact factor.

plate and the substrate are summarized in table 2. Another two
parameters are also introduced to aid the subsequent analysis:

βm = m

(ρb Ab + ρp Ap)L
(12)

DIF = 48δE I

mgL3
. (13)

In the expressions above, βm denotes the ratio of the moving
mass to the beam mass. DIF denotes the displacement impact
factor defined as the ratio of dynamic deflection to the static
deflection at the midpoint of the beam, with δ representing
the dynamic deflection of the beam subjected to the moving
mass. In addition, parameters Tf, t and τ are used in the
following simulation to denote the resonant period (reciprocal
of the resonant frequency) of the simply supported beam, time
and the total travel time of the mass moving from the left end
to the right end.

Figure 5. Maximum displacement impact factor under conditions of
constant velocity, βm = 3, and L = 10 cm. (a) Performance surface.
(b) The displacement impact factor versus various load resistance
values RL = 1, 10, 20, and 35 k� (τ/Tf = 0.847).

The first simulation examines the transient responses of
the voltage output and displacement impact factor (DIF) under
the conditions of constant velocity, τ/Tf = 0.847, βm =
3, RL = 6 k�, L = 7 cm. The results are shown in
figure 4. Figure 4(a) demonstrates that large stress yields
large deformation and hence high effective electrical output.
Figure 4(b) reveals that the maximum dynamic deflection is
nearly four times the static deflection, which takes place at
the instance that the mass leaves the beam [20]. Figure 5(a)
shows the maximum displacement impact factor with respect
to various travel times and load resistance for the beam
length L = 10 cm. The maximum displacement impact
factors are attained with the same travel time τ/Tf = 0.781,
irrespective of the load resistance. Furthermore, figure 5(b)
shows the maximum displacement impact factors for selected
load resistances RL = 1, 10, 25 and 35 k�. In view of the
graph, the curves are indistinguishable for the selected load
resistances. However, as can be seen in the enlarged view of
figure 5(b), there are considerable variations in the optimum

6
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Figure 6. Performance surface of the energy output under the
conditions of constant velocity, βm = 3, and L = 7 cm.

travel time. As the value of the load resistance is increased up
to 35 k�, the vibration amplitude at τ/Tf = 0.781 declines
considerably due to the resistive shunt damping effect [29] on

power generation. Dissipation of electrical energy leads to
increased effective damping of the system.

In figure 6, the energy output for beam length L = 7 cm
under the conditions of constant velocity and βm = 3 is
plotted for various velocity and load resistance values. The
trend of energy throughput with respect to load resistance
and travel time is not monotonic. The maximum energy
output is 8.6256 × 10−7 J when τ/Tf = 0.847 and RL =
6 k�. Figure 5(a) reveals that the optimum travel time for
the maximum energy output is slightly less than that for the
maximum displacement. In addition, the energy output is
highly dependent on the load resistance. A unique maximum
point can be found on the bowl-shaped energy performance
surface (figure 6). It is worth exploring how the optimum
energy output varies with respect to various levels of load
resistance and travel time for a particular beam length and
mass ratio. To this end, the preceding nonlinear CG algorithm
is employed to optimize the design parameters of the energy
harvester. Figure 7(a) illustrates the convergence history of
the cost function using this method. The performance surface
and the contour plot are also shown in figures 7(b) and (c),
respectively, with the convergence path indicated. As can be
seen in the results, it takes only five steps to converge to the
maximum point.

Figure 7. Convergence history of the nonlinear CG algorithm in maximizing piezoelectric energy output under the conditions of constant
velocity, βm = 3, and L = 10 cm. (a) Convergence history of the cost function. (b) Performance surface with the convergence path indicated.
(c) Contour plot with the convergence path indicated.

7
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Figure 8. Optimized design of the piezoelectric energy harvester under conditions of constant velocity and constant acceleration, respectively,
calculated for various beam lengths. (a) Maximum energy output for various beam lengths. (b) Optimal RL for various beam lengths.
(c) Optimal τ/Tf for various beam lengths.

Figure 8(a) illustrates the variations of the optimum
energy output with respect to various beam lengths, where
the curves represent the optimum energy output for different
travel speeds. The dashed line and the solid line correspond to
the constant acceleration and the constant velocity conditions,
respectively. Evidently, the energy output increases with the
beam length for both cases because the effective stiffness
decreases with the beam span. Moreover, energy throughput
in the constant acceleration case is higher because of larger
deflection than in the constant velocity case [20], as shown
in figure 8(a). Figures 8(b) and (c) show the optimum
load resistance and optimum travel time for the energy
harvester, respectively. The optimum load resistance increases
monotonically with the beam length. Another observation is
that the optimum load resistances for the constant acceleration
and constant velocity conditions are identical. In figure 8(c),
the curves of optimum travel time for constant velocity and
constant acceleration for various load resistance values. τ/Tf

are approximately 0.847 and 1.00 for the constant velocity and
the constant acceleration cases, respectively. It is noted that
the optimum travel time for constant velocity is shorter than
that for constant acceleration.

Figure 9(a) shows the variation of optimum energy output
with respect to the beam length for some mass ratios selected
(βm = 1, 3 and 5). The optimum energy output can be
increased by increasing the beam length for any mass ratio. As
the mass of the moving object is increased, the energy output is
increased. Similar to figures 8(b) and (c), figures 9(b) and (c)
show a nearly identical trend of the optimum load resistance
for the constant velocity and the constant acceleration cases.
Increase in the moving mass entails an increase in the optimum
travel time, as evidenced in figure 9(c).

5. Conclusions

In this paper, a finite element model has been derived for a
simply supported piezoelectric energy harvester for moving
mass induced vibration. The model is based on the Euler–
Bernoulli beam theory and serves as the basis for numerical
simulations and optimization. Furthermore, the FEM has
yielded reasonable predictions in line with experimental
results. The nonlinear CG technique is employed to maximize
the energy output. The effects of load resistance, travel time of
the moving mass and mass ratio have been examined in detail.
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Figure 9. Optimized design for the piezoelectric energy harvester under conditions of constant velocity and βm = 1, 3, 5, calculated for
various beam lengths. (a) Maximum energy output for various beam lengths. (b) Optimal RL for various beam lengths. (c) Optimal τ/Tf for
various beam lengths.

As evident from the numerical simulations, an optimal energy
output of 8.6256 × 10−7 J is obtained when τ/Tf = 0.847 and
RL = 6 k� under conditions of constant velocity, βm = 3
and L = 7 cm. This can be contrasted to a non-optimal
case where the energy output is 1.967 × 10−7 J obtained with
load resistance RL = 600 �. The optimal parameters have
effectively increased the energy throughput. The results also
indicate that load resistance and travel time of the moving mass
play an important role in the optimized energy output.

Several aspects of the study remain to be explored in
the future. For example, the model can be extended with
Timoshenko beam theory, which accounts for the effects of
shearing deformations and rotary inertia, and general motion
profiles of the mass. Instead of the simple resistor as an electric
load, many works have shown that the practical constraints
induced by a real electric load may strongly modify the optimal
electromechanical parameters. It has been demonstrated that
the reactive component of the electrical load can be used to
tune the harvesting system to significantly increase the output
power off the resonant peak of the device [30]. A vibration-
based energy harvester connected to a generalized electrical
load is worth exploring for practical applications. Furthermore,

nonlinear dynamic analysis for the present structure is also an
interesting subject to investigate.
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