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Simulation

Integrating epidemic dynamics with daily
commuting networks: building a
multilayer framework to assess influenza
A (H1N1) intervention policies

Yu-Shiuan Tsai1, Chung-Yuan Huang2, Tzai-Hung Wen3,
Chuen-Tsai Sun1 and Muh-Yong Yen4

Abstract

We describe an innovative simulation framework that combines daily commuting network data with a commonly used

population-based transmission model to assess the impacts of various interventions on epidemic dynamics in Taiwan.

Called the Multilayer Epidemic Dynamics Simulator (MEDSim), our proposed framework has four contact structures: within

age group, between age groups, daily commute, and nationwide interaction. To test model flexibility and generalizability,

we simulated outbreak locations and intervention scenarios for the 2009 swine-origin influenza A (H1N1) epidemic. Our

results indicate that lower transmission rates and earlier intervention activation times did not reduce total numbers of

infected cases, but did delay peak times. When the transmission rate was decreased by a minimum of 70%, significant

epidemic peak delays were observed when interventions were activated before new case number 50; no significant

effects were noted when the transmission rate was decreased by less than 30%. Observed peaks occurred more quickly

when initial outbreaks took place in urban rather than rural areas. According to our results, the MEDSim provides

insights that reflect the dynamic processes of epidemics under different intervention scenarios, thus clarifying the effects

of complex contact structures on disease transmission dynamics.
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1. Introduction

After emerging in Mexico in April of 2009, the swine-
origin H1N1 influenza virus rapidly spread worldwide.
In June of that year, the World Health Organization
issued its highest possible pandemic alert: level 6.1

Influenza researchers and epidemiologists have focused
on two spreading factors: age group (determining post-
infection symptoms)2–7 and adult travel (determining
routes by which viruses spread). Since individuals in
the same age group tend to have similar epidemic
characteristics, age group has been proposed as a dis-
tinguishing condition in terms of population compart-
mentalization.2–6,8 Children and adolescents generally
have better resistance to contagious diseases than indi-
viduals age 65 and older. However, the Mexican pop-
ulation segment that was most affected by the H1N1
virus consisted of youths below the age of 15; of all

individuals affected by the first infection wave, 61%
were children and 29% adults.9 Since novel influenza
viruses are known to cause greater morbidity among
children,10 the youngest age group served as the main
focus of H1N1 intervention efforts.
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Many researchers have used age structure to capture
heterogeneity when modeling epidemic dynamics,3,5,7

with some integrating compartmental models consist-
ing of different age groups to identify potential impacts
of specific populations and temporal epidemic trends.7

Childhood diseases, such as rotavirus infections, have
been used to assess the efficacy potential of various vac-
cination strategies,5 and transmission threshold and
stability have been the focuses of epidemic simulations
involving specific age structures.3

Another important factor in modeling epidemic
dynamics is population movement. Over the past three
decades Taiwan has experienced a rapid increase in the
number of commuters for work and other purposes, par-
ticularly among young adults11 – a phenomenon per-
ceived as supporting the spread of viruses over long
distances within the country.8 Commuting is marked
by strong spatial-temporal regularity: regardless of
travel distance or time, most commuters follow simple
and repetitive patterns.12 These patterns are receiving
considerable attention from researchers studying the
spreading dynamics of diseases and viruses,13 the clus-
tering characteristics of epidemic diseases at the begin-
ning of a breakout,14,15 and the targeting of vaccinations,
quarantining, and other public health policies.16–19

The two most commonly used approaches to model-
ing epidemic spreading dynamics are population based
and network oriented. In population-based approaches,
hosts sharing the same symptoms are modeled or
grouped in terms of limited numbers of classes (also
known as compartments) that researchers analyze and
compare.2–7 Combinations of classes are used to model
and analyze population dynamics. For example, the
Susceptible, Latent, Infectious, or Recovered (SLIR)20

model gives individuals one of four infection statuses
and differential equations are used to study system
dynamics in terms of transitions between epidemiolog-
ical phases. Depending on whether removed individuals
can become susceptible a second time, diseases can be
modeled as SLIR or SLIRS cycles.

Network-oriented approaches emphasize individual
heterogeneity, interactions among individuals, and net-
work structure.21,22,40 Individuals in a network are rep-
resented as nodes, and interactions between themas links.
Network nodes can be used to represent the characteris-
tics of individuals, locations, neighborhoods, or cities,
and models can incorporate the temporal dynamics of
these features. Time frames for links between two nodes
can be preferentially defined23 – an approach commonly
used to represent group structures for individuals exhibit-
ing interaction or relationship patterns.24–27 Network-
oriented approaches are suitable for capturing complex
contact patterns among individuals, exploring epidemic
dynamics, and assessing the efficacies of public health
policies.19,22,28,29 Lattice networks have been used to

determine distance relationships between individuals. In
contrast, random networks support features associated
with casual contacts among mobile individuals and the
low degree of separation commonly observed in social
networks.30–32 Some researchers incorporate more realis-
tic underlying networks (e.g. daily contact networks)
when modeling interaction behaviors.30–32 These
approaches are viewed as reliable for investigating epi-
demics, with the transmission dynamics of specific net-
work models being manipulated to investigate the
spread of emerging infectious diseases.33,39 The topolog-
ical features of social networks have recently been found
to exert considerable influence on the transmission
dynamics and critical thresholds of infectious diseases,
thus supporting the subtle analyses that network-oriented
models are incapable of.4,13,28,34

Population-based and network-oriented approaches
respectively emphasize large-scale population-level and
individual-level perspectives. Each has its own limita-
tions. Population-based approaches are suitable for
discussing dynamic variation across individuals in the
same compartment, but they are weak in terms of
modeling individual heterogeneity and addressing
human travel networks.22,30 Since individuals are mod-
eled as groups, any two group members are assumed to
have a direct connection, which is not true in the real
world. Furthermore, movement and activity are loca-
tion dependent; therefore, phenomena cannot be simu-
lated by a population-based approach that assumes a
homogeneous population distribution. In contrast, net-
work-oriented approaches may be appropriate for
introducing individual heterogeneity, but they are com-
putation intensive and time consuming when simulating
the behaviors of individuals with multiple attributes in
large-scale social environments.17,30 Many efforts have
been made to match individual and population behav-
iors with heterogeneity and computation requirements
when studying epidemic dynamics.35–37

Here we will propose a multilayer simulation
framework that combines daily commuting networks
and a commonly used population-based transmission
model for simulating epidemic dynamics. We used the
2008–2009 seasonal influenza A and 2009 swine-origin
influenza A (H1N1) outbreaks to estimate model
parameters. We then assessed the potential impacts of
different outbreak locations and interventions on the
Taiwan-wide epidemic dynamics of swine-origin influ-
enza A, including intervention timing and different
combinations of public health responses.

2. Multilayer epidemic dynamic
simulation

To analyze the spreading dynamics of epidemic dis-
eases in detail, we established a top-down simulation
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framework and implemented a prototype of our
Multilayer Epidemic Dynamics Simulator (MEDSim).
The MEDSim integrates population-based and net-
work-oriented approaches to capturing complex demo-
graphic, geographic, and biological properties,
including human movement patterns and disease

progression (Figure 1). Based on the observation that
epidemic dynamics in large populations are similar to
those found in deterministic systems,16 we established a
deterministic framework for our MEDSim model. As
shown in Figure 2, layer 1 individuals within the
same location are organized according to age group;

Figure 1. The MEDSim concept. Infection information usage is highest in layer 1 and lowest in layer 4, the opposite of location

information.

Figure 2. MEDSim framework.
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a population-based approach is used to model the
transmission dynamics of each group. The layer 2
focus is on contact patterns and interactions between
different age groups within the same location. The
effects of regional interactions on human travel net-
works are added to layer 3 by incorporating population
density and commuting volume between any two loca-
tions. In layer 4, a network-oriented approach is used
to incorporate a geographic information system (GIS)
for constructing human travel networks on a national
scale, with nodes representing locations on commuting
routes and links representing movement between them.

Due to its ability to comprehensively integrate
multilayer structures to generate dynamic spatial and
temporal processes, we used Mathworks MATLAB
to implement our MEDSim framework as a numerical
computation kernel. By using Microsoft Excel to
organize census and transportation data, policy
makers, health professionals, and others who have
less experience with specialized computer software
will be able to generate simulation scenarios with min-
imal assistance.

2.1. Layer 1: Within age groups

We used the four-state SLIR epidemiological model to
represent different infection stages among individuals in
the same age group in the same location. Individual
epidemic status is initially set at Susceptible (vulnerable
to infection but not yet infected), followed by Latent
(infected but unable to infect others), Infectious (capa-
ble of infecting other individuals), and Removed (i.e.
recovered, deceased, or otherwise not posing any further
threat). The numbers of pathogens that Susceptible-
to-Latent hosts carry are insufficient for active transmis-
sion to other Susceptible hosts, but these numbers
eventually reach levels where hosts become Infectious,
begin to infect other Susceptible hosts, and eventually
move toward a Removed status. The dynamics of the
four epidemic states over time are expressed as
Equations (1a)–(1d), which have the following features.

1. At time t, the population of interest is divided
into four compartments (SðtÞ, LðtÞ, IðtÞ, and RðtÞ)
corresponding to the SLIR model’s four epidemic
states. Since the SLIR model is a closed system,
SðtÞ þ LðtÞ þ IðtÞ þ RðtÞ ¼ N, with N a constant rep-
resenting the entire population.

2. Transmission rate � is a constant representing how
fast Susceptible individuals become Infected and
acquire a Latent status.

3. Latent rate � is a constant used to determine trans-
formation speed from Latent to Infected.

4. Removed rate � is a constant used to determine
transformation speed from Infected to Recovered.

Ordinary differential equations can be used to
express the SLIR model as follows:

dSðtÞ

dt
¼ ��SðtÞIðtÞ=N ð1aÞ

dLðtÞ

dt
¼ ��LðtÞ þ �SðtÞIðtÞ=N ð1bÞ

dIðtÞ

dt
¼ ��IðtÞ þ �LðtÞ ð1cÞ

dRðtÞ

dt
¼ �IðtÞ ð1dÞ

Figures 3(a) and (b) respectively present the concept
and a flowchart of our model’s first layer. Note our
modification in the interest of taking into consideration
self-motivated hospitalization (i.e. those individuals
who visit hospitals or clinics during an influenza out-
break regardless of their infection status). Depending
on diagnostic accuracy, some are confirmed as infec-
tious and receive medical treatment in advance, thus
altering transmission and removed rates for certain
populations. To integrate this factor into the model,
we propose adding three features: (a) an investigation
constant s representing the percentage of a population
that goes to a hospital or clinic in advance of becoming
ill; (b) a detection constant c, used to determine the
percentage of a population confirmed as infectious;
and (c) a time delay constant T, indicating the
amount of time between a patient with symptoms vis-
iting a hospital or clinic and the time his or her infec-
tion is confirmed. The default values of parameters
s and c are both 0.6 (Table 1), meaning that 60% of
the infected population is prone to visiting hospitals
and/or clinics for medical advice, and 60% of those
visitors are correctly diagnosed as carrying the patho-
gen. The default value of parameter T is 3 (Table 1),
meaning that it takes three days to confirm that a hos-
pital or clinic patient with symptoms is infected with
the pathogen. In simulations, correctly diagnosed
patients are equivalent to confirmed cases in real-
world influenza surveillance systems.

In consideration of preventive health care, we added
a feature in which individuals with an L status are
moved to either an I1 (infected and prone to visiting
hospitals and/or clinics for medical advice) or I2
(infected but not prone to visiting hospitals and/or
clinics) status, based on whether or not they actually
visit a hospital or clinic; this feature is expressed as
investigation proportion s. I1 individuals are identified
as either I11 (correctly diagnosed as carrying the path-
ogen) or I12 (incorrectly diagnosed as carrying the path-
ogen – in other words, false negatives); this is expressed
as detection proportion c. Note that regardless of
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positive or negative diagnoses, a T period of time must
elapse prior to confirmation. The difference between
state I11 and either I2 or I 12 is the transmission rate.
I11, I12, and I2 all eventually change to state R.

The extended SLIR model can be expressed as

dSðtÞ

dt
¼ �SðtÞð�2I2ðtÞ þ �11I 11ðtÞ þ �12I12ðtÞÞ=N ð2aÞ

dLðtÞ

dt
¼ ��LðtÞ þ SðtÞð�2I2ðtÞ þ �11I11ðtÞ þ �12I12ðtÞÞ=N

ð2bÞ

dI0ðtÞ

dt
¼ �I0ðtÞ þ �LðtÞ ð2cÞ

dI1ðtÞ

dt
¼ �I1ðt� TÞ þ sI0ðtÞ ð2dÞ

dI2ðtÞ

dt
¼ ��2I2ðtÞ þ ð1� sÞI0ðtÞ ð2eÞ

dI 11ðtÞ

dt
¼ ��11I11ðtÞ þ cI1ðt� TÞ ð2fÞ

dI 12ðtÞ

dt
¼ ��12I12ðtÞ þ ð1� cÞI1ðt� TÞ ð2gÞ

dRðtÞ

dt
¼ �11I11ðtÞ þ �12I12ðtÞ þ �2I2ðtÞ ð2hÞ

2.2. Layer 2: Among age groups

Depending on age range, individual infection properties
differ in terms of epidemic parameters such as transmis-
sion and removed rates. We considered two age-related
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features: the transmission rates �11pq, �12pq, and �2pq,
which represent cross-age group infections, and the rel-
ative percentage �p of age level, which affects the poten-
tial for cross-age infections. To distinguish among
parameters for individuals in different age groups,
we also added a subscript to each Equation (2) param-
eter (with the exception of T) – for example, we chan-
ged parameter SðtÞ to SpðtÞ for age level p. We
assumed three age levels when analyzing H1N1: chil-
dren (from birth to 14), adults (15–64), and seniors
(65 and older). Transmission rates between age levels
were differentiated to capture the complexity of infec-
tions across age groups. We added two subscripts
to transmission rate � to create �p,q: p for the age of
an infectious individual, and q for the age of the indi-
vidual being infected (Figure 4). Epidemic parameters
used in population-based compartmental models were
also used to model infections across age groups. We
used three transmission rates and three removed rates,
based on the number of individuals seeking medical
attention.

To construct the layer 2 model, we revised Equations
(2a) and (2b) to (3a) and (3b), respectively, without

making any other changes to the Equation (2) sub-
equations, as follows:

dSp

dt
¼ Sp�p�pð�2ppI 2p þ �11ppI 11p þ �12ppI 12pÞ=Np

� Sp

X
q 6¼p

�q�pð�2qpI 2q þ �11qpI 11q þ �12qpI 12qÞ=Np

ð3aÞ

dLp

dt
¼��pLpþSp�p�pð�2ppI2pþ�11ppI11pþ�12ppI12pÞ=Np

þSp

X
q6¼p

�q�pð�2qpI2qþ�11qpI11qþ�12qpI12qÞ=Np

ð3bÞ

2.3. Layer 3: Commuting

For the present research we focused on the impacts
of daily commuting networks on the spreading of an
influenza virus. Since influenza viruses are transmitted
via airborne droplets, commuter hosts are capable of

Table 1. MEDSim parameters

Category Layer Attribute Symbol Description

Epidemic 1 Transmission rate �i
11pp Transmission rate from investigated/diagnosed/treated age group p to same age

group in town i

�i
12pp Transmission rate from investigated/misdiagnosed age group p to same age group in

town i

�i
2pp Transmission rate from non-investigated age group p to same age group in town i

Latent rate �i
p Latent rate of age group p in town i

Removed rate �i
11p Removed rate of investigated/diagnosed/treated age group p in town i

�i
12p Removed rate of misdiagnosed age group p in town i

�i
2p Removed rate of non-investigated age group p in town i

Investigation ratio si
p Investigated proportion of age group p in town i (Default: 0.6)

Detection ratio ci
p Correctly diagnosed proportion of age group p in town i (Default: 0.6)

Delay time T Time between investigation and correct diagnosis (Default: 3)

2 Transmission rate �i
11xy Transmission rate from investigated/diagnosed/treated age group p and same age

group q in town i

�i
12xy Transmission rate from misdiagnosed age-group p and same age group q in town i

�i
2xy Transmission rate from the non-investigated age group p and same age group q in

town i

Location 2 Relative percentage �i
p Age group p as a percentage of town i population. (Source: ROC Interior Ministry)

3 Determination �ð pÞ Binary value for commuter age level (Default: adult)

Relative density di Population of town i as a percentage of the largest town’s population

(Source: ROC Interior Ministry)

Commuting weight wj,i Number of commuters from town i to town j (Source: ROC Institute of

Transportation)

4 Intercity rate �i Average number of daily contacts among individuals in location i

(Default: 0.8)
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infecting other individuals along their standard routes.
The layer 3 model reflects two assumptions regarding
hosts with jobs: they commute over longer distances
than individuals who stay at home or travel to local
centers such as schools, and they tend to come into
contact with individuals in the same age group along
their routes and at their destinations. We also assumed
higher contact frequencies among individuals in more
densely populated areas. Accordingly, the layer 3 model
considers four features associated with travel between
population centers (locations).

�ð pÞ, a binary value representing whether age level
p is the commuter age level – that is,

�ð pÞ ¼
1 if p ¼ commutable age level
0 otherwise

�
. We

assumed that children and seniors are less likely
than adults to commute on a daily basis, making
adults the most likely carriers of pathogens between
locations.

wj,i, indicating how many individuals commute from
location j to location i on a daily basis.

�i, a weighting factor representing the average number
of contacts among individuals in location i on a
daily basis.

d i, a normalized population density value for location i.

For all i and j locations in a w commuting network,
we used the geodemographic weight shown as
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Equation (4) to measure the effects of commuting on i
and j population interactions:

Geodemographic weiht ð j, iÞ ¼ �ð pÞd i�i
wj,iP

k6¼j

wj,k
ð4Þ

As shown in Figure 5, the commuting popula-
tion age level in this example is adult (15–64). The
�ð pÞ function represents whether age group p is a trav-
eling population. For all i locations in the commuting
network, the term NðiÞ represents the set of locations
connected to location i within commuting network w.
The term wj,i=

P
k 6¼j wj,k is the ratio of commuters

between locations j and i to commuters between j and
all other locations. If location i is a large urban center,
wj,i=

P
k6¼j wj,k will be large; if i is a suburb or rural

location, it will be small. Public health policies involv-
ing transportation can be tested by changing con-
tact rates among population centers in the layer 3
model.

The layer 3 framework is presented in Figure 6. To
construct the layer 3 model, we revised Equations (3a)
and (3b) to Equations (4a) and (4b), respectively.

Note the addition of a geodemographic weight on the
third line of each equation. All other Equation (2) sub-
equations are the same.

dSi
p

dt
¼�Si

pd
i�ip�
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Figure 6. MEDSim layer 3 architecture flowchart. Properties associated with commuting between two locations are indicated by red

lines. Additional location properties are indicated by blue lines. (Color online only).
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2.4. Layer 4: Nationwide interactions

We used Taiwan’s national travel network and com-
muting weight wj,i to simulate individual movement
within regions (layer 3). Nodes represent locations,
and edges represent commuting weights between loca-
tions. Once transportation data are obtained, nodes can
represent any scale – for instance, a building for city
simulations and a town for regional or national simu-
lations. In the present study, each node represents an
individual town. Layer 4 of our model consists of 409
towns and 19,014 links (Figure 7) representing
Taiwan’s national commuting network, which can be
manipulated to determine the effects of various move-
ment policies and commuting restrictions.

After combining the four layers, the complete
MEDSim model can be expressed as
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The parameters used in Equation (5) are listed in
Table 1.

2.5. Technological framework

Figure 8 shows the MEDSim technological framework,
including a simulation flowchart, census databases, and
relationships between the four MEDSim layers and the
databases. The first step is to manually create an Excel
data set for the scenario in question – for example,
determining breakout locations or public health poli-
cies. Most data sets consist of spatial locations and
census information, which are used to establish geo-
graphic and demographic categories; each MEDSim
parameter belongs to at least one of the two.

Figure 7. Taiwan’s nationwide commuting network.
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Since our layer 1 focus in this example is on disease
progression at an individual level, standard expert-
based parameters in compartmental models associated
with epidemics were used instead of transportation or
census databases.16 In layer 2, percentages of individ-
uals in each age group were determined from census
data, and the numbers of individuals in each location
were gathered from transportation databases. In layer
3, transportation databases were used to gather infor-
mation on the numbers of individuals traveling between
towns on a daily basis. In layer 4, transportation data
were used to establish the underlying national travel
network.

Figure 9 presents a screenshot of a MEDSim graph-
ical user interface (GUI). Multilayer epidemic model
parameters are initialized at the beginning of each sim-
ulation. Model parameters requiring setup are: (a) ini-
tial outbreak conditions, including the name of the
town and number of infected persons in an age group
identified by the surveillance system; (b) disease trans-
mission parameters at different layers, including trans-
mission, latent, and removed rates according to the
SLIR process for each age group, contact rates between

age groups, and regional contact probabilities between
towns; and (c) output maps and charts for the towns of
interest and severity indicators to be monitored (e.g.
daily infected cases, daily new cases, and epidemic
velocity and acceleration). Daily epidemic progress
can be monitored in terms of sizes and locations of
red dots on maps (infected individuals), epidemic
curves on time charts, and output panels (numbers of
infected individuals at different times in different loca-
tions). Regarding kernel execution, MEDSim models
can be used for computing epidemic dynamics.
Simulation results can be shown as graphical curves
or expressed and recorded as numerical files. Lastly,
simulation results are evaluated by users, who can
repeat steps as required.

2.6. Statistical analysis for parameterization

To test the reliability and validity of time-series
MEDSim data, we used two indices to compare
simulated and actual numbers of infected individ-
uals: correlation coefficient (CC) and coefficient of effi-
ciency (CE), respectively expressed as Equations (6)
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Figure 8. MEDSim simulation tool framework.
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and (7).22 Here fXtjt ¼ 1, 2, . . . , ng represents the
number of actual infected individuals and
fYtjt ¼ 1, 2, . . . , ng the number calculated by the
MEDSim. In both sets, t denotes the time step (in 1
week units); a total of n weeks is represented by each
set. We use X and Y to denote the means of Xt and Yt,
respectively. The CC test measures data distance:
higher positive values indicate positive correlations
and lower negative values indicate negative correla-
tions. The CE test is used to measure the level of accu-
racy between two data sets; higher values indicate
greater accuracy:

CC ¼

Pn
t¼1 ðXt � XÞðYt � YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1 ðXt � XÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1 ðYt � YÞ2
q 2 ½�1, 1� ð6Þ

CE ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1 ðXt � YtÞ

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1 ðXt � XÞ2
q

2
64

3
75 2 ½0, 1� ð7Þ

3. Results and discussion

We tested MEDSim reliability (in terms of parameter
calibration and model fit) with actual epidemic curves,
tested and compared public health policies based on the
above parameters, and used MEDSim to simulate the
influenza A (H1N1) virus and to determine the effects of
the chosen policies. To establish simulation parameter
settings, we used population data from the Republic of
China (ROC) Ministry of the Interior and transporta-
tion data from the ROC Transportation Institute.38

3.1. Parameterization

We used the seasonal influenza A and swine-origin
influenza A (H1N1) viruses to perform parameteriza-
tion. The default parameter values are shown in
Table 1. We systematically calibrated parameters for
both viruses to create a small range, based on parame-
ters normally used with standard SLIR settings.16

Summaries of MEDSim attribute settings and values
are given in Tables 2 and 3. The transmission rates
�i11pp, �

i
12pp, and �i2pp were directional between age

groups. Individual age group targets are presented in

Figure 9. MEDSim implementation GUI.
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the form of sub-columns. Experimental results from
applying the MEDSim using the Table 2 and 3 param-
eter values for the two influenza viruses are shown in
Figures 10(a) and (b), respectively. Actual and simu-
lated case data for both influenzas are shown in
weekly units.

Our CC and CE results for the two influenza epi-
demics are 0.86 and 0.74 for seasonal and 0.77 and 0.36
for swine-origin H1N1. In Figure 10(a) we plotted the
fractions of new infected cases of seasonal influenza A
in Taiwan between September 2008 and April 2009,
normalized to total cases. Higher CC and CE values
for seasonal influenza explain the similarities between
the two curves. In Figure 10(b) we plotted fractions of
new infected cases for the swine-origin influenza A virus

in Taiwan from week 25 to week 52 in 2009, also nor-
malized to total cases. As shown, the number of actual
cases decreased between weeks 37 and 48, followed by
an increasing trend, resulting in a lower CE value. This
two-wave pattern is very similar to global diffusion pat-
terns associated with international travel. Because we
did not incorporate international travel at this stage,
our swine-origin H1N1 model failed to capture the
second wave; however, it did capture the peak time
for the first (primary) wave (Figure 10(b)).

3.2. Intervention policy evaluation

We tested and compared different public health policies
using the above-described parameters, simulated the

Table 3. MEDSim parameters used for fitting simulation curves to actual swine-origin influenza A (H1N1) curves in Taiwan from

week 25 to week 52

Layer Attribute

Value

Children Adults Seniors

1 �i
11pp 2.6667 1.3333 1.3333

�i
12pp 3.3333 1.6667 1.6667

�i
2pp 3.3333 1.6667 1.6667

�i
p 0.0714

�i
11p 0.3333

�i
12p 0.1429

�i
2p 0.1667

Target Adults Seniors Children Seniors Children Adults

2 �i
11xy 1.3333 1.3333 2.6667 1.3333 2.6667 1.3333

�i
12xy 1.6667 1.6667 3.3333 1.6667 3.3333 1.6667

�i
2xy 1.6667 1.6667 3.3333 1.6667 3.3333 1.6667

Table 2. MEDSim parameters used for fitting simulation curves with actual seasonal influenza A curves in Taiwan between

September 2008 and April 2009

Layer Attribute

Value

Children Adults Seniors

1 �i
11pp 1.3333 0.6667 0.6667

�i
12pp 3.3333 1.6667 1.6667

�i
2pp 3.3333 1.6667 1.6667

�i
p 0.0714

�i
11p 0.1429

�i
12p 0.2500

�i
2p 0.1429

Target Adults Seniors Children Seniors Children Adults

2 �i
11xy 0.6667 0.6667 1.3333 0.6667 1.3333 0.6667

�i
12xy 1.6667 1.6667 3.3333 1.6667 3.3333 1.6667

�i
2xy 1.6667 1.6667 3.3333 1.6667 3.3333 1.6667
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Figure 10. Comparison of weekly new infected cases between actual and simulated results normalized for (a) seasonal influenza A

and (b) swine-origin H1N1 influenza A.

Table 4. Observation index values according to different transmission rates

Transmission rate reduction (%)

Observation index 0% 30% 50% 70% 90%

Total cases. 1,784,044 1,407,752 1,108,520 485,761 8

New infected cases at epidemic curve peak 171,329 113,898 64,926 12,231 8

Week number of epidemic curve peak 20 26 36 77 1

Percentage of new infected cases at epidemic curve peak 9.6% 6.4% 3.6% 0.7% 0%
Total cases of epidemic curve

Total cases of basic epidemic curve

� �
100% 78.9% 62.1% 27.2% 0.%
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effects of medical advice quality and number of com-
muters, and compared original epidemic curves with
those following public health policy implementation.
Special emphases were placed on peak numbers of
infected cases and peak infection days. The goals of
public health officials include reducing the peak
number (since it has a direct effect on social costs,
such as drugs and hospital beds) and delaying
peak day.

Figure 11 has two parts, one addressing the impacts
of transmission rate reduction and one the effects of
various intervention policies. The results from simu-
lated observation indices for different transmission
rates are shown in Table 4. According to the Figure
11(a) data for weekly fractions of new infected cases,
both curve peak and height were negatively affected by
decreased transmission rate. According to the Figure
11(b) data on the cumulative number of new infections
at different transmission rates, that number decreased
as transmission rate decreased. In Figure 11(c) we used
two observation indices to distinguish between the epi-
demic curve produced by the highest transmission rate
and the curves shown in Figure 11(a). According to the
first observation index (fraction of new infected cases at
epidemic curve peak), the strongest epidemic disease
transmission intensity affects a population and nega-
tively impacts public health resources over a period of
one week. The second index (epidemic curve peak week
number) indicates the severity and urgency of an epi-
demic, thus impacting deadlines for initiating public
health policies; higher values indicate more time for
making policy decisions.

The results from our comparisons of epidemic curve
peaks at different reduced transmission rates are shown
in Figure 11(c). The basic fraction of new infected cases
at curve peak (noted as 100%, with a transmission rate
of 1.0) is shown in the leftmost part of the graph. The
relative total number of cases (red line) consists of two
line segments, one from 1.0 to 0.5 and the other from
0.5 to 0.1. According to this result, transmission rate
should be reduced by at least 50% to obtain better peak
number suppression. An obvious decrease in peak
number occurs when the transmission rate reduction
is 70%.

Curve peak week numbers at different transmission
rates are shown in Figure 11(d). Note that week
number increased as transmission rate decreased – a
positive result for public health policy makers. The
results from simulations of various long- and short-
term intervention policy activation scenarios are
shown in Figures 11(f)–(h). No differences in numbers
of infected cases were observed for different interven-
tion policy activation times (Figures 11(f) and (g)).
However, epidemic peak was delayed from weeks 55
to 71 when intervention policy activation time was set
at 50 with a 70% reduction in transmission rate
(Figure 11(h)). Activation time exerted a much
weaker effect on peak timing at a 30% reduction in
transmission rate. According to these results, while
time of intervention policy activation did not signifi-
cantly reduce the number of infected cases, it
did exert an obvious effect in terms of delaying peak
time – a positive result for public health policy deter-
mination and preparation.
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Figure 12. Epidemic peak week numbers for urban and rural areas.
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Next, we compared differences in swine-origin H1N1
influenza A starting locations in Taiwan and their
effects on the subsequent spreading of the disease
(Figure 12, Tables 5 and 6). Taipei was labeled a
high-density area and Taichung a low-density area. In
the first (pre-swine-origin virus) scenario, case numbers
peaked much earlier in Taipei (20) than in Taichung
(61). When the transmission rate was reduced to
30%, the Taichung peak was significantly delayed.
When comparing numbers of infected cases at the
curve peak, both locations had approximately the

same number of new cases, but Taipei had a much
larger number of total cases. After reducing the trans-
mission rate from 50% to 30%, Taichung had a much
later peak week compared to Taipei, with no effect of
intervention policy activation time on the total number
of cases or newly infected cases in either location. The
results suggest that less densely populated starting loca-
tions are more sensitive to intervention policy activa-
tion time – that is, the combination of early activation
time and low transmission rate significantly delays epi-
demic curve peaks in less densely populated locations.

Table 5. Observation index values according to different policy activation scenarios during swine-origin H1N1 influenza A outbreak

in Taipei

Policy activation time Observation index

Transmission rate reduction

0% 30% 50% 70% 90%

Scenario #1

Pre-virus appearance

Total cases 1,784,044 1,407,752 1,108,520 485,761 8

New infected cases at epidemic curve peak 171,329 113,898 64,926 12,231 8

Week number of epidemic curve peak 20 26 36 77 0

Percentage of new infected cases at

epidemic curve peak

9.60% 6.38% 3.64% 0.69% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
100% 78.90% 62.14% 27.23% 0.00%

Scenario #2

After 50 cases are

diagnosed

Total cases Same as above 1,409,827 1,108,794 487,425 855

New infected cases at epidemic curve peak 114,120 65,235 12,468 155

Week number of epidemic curve peak 24 30 51 7

Percentage of new infected cases at

epidemic curve peak

6.40% 3.66% 0.70% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
79.02% 62.15% 27.32% 0.05%

Scenario #3

After 100 cases are

diagnosed

Total cases Same as above 1,410,263 1,108,993 488,900 1,991

New infected cases at epidemic curve peak 113,532 65,314 12,604 349

Week number of epidemic curve peak 24 29 47 8

Percentage of new infected cases at

epidemic curve peak

6.36% 3.66% 0.71% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
79.05% 62.16% 27.40% 0.11%

Scenario #4

After 200 cases are

diagnosed

Total cases Same as above 1,410,782 1,109,355 491,563 4,599

New infected cases at epidemic curve peak 114,191 65,442 12,883 818

Week number of epidemic curve peak 23 28 42 9

Percentage of new infected cases

at epidemic curve peak

6.40% 3.67% 0.72% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
79.08% 62.18% 27.55% 0.26%

Scenario #5

After 400 cases are

diagnosed

Total cases Same as above 1,411,273 1,109,893 496,246 10,000

New infected cases at epidemic curve peak 114,185 65,669 13,408 1,680

Week number of epidemic curve peak 23 27 38 10

Percentage of new infected cases at

epidemic curve peak

6.40% 3.68% 0.75% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
79.11% 62.21% 27.82% 0.56%
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4. Conclusion

Our goal in this paper was to integrate complex human
travel networks into a standard SLIR disease transmis-
sion model to create a four-layer simulation prototype
named the MEDSim. The framework is offered to
researchers interested in determining the contributions
of complex human contact structures to the transmis-
sion dynamics of influenza viruses. Our proposed
model is capable of providing insights that reflect the

dynamic processes of epidemics according to various
intervention scenarios involving outbreak location,
intervention timing, and different policy suites. We
view this multilayer approach as both convenient and
effective for public health practitioners and administra-
tors responsible for initiating early responses to poten-
tial pandemics, and for assessing intervention strategies
in outbreak locations.

This study has several limitations, such as the lack of
confirmed numbers of H1N1 influenza A cases in

Table 6. Observation index values according to different policy activation scenarios during swine-origin H1N1 influenza A outbreak

in Taichung

Policy activation time Observation index

Transmission rate reduction

0% 30% 50% 70% 90%

Scenario #1

Before the swine-origin influenza

A (H1N1) virus emerges

Total cases 2,190,247 1,672,733 1,112,428 485,801 8

New infected cases at epidemic curve peak 172,083 114,556 64,551 12,186 8

Week number of epidemic curve peak 61 83 119 284 1

Percentage of new infected cases at

epidemic curve peak

7.86% 5.23% 2.95% 0.56% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
100% 76.37% 50.79% 22.18% 0.00%

Scenario #2

After 50 cumulative swine-origin

influenza A (H1N1) infected

cases are diagnosed

Total cases (see above) 1,672,266 1,117,265 487,030 767

New infected cases at epidemic curve peak 113,760 64,598 12,200 120

Week number of epidemic curve peak 73 93 180 28

Percentage of new infected cases at

epidemic curve peak

5.19% 2.95% 0.56% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
76.35% 51.01% 22.24% 0.04%

Scenario #3

After 100 cumulative swine-

origin influenza A (H1N1)

infected cases are diagnosed

Total cases (see above) 1,671,019 1,120,702 488,492 1,723

New infected cases at epidemic curve peak 113,672 64,430 12,194 273

Week number of epidemic curve peak 72 90 169 29

Percentage of new infected cases at

epidemic curve peak

5.19% 2.94% 0.56% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
76.29% 51.17% 22.30% 0.08%

Scenario #4

After 200 cumulative swine-

origin influenza A (H1N1)

infected cases are diagnosed

Total cases (see above) 1,674,627 1,125,289 491,418 3,668

New infected cases at epidemic curve peak 113,592 64,556 12,198 520

Week number of epidemic curve peak 71 88 158 32

Percentage of new infected cases at

epidemic curve peak

5.19% 2.95% 0.56% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
76.46% 51.38% 22.44% 0.17%

Scenario #5

After 400 cumulative swine-

origin influenza A (H1N1)

infected cases are diagnosed

Total cases (see above) 1,677,338 1,132,127 49,486 7,424

New infected cases at epidemic curve peak 112,155 64,605 12,188 1057

Week number of epidemic curve peak 70 85 147 34

Percentage of new infected cases at

epidemic curve peak

5.12% 2.95% 0.56% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
76.58% 51.69% 22.67% 0.34%

402 Simulation: Transactions of the Society for Modeling and Simulation International 87(5)

 at NATIONAL CHIAO TUNG UNIV LIB on April 24, 2014sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


Taiwan (at this time it is not a notifiable disease in this
country). The data used for parameterization reflect
severe and hospitalized cases, which we assume as
having the same proportions as non-severe cases per
time unit. Differences between actual and simulated
cases can be significantly reduced when using appropri-
ate parameter values in terms of investigation and
detection proportions. Secondly, since the SLIR model
is imprecise in terms of its Removed designation, we
could not address the number of H1N1-related deaths
in our discussion of peak time delay. In real-world sce-
narios involving pandemic diseases with high death
rates, peak time delays are very important for disease
prevention policy decisions. Thirdly, due to the limited
scope of this study, we did not gather and organize the
exceptionally large amounts of available data for all
areas represented by network nodes (e.g. workplaces,
houses, and schools) or network data for long-distance
transportation (e.g. highway, railway, or airline).
Instead, we used location and age for population group-
ing, based on their similarities in responses to epidemic-
related factors. Furthermore, we did not address other
individual attributes, such as income level or number of
social groups per individual, when determining trans-
mission rate, removed rate, or other parameters.

We believe our proposed MEDSim framework can
help public health organizations decide when to imple-
ment intervention strategies by simultaneously analyzing
multilayer interactions. To build on this positive begin-
ning, we plan to expand the multilayer framework to
make it suitable for other acute diseases, as well as to
make it responsive to complex human contact structures.
Although our focus in this pilot study was on a novel
influenza epidemic in Taiwan, the general multilayer
framework concepts can be transferred to other sites.
The SLIR model in layer 1 can be considered a general
model for all droplet-transmitted respiratory infections,
and the age group and commuting interactions in layers
2 and 3 can be disassembled to meet the requirements of
risk factors for other infectious diseases. Furthermore,
the network topology in layer 4 can be modified to meet
the needs of different scales of link-node structures as
noted in an earlier section. However, when transferring
the proposed multilayer framework to other sites, data
on the link-node network structures and transmission
parameters for the diseases being studied must be col-
lected, organized, and verified. One of our goals is to
establish a portable framework for this procedure. Our
plans also include extending the MEDSim for use as a
general-purpose disease modeling framework. For exam-
ple, we will work on adding long-distance transportation
networks to our model to determine the impacts of shut-
ting down railway or airline systems, and on modifying
different contact structures (e.g. mosquito–human) to
model vector-borne diseases, such as dengue fever and

malaria, as well as human–animal contact diseases, such
as rabies and Japanese encephalitis.
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