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a b s t r a c t

This paper investigates single-machine coupled-task scheduling where each job has two tasks separated
by an exact delay. The objective of this study is to schedule the tasks to minimize the makespan subject to
a given job sequence. We introduce several intriguing properties of the fixed-job-sequence problem
under study. While the complexity status of the studied problem remains open, an O(n2) algorithm is pro-
posed to construct a feasible schedule attaining the minimum makespan for a given permutation of 2n
tasks abiding by the fixed-job-sequence constraint. We investigate several polynomially solvable cases
of the fixed-job-sequence problem and present a complexity graph of the problem.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

This paper considers the problem of scheduling n coupled tasks
with exact delays on a single machine. Coupled-task scheduling,
also known as the two-phased job scheduling problem (Sherali &
Smith, 2005), primarily stems from operations scheduling of
pulsed radar systems. A set of n two-phased jobs {J1, J2, . . . , Jn} is
given to be processed on a single machine. Each two-phased job
Jj consists of two separate tasks that require processing times aj

and bj, respectively. If no confusion would arise, aj and bj are also
used to denote the two tasks of job Jj. Under the constraint of exact
delays, the starting time of the second task bj of any job Jj must be
exactly lj time units after the completion of its first task aj. The
problem, denoted as 1jCoup-TaskjCmax by Orman and Potts
(1997) and 1jexact ljjCmax by Ageev and Kononov (2006), is to find
a feasible schedule such that the makespan is minimum. This prob-
lem is known to be strongly NP-hard even in some special cases
(Orman & Potts, 1997). For some scheduling problems, researchers
(Chen et al., 2000; Hwang et al., 2010; Lin & Hwang, 2011; Ng &
Kovalyov, 2007; Shafransky & Strusevich, 1998) find that deter-
mining an optimal schedule from a given job sequence is not nec-
essarily trivial. These interesting findings stimulate this study that
aims to investigate coupled-task scheduling subject to a given job
sequence. Herewith, given a fixed-job-sequence, if job Ji precedes
job Jj in the specified sequence, then it is required to schedule
the tasks such that ai precedes aj, and bi precedes bj. We adopt
ll rights reserved.
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the notation of Blazewicz et al. (2010) to denote the studied prob-
lem by 1j(aj, lj, bj), fjsj Cmax, where ‘‘fjs’’ in the second field dictates
the assumption of a fixed-job-sequence.

The first study on coupled-task scheduling with exact delays
could be due to Shapiro (1980), who established that 1j(aj, lj, bj)
jCmax is equivalent to the NP-hard jobshop problem J2jno-wait,
M2 non-bottjCmax, where ‘‘no-wait’’ and ‘‘M2 non-bott’’ respectively
refer to the no-wait constraint and the infinite processing capacity
of the second machine. Three polynomial-bounded heuristics for
numerical experiments were also presented. Orman and Potts
(1997) investigated the complexity of several special cases of
1j(aj, lj, bj)jCmax. All the analyzed cases are classified to be strongly
NP-hard or polynomially solvable, except for the case of identical
coupled tasks, 1j(a, l, b)jCmax. Ahr et al. (2004) proposed a dynamic
programming algorithm based on a directed graph model for this
special case with time complexity O(nr2l), where r 6

ffiffiffi
aa�1
p

. The
algorithm is linear in the number of jobs only for fixed l and is
not polynomial in the input size which is measured by log a + -
log l + log b + log n. Then Baptiste (2010) showed that the case
can be solved in O(log n) when a, l, b are fixed. To the best of our
knowledge, the complexity status of identical coupled-task sched-
uling problem remains open. Blazewicz et al. (2010) studied 1j(1, l,
1), precjCmax with strict precedence constraints and proved its NP-
hardness in the strong sense. They also proposed an O(n) algorithm
for the special case of l = 2 and an in-tree or out-tree precedence
constraints graph. Ageev and Kononov (2006) designed a 3.5-
approximation algorithms for 1j(aj, lj, bj)jCmax and proved that a
(2 � �) approximation algorithm does not exist unless P = NP. Yu
et al. (2004) implied the strong NP-hardness of 1j(1, lj, 1)jCmax from
the strong NP-hardness proof of F2j(1,lj,1)jCmax. Ageev and Baburin
(2007) designed a 7/4-approximation algorithm for 1j(1,lj,1)jCmax.
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Nomenclature

p a given plausible sequence of 2n tasks, p = (o1, o2, . . . ,
o2n)

oh the task assigned to the hth position in p
r a schedule of 2n tasks
sj(r) the starting time of job Jj in a schedule r
Cj(r) the completion time of job Jj in a schedule r
k the number of segments in the task sequence (a1,

a2, . . . , an)
X the sequence of subscripts (1, 2, . . . , n)
H a k-subsequence partition of X corresponding to the par-

tition of (a1, a2, . . . , an)
Xr the r-th subsequence in X, Xr = (nr�1 + 1, . . . , nr), where

n0 = 0 and nk = neXr the set of elements in sequence Xr

jeXrj the length of Xr ; jeXr j ¼ nr � nr�1

bn0r the immediate predecessor of anrþ1 in p
pr the rth fundamental cluster in p; pr ¼ ðanr�1þ1; . . . ; anr ;

bnr�1þ1; . . . ; bnr Þ

vr the subsequence obtained by deleting the jobs of
fJjjj 2 eXrþ1 [ . . . [ eXkg from sequence p

rr the schedule of pr constructed by the developed recur-
sive formula

rpr a feasible schedule whose permutation of tasks agrees
with pr

ar the time span from the start of anr�1þ1 to the completion
of anr

cr the idle time between anr and bnr�1þ1

Sr a subschedule constructed by arranging the first r sub-
schedules, r1, . . . , rr

b1
r the idle time between bn0r and bn0rþ1 in subschedule Sr

b2
r the time span from the start of bn0rþ1 to the completion

of bnr

l the input task of Checking routine in Algorithm Plau-
sible-Task-Sequence

m the task preceded by l in vI+1
~m the corresponding first or second counterpart task of m

Fig. 1. The diagonal-avoiding path corresponding to the plausible task sequence
(a1, a2, b1, a3, b2, b3, a4, a5, b4, b5).
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Subsequently, Békési, Galambos, Oswald, and Reinelt (2009) im-
proved the analysis of Ageev and Baburin (2007) to derive a better
lower bound of the approximation ratio. Furthermore, Li and Zhao
(2007) designed approximation algorithms for some NP-hard spe-
cial cases, and developed a tabu search meta-heuristic for the gen-
eral case.

In scheduling theory, sequences of jobs or operations indicate
the order of processing on machines while schedules explicitly
specify the starting and completion times of activities on specific
machines. In most scheduling problems, schedules can be directly
determined by sequences of jobs or operations on the machines in-
volved in the problems. However, determining an optimal schedule
from a given sequence could not be straightforward for some prob-
lems because other decisions such as batching (Cheng et al., 2000;
Hwang et al., 2010; Ng & Kovalyov, 2007), interleaving (Lin &
Hwang, 2011), and idle time insertion (Hwang et al., 2010) would
be needed for optimality. For the coupled-task problem, a prede-
termined job sequence defines a sequence of the first tasks of all
jobs and the same sequence of the second tasks of all jobs. To
construct a feasible schedule subject to a fixed-job-sequence, the
decision is how to interleave the task-1 sequence and the task-2
sequence.

In real-world applications, a pre-assigned sequence of jobs
could be retained on one of the machines in manufacturing process
owing to technological or managerial decisions (Shafransky &
Strusevich, 1998). Another justification for the assumption of a
fixed-job-sequence is due to the Fist-Come–First-Served (FCFS)
rule, which is regarded fair by customers. From the theoretical as-
pect, one approach to tackle the NP-hard scheduling problem in
which a schedule cannot be readily induced from a job sequence
is to develop an optimal polynomial-time algorithm for its fixed-
job-sequence problem. Then a heuristic or local search for the
problem can exploit this algorithm to evaluate candidate job se-
quences. Due to the strong NP-hardness of 1j(aj, lj, bj,) jCmax, it is
interesting to study 1j(aj, lj, bj,), fis jCmax.

The plan of this paper is as follows. Several intriguing properties
of the fixed-job-sequence problem are expounded in detail in Sec-
tion 2. In Section 3, a polynomial-time algorithm is presented to
construct a schedule with the minimum makespan for a given task
sequence abiding by the fixed-job-sequence constraint. Three poly-
nomially solvable cases for the fixed-job-sequence problem are
studied in Section 4. In the last section, we conclude this note
and suggest some subjects for further research.
2. Problem description and notation

Without loss of generality, we assume that the fixed-job-se-
quence is (J1, J2, . . . , Jn). Subject to the constraint of a fixed-job-se-
quence and the definition of coupled tasks, we thus have a directed
ladder graph of precedence relationship with two long chains,
a1 ? a2 ? � � �? an and b1 ? b2 ? � � �? bn, and n single-arc chains,
aj ? bj for all j 2 Nn. As a permutation of fajjj 2 Nng [ fbjjj 2 Nng, a
task sequence is called plausible if it adheres to the precedence con-
straints given by the ladder graph. We first give an initial idea
about how to generate a plausible task sequence. By virtue of the
diagonal-avoiding paths (Davis, 2006), the following observation
is presented.

Observation 1. Given n jobs, all plausible task sequences can be
generated by the diagonal-avoiding paths along the edges of a grid
with n � n square cells. Each diagonal-avoiding path corresponds
to exactly one plausible task sequence.

A diagonal-avoiding path is the one which leads from the top-
left corner O to the bottom-right corner D without backtracking,
and stays on or above the diagonal without passing below it. As
shown in Fig. 1 for the case n = 5, the illustrated diagonal-avoiding
path corresponds to the plausible task sequence (a1, a2, b1, a3, b2,
b3, a4, a5, b4, b5). The number of diagonal-avoiding paths in a grid
of n � n squares is given by the well-known Catalan number,

Cn ¼ 1
nþ1

2n
n

� �
, which grows in the order of Xð4n=

ffiffiffiffiffi
n3
p
Þ.

Previous experience suggests that scheduling problems with
fixed-job-sequences could be resolved by dynamic programs for



Fig. 2. The optimal schedule of the instance with (a1, l1, b1) = (3, 9, 1), (a2, l2, b2) = (1, 10, 2), (a3, l3, b3) = (2, 11, 3), (a4, l4, b4) = (3, 10, 2), (a5, l5, b5) = (3, 9, 1).

Fig. 3. An inevitable task overlap happens (a) between b3 and b4 or (b) between a4 and b2.
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the objective of makespan or total completion time (Cheng et al.,
2000; Hwang et al., 2010; Lin & Hwang, 2011; Ng & Kovalyov,
2007). However, it seems not to be the case for 1j(aj, lj, bj), fjs jCmax.
The intrigue could be ascribed to the following two causes:

1. Although the job sequence is pre-assigned, the studied problem

remains a problem of sequencing in which there are 1
nþ1

2n
n

� �
plausible task sequences for n jobs.

2. The time lag lj between tasks aj and bj can accommodate the pro-
cessing of not only tasks {aj+1, aj+2, . . . , an} but also tasks
{b1, b2, . . . , bj�1}. Due to the distinctive scheduling pattern, the
principle of optimality fails. Thus, it becomes not clear whether
a dynamic programming approach will work. Take for example
the following instance with five jobs: (a1, l1, b1) = (3, 9, 1),
(a2, l2, b2) = (1, 10, 2), (a3, l3, b3) = (2, 11, 3), (a4, l4, b4) = (3, 10, 2),
(a5, l5, b5) = (3, 9, 1). The optimal schedule for the fixed-
job-sequence problem is demonstrated in Fig. 2. In the optimal
schedule, the subschedule of the subsequence (J1, J2) attains the
time span equal to 18. But the time span of the shortest subsched-
ule constructed with the subsequence (J1, J2) is 16. Thus, a
subschedule within the shortest complete schedule is not neces-
sarily a shortest subschedule.

Owing to the intrigue of the fixed-job-sequence problem, we
turn to aim at scheduling a given plausible task sequence in the
next section.
Fig. 4. The given sequence p consists of four subsequences of a particular pattern.
3. Scheduling of plausible task sequences

Discussion in the previous section introduces the notion of

1
nþ1

2n
n

� �
plausible task sequence for a given job sequence. This

section is dedicated to the development of a polynomial-time algo-
rithm for determining the makespan of a plausible task sequence, if
it is feasible. Given a plausible task sequence, it could be non-trivial
to determine its feasibility and a schedule with the minimum
makespan, if feasible.

Denote a plausible task sequence by p = (o1, o2, . . . , o2n), where
oh stands for the task assigned to the hth position in p. If no confu-
sion would arise, hereafter we simply mention sequences to indi-
cate plausible task sequences. Notice that in any schedule we
consider hereafter, the constraint of exact delays is satisfied. In
other words, the interval between each pair of coupled tasks aj

and bj in any schedule is exactly lj; j 2 Nn. Denote the starting time
and the completion time of job Jj in a schedule r by sj(r) and Cj(r),
respectively. It is obvious that Cj(r) = sj(r) + aj + lj + bj. A schedule r
is feasible if and only if at any time, at most one task is processed in
r, i.e. no overlap between tasks occurs. Sequence p is called feasible
if and only if there exists a feasible schedule whose permutation of
tasks agrees with p, i.e. a schedule in which the processing of any
task oh for h 2 N2n�1 completes earlier than or exactly at the start-
ing time of task oh+1. We first consider how to determine the feasi-
bility of a given sequence p. For any feasible sequence p, the
constraint of exact delays implies that the interval induced by
the exact delay lj of any job Jj must accommodate all the tasks ar-
ranged between aj and bj. Namely, the following condition is nec-
essary for the feasibility of a sequence p:

Condition (C). For any job Jj with o‘ = aj and og = bj, the inequalityPg�1
h¼‘þ1poh

6 lj must hold, where poh
is the processing length of task

oh.
Note that condition (C) is not sufficient to make sequence p

feasible. Consider the following instance of four jobs: (a1, l1, b1) =
(1, 2, 1), (a2, l2, b2) = (2, 5, 1), (a3, l3, b3) = (2, 4, 2), (a4, l4, b4) = (2, 3, 1).
Condition (C) holds for sequence p = (a1, a2, b1, a3, a4, b2, b3, b4).
However, p is infeasible since an overlap between b3 and b4

(Fig. 3(a)) or between a4 and b2 (Fig. 3(b)) is inevitable in any attempt
to create a feasible schedule of p.

Condition (C) only partially verifies the feasibility of p because
in a schedule whether an idle time or overlap exists between oh

and oh+1 cannot be detected before assigning each task a starting
time. Therefore, we turn to develop a procedure for constructing
a schedule for sequence p and prove that the feasibility of p can
be determined by the constructed schedule. If sequence p is indeed
feasible, we can further prove that the constructed schedule attains
the minimum makespan among those of feasible schedules.

We first introduce subsequences of a particular permutation
pattern

ðai1 ; ai1þ1; . . . ; ai2 ; bi1 ; bi1þ1; . . . ; bi2 Þ;

1 6 i1 6 i2 6 n, where all its first (respectively, second) tasks are
consecutively sequenced without any second (respectively, first)
task inserted. A given sequence p is derived by merging several sub-
sequences of this pattern. Consider the sequence p = (a1, a2, b1, a3,
a4, a5, b2, b3, a6, b4, a7, a8, b5, b6, b7, b8) as an example. As shown
in Fig. 4, it can be regarded as the outcome of four interleaved
subsequences (a1, a2, b1, b2), (a3, a4, a5, b3, b4, b5), (a6, b6) and (a7,
a8, b7, b8). Such particular subsequences are regarded as the maxi-



Fig. 5. Jj is interleaved with Jj�1 by conjoining (a) aj�1 and aj or (b) bj�1 and bj.
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mal fundamental clusters of a given sequence p and these subse-
quences are scheduled individually. Scheduling these fundamental
clusters is the first attempt to examine the feasibility of sequence
p. Later we will elucidate that the infeasibility of any fundamental
cluster leads to the infeasibility of p. If all these fundamental clus-
ters are feasible, then we proceed to schedule p by interleaving
those obtained subschedules.

Now we define some notations for collating fundamental clus-
ters from sequence p. Given a sequence p, a segment is defined
as a maximal, by inclusion, subsequence of tasks {aj} without in-
serted tasks {bi}. Assume that the task sequence (a1, a2, . . . , an) is
partitioned into k disjoint segments for 1 6 k 6 n. To facilitate dis-
cussion, we denote by X the sequence of subscripts (1, 2, . . . , n) and
by H a k-subsequence partition of X corresponding to the k-seg-
ment partition of (a1, a2, . . . , an). Partitioning X into k disjoint sub-
sequences, we have H = {X1, X2, . . . , Xk} and X = X1 � X2 � � � � � Xk,
where Xr denotes the rth subsequence in X and � is a sequence
concatenation operator. For r 2 Nk, the last element of subse-
quence Xr is denoted by nr, and we have Xr = (nr�1 + 1, . . . , nr),
where n0 = 0 and nk = n. Denote by eXr the set of elements in
sequence Xr. jeXr j ¼ nr � nr�1 indicates the length of Xr. Denote by
bn0r the immediate predecessor of anrþ1 in p for r 2 Nk�1 and
n0r�1 þ 1 6 n0r 6 nr , where n00 ¼ 0. Notice that any single task
anr�1þ1 ¼ anr , which is surrounded by two tasks bn0r�1

and bn0r�1þ1 in p,
forms a segment, i.e. jeXr j ¼ 1. According to the assumption of k seg-
ments, sequence p consists of k fundamental clusters in which the
rth one contains jobs fJjjj 2 eXrg, r 2 Nk. Denote the rth fundamental
cluster in p by pr ¼ ðanr�1þ1; . . . ; anr ; bnr�1þ1; . . . ; bnr Þ, r 2 Nk. The sub-
sequence obtained by eliminating the jobs of fJjjj 2 eXrþ1 [ � � � [ eXkg
from p is denoted by vr, r 2 Nk�1. Note that vk = p.

To construct a schedule of fundamental cluster pr, we propose a
recursive procedure to augment the subschedule job by job, in-
stead of task by task. Namely, coupled tasks aj and bj are simulta-
neously added into the subschedule of jobs ðJnr�1þ1; Jnr�1þ2; . . . ; Jj�1Þ,
j 2 {nr�1 + 2, . . . , nr}, in each recursion step. In the proposed proce-
dure, job Jj is interleaved with job Jj�1 by conjoining two first tasks
aj�1 and aj (Fig. 5(a)) or two second tasks bj�1 and bj (Fig. 5b). The
obtained schedule is denoted by rr, and the recursive formula for
the job starting times is given as follows:
sjðrrÞ ¼
0; j ¼ nr�1 þ 1;

sj�1ðrrÞ þ aj�1

þmaxf0; lj�1 þ bj�1 � aj � ljg; nr�1 þ 2 6 j 6 nr:

8><
>: ð1Þ
Eq. (1) implies that in rr task aj (respectively, bj) is started later than
or exactly at the completion of aj�1 (respectively, bj�1). Schedule rr

is a feasible schedule of pr if task anr completes earlier than or ex-
actly at the start of task bnr�1þ1. The following lemma gives struc-
tural properties of fundamental clusters.

Lemma 1. Given a subsequence pr ¼ ðanr�1þ1; . . . ; anr ; bnr�1þ1;

. . . ; bnr Þ, the following three properties hold: (i) If snr ðrrÞ þ anr >

Cnr�1þ1ðrrÞ � bnr�1þ1, then pr is infeasible. (ii) If snr ðrrÞ þ anr 6

Cnr�1þ1ðrrÞ � bnr�1þ1, then pr is feasible and rr is a feasible schedule
attaining the minimum makespan among those of all feasible sched-
ules of pr. (iii) The feasibility and the shortest schedule, if feasible, can

be determined in O eXr

��� ���� �
time.
Proof. If snr ðrrÞ þ anr > Cnr�1þ1ðrrÞ � bnr�1þ1, then task anr com-
pletes later than the start of task bnr�1þ1 in rr. The only possible
way to find a feasible schedule of pr is to process anr earlier or pro-
cess bnr�1þ1 later. In schedule rr, task aj starts exactly at the comple-
tion of aj�1, or task bj starts exactly at the completion of
bj�1, j 2 {nr�1 + 2, . . . , nr}. Starting Jnr

earlier or Jnr�1þ1 later finally
results in the shifting of the whole schedule, which is futile. There-
fore, a feasible schedule of pr does not exist and pr is infeasible.
Property (i) proved.

Property (ii) is concerned about the feasibility of pr and the
optimality of rr. As for the feasibility of pr, the inequality
snr ðrrÞ þ anr 6 Cnr�1þ1ðrrÞ � bnr�1þ1 indicates that task anr com-
pletes earlier than or exactly at the starting time of task bnr�1þ1 in
rr. Therefore, a feasible schedule of pr, i.e. rr, exists and pr is
feasible. Next, we will show that schedule rr attains the minimum
makespan for sequence pr, i.e. Cnr ðrrÞ 6 Cnr ðrpr Þ, where rpr

denotes any feasible schedule of pr. This inequality can be proved
by induction on nr. We derive the following recursive equation for
Cj(rr) by adapting Eq. (1).

CjðrrÞ ¼
anr�1þ1 þ lnr�1þ1 þ bnr�1þ1; j ¼ nr�1 þ 1;

Cj�1ðrrÞ þ bj

þmaxf0; aj þ lj � lj�1 � bj�1g; nr�1 þ 2 6 j 6 nr:

8><
>: ð2Þ

We first consider the induction base eX r

��� ��� ¼ 2 and
pr ¼ ðanr�1þ1; anr�1þ2; bnr�1þ1; bnr�1þ2Þ. If
anr�1þ2 þ lnr�1þ2 > lnr�1þ1 þ bnr�1þ1, then it is impossible to interleave
Jnr�1þ1 and Jnr�1þ2 with a completion time less than
anr�1þ1 þ anr�1þ2 þ lnr�1þ2 þ bnr�1þ2, which is equal to Cnr�1þ2ðrrÞ from
Eq. (2). On the other hand, if anr�1þ2 þ lnr�1þ2 6 lnr�1þ1 þ bnr�1þ1, then
there exists no feasible schedule rpr where Jnr�1þ2 completes earlier
than anr�1þ1 þ lnr�1þ1 þ bnr�1þ1 þ bnr�1þ2 ¼ Cnr�1þ2ðrrÞ from Eq. (2).
Hence, we have the induction base Cnr�1þ2ðrrÞ 6 Cnr�1þ2ðrpr Þ.

Assume, as the induction hypothesis, that the inequality holds

for eXr

��� ��� ¼ i > 2, i.e. Cnr�1þiðrrÞ 6 Cnr�1þiðrpr Þ. To facilitate the nota-

tion, we denote m = nr�1 + i. If am+1 + lm+1 > lm + bm, then the min-
imum time span from the completion time of Jm to that of Jm+1 is
am+1 + lm+1 + bm+1 � lm � bm. In case of am+1 + lm+1 6 lm + bm, the
minimum aforementioned time span is bm+1. By Eq. (2), we have
Cm+1(rr) = Cm(rr) + bm+1 + am+1 + lm+1 � lm � bm for am+1 + lm+1 >
lm + bm and Cm+1(rr) = Cm(rr) + bm+1 for am+1 + lm+1 6 lm + bm. Hence,
Cm+1(rr) is less than or equal to the completion time of Jm+1 in any
feasible schedule rpr , i.e. Cmþ1ðrrÞ 6 Cmþ1ðrpr Þ. By induction, the
inequality Cnr ðrrÞ 6 Cnr ðrpr Þ is established. The proof of Property
(ii) is done.

For schedule pr, the feasibility and the shortest schedule, if
feasible, can be obtained by the values of sj(rr) for
j = nr�1 + 1, . . . , nr. By virtue of Eq. (1), the calculation involveseXr

��� ���� 1 iterations, each of which requires constant time. Therefore,

either a feasible schedule with the minimum makespan or the

infeasibility of sequence pr can be determined in O eXr

��� ���� �
time. h



Fig. 6. (a) The instance of eight jobs and (b) subschedules r1(=S1), r2, r3 and r4.
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The infeasibility of fundamental cluster pr implies that there
exists no feasible subschedule whose task permutation
agrees with subsequence pr, r 2 Nk. Since the subsequence pr is a
part of complete sequence p, no feasible complete schedule of p
exists either. We therefore have the following property:

Property 1. If any fundamental cluster pr ; r 2 Nk, is infeasible, then
sequence p is infeasible.

Before presenting a step-wise procedure for determining the
infeasibility or the shortest feasible schedule of sequence p, we de-
fine some notations. For each schedule rr (r 2 Nk), denote by ar the
time span from the start of anr�1þ1 to the completion of anr , and cr

the idle time between anr and bnr�1þ1. Sr denotes a subschedule con-
structed by arranging the first r subschedules, r1, . . . , rr. Note that
Sk is the constructed complete schedule of sequence p, which con-
sists of k clusters. Denote by b1

r the idle time between bn0r and bn0rþ1

in subschedule Sr, and by b2
r the time span from the start of bn0rþ1 to

the completion of bnr .
Algorithm Plausible-Task-Sequence

Step 1. Scan p to obtain the partition H =
(X1, . . . , Xk) and keep track of nr, n0r and
vr for each r = 1, . . . , k � 1.

Step 2. Construct a schedule for pr by Eq. (1) for
each r = 1, . . . , k. If any pr is infeasible,
then go to Step 7. Otherwise, set I = 1
and SI = r1.

Step 3. If n0I ¼ nI , then merge SI with rI+1 by
appending anIþ1 to the end of bnI and go
to Step 6.

Step 4. If b1
I P aIþ1 and b2

I 6 cIþ1, then go to
Step 4(a). If b1

I < aIþ1 and b2
I 6 cIþ1, then

go to Step 4(b). If b1
I P aIþ1 and b2

I > cIþ1,
then go to Step 4(c). Otherwise, go to
Step 4(d).

Step 4(a). If b1
I þ b2

I 6 aIþ1 þ cIþ1, then merge SI

with rI+1 by appending anIþ1 to the end
of bn0I

. Otherwise, merge SI with rI+1 by
appending bnIþ1 to the end of bnI . Go to
Step 6.

Step 4(b). Shift bn0Iþ1 (and an0Iþ1 will be simulta-
neously shifted, i.e. shift Jn0Iþ1) to extend
b1

I such that b1
I ¼ aIþ1 and merge SI with

rI+1 by appending anIþ1 to the end of bn0I
.

Go to Step 5.
Step 4(c). Shift Jn0Iþ1 to shorten b2

I such that
b2

I ¼ cIþ1 and merge SI with rI+1 by
appending bnIþ1 to the end of bnI . Go to
Step 5.
Step 4(d). If b1
I þ b2

I 6 aIþ1 þ cIþ1, then shift Jn0Iþ1 to
extend b1

I such that b1
I ¼ aIþ1 and merge

SI with rI+1 by appending anIþ1 to the
end of bn0I

. Otherwise, shift Jn0Iþ1 to
shorten b2

I such that b2
I ¼ cIþ1 and merge

SI with rI+1 by appending bnIþ1 to the end
of bnI . Go to Step 5.

Step 5. Call Checking routine with input bn0Iþ1.
Call Checking routine with input an0Iþ1.

Step 6. Let SI+1 be the obtained schedule. If
I = k � 1, then output the schedule SI+1

and stop. Otherwise, set I = I + 1 and go
to Step 3.

Step 7. Report the infeasibility of p and stop.
Checking routine. Denote the input task as l, the task pre-

ceded by l in vI+1 as m, and the corre-
sponding first or second counterpart
task of m as ~m. If m = b1 or anIþ1 or bnIþ1,
then go to Final checking. Otherwise,
go to Checking and shifting.

Final checking: If the completion of l is later than the
start of m, then go to Step 7. Otherwise,
terminate the subroutine.

Checking and shifting: If the completion of l is later than the
start of m, shift m (and ~m will be simulta-
neously shifted) such that the task m
starts at exactly the completion of l, call
Checking routine with input m, and call
again Checking routine with input ~m.
Otherwise, terminate the subroutine.

Example. Consider an instance of eight jobs with the following
parameters (Fig. 6a): (a1, l1, b1) = (3, 4, 1), (a2, l2, b2) = (1, 7, 2),
(a3, l3, b3) = (1, 8, 1), (a4, l4, b4) = (1, 10, 1), (a5, l5, b5) = (2, 9, 1),
(a6, l6, b6) = (1, 4, 3), (a7, l7, b7) = (1, 5, 2), (a8, l8, b8) = (1, 6, 1). The
sequence p = (a1, a2, b1, a3, a4, a5, b2, b3, a6, b4, a7, a8, b5, b6, b7, b8) is
given. Constructing a feasible schedule rp attaining the minimum
makespan with Algorithm Plausible-Task-Sequence is demon-
strated step by step as follows:
Step 1. We obtain k¼4 X1¼ð1;2Þ; X2¼
ð3;4;5Þ; X3¼ð6Þ; X4¼ð7;8Þ, n1¼
2; n2¼5; n3¼6, n01¼1; n02¼3;
n03¼4, v1¼ða1;a2;b1;b2Þ;v2¼ða1;

a2;b1;a3;a4;a5;b2;b3; b4;b5Þ, and
v3 = (a1, a2, b1, a3, a4, a5, b2, b3,
a6, b4, b5, b6) as shown in Fig. 4.

Step 2. Feasible subschedules r1, r2, r3

and r4 are derived as shown in
Fig. 6b. Set I = 1 and S1 = r1.
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Step 3. Since n01 ¼ 1 < n1 ¼ 2, we go to
Step 4.

Step 4. Since b1
1 ¼ 3 < a2 ¼ 4 and b2

1 ¼
2 < c2 ¼ 5, we go to Step 4(b).

Step 4(b). Shift J2 such that b1
1 ¼ a2 ¼ 4

and merge S1 with r2 by append-
ing a3 to the end of b1. Go to Step
5.

Step 5. Call Checking routine with
input b2. Call Checking routine
with input a2.

Checking routine. We have l = b2, m = b3, and
~m ¼ a3. Go to Final checking.

Final checking: Task b2 completes (at 14) earlier
than the start of b3 (at 17). Ter-
minate the subroutine.

Checking routine. We have l = a2, m = b1, and
~m ¼ a1. Go to Final checking.

Final checking: Task a2 completes (at 5) earlier
than the start of b1 (at 7). Termi-
nate the subroutine.

Step 6. The obtained schedule is S2

(Fig. 7). Set I = 2 and go to Step 3.
Step 3. Since n02 ¼ 3 < n2 ¼ 5, we go to

Step 4.
Step 4. Since b1

2 ¼ 2 > a3 ¼ 1 and b2
2 ¼

2 < c3 ¼ 4, we go to Step 4(a).
Step 4(a). Since b1

2 þ b2
2 ¼ 4 < a3 þ c3 ¼ 5,

we merge S2 with r3 by append-
ing a6 to the end of b3. Go to Step 6.

Step 6. The obtained schedule is S3

(Fig. 8). Set I = 3 and go to Step 3.
Step 3. Since n03 ¼ 4 < n3 ¼ 6, we go to

Step 4.
Step 4. Since b1

3 ¼ 0 < a4 ¼ 2 and b2
3 ¼

5 > c4 ¼ 4, we go to Step 4(d).
Step 4(d). Since b1

3 þ b2
3 ¼ 5 < a4 þ c4 ¼ 6,

we shift J5 such that b1
3 ¼ a4 ¼ 2

and merge S3 with r4 by append-
ing a7 to the end of b4, as shown
in Fig. 9a. Go to Step 5.

Step 5. Call Checking routine with
input b5. Call again Checking
routine with input a5.

Checking routine. We have l = b5, m = b6, and ~m ¼
a6. Go to Checking and shifting.

Checking and shifting: Task b5 completes (at 24) later
than the start of b6 (at 23). Shift
J6 such that the start of b6 is
exactly at 24, as shown in
Fig. 9b. Call Checking routine
with input b6, and call again
Checking routine with input a6.
Fig. 7. Subschedule
Checking routine. We have l = b6, m = b7, and ~m ¼
a7. Go to Final checking.

Final checking: Task b6 completes (at 27) exactly
at the start of b7. Terminate the
subroutine.

Checking routine. We have l = a6, m = b4, and ~m ¼
a4. Go to Checking and shifting.

Checking and shifting: Task a6 completes (at 20) exactly
at the start of b4. Terminate the
subroutine.

Checking routine. We have l = a5, m = b2, and ~m ¼
a2. Go to Checking and shifting.

Checking and shifting: Task a5 completes (at 14) later
than the start of b2 (at 12). Shift
J2 such that the start of b2 is
exactly at 14, as shown in
Fig. 9c. Call Checking routine
with input b2, and call again
Checking routine with input a2.

Checking routine. We have l = b2,m = b3, and ~m ¼ a3.
Go to Checking and shifting.

Checking and shifting: Task b2 completes (at 16) earlier
than the start of b3 (at 17). Ter-
minate the subroutine.

Checking routine. We have l = a2,m = b1, and ~m ¼ a1.
Go to Final checking.

Final checking: Task a2 completes (at 7) exactly
at the start of b1. Terminate the
subroutine.

Step 6. The obtained schedule is S4.
Since I = 3 = k � 1, we output
the schedule S4 (Fig. 9c) and
stop.

Theorem 1. Given a sequence p = (o1, . . . , o2n), Algorithm Plausible-
Task-Sequence either produces a feasible schedule attaining the mini-
mum makespan or identifies the infeasibility of p in O(n2) time.

Proof. Assume a feasible schedule Sk is produced by the algo-
rithm. At the end of Step 2, we have the k subschedules,
r1, . . . , rk, each of which attains the minimum makespan with
respect to its corresponding fundamental cluster. In the recursive
procedure from Step 3 to Step 6, Sk is obtained by tightly arrang-
ing all the k partial schedules, r1, . . . , rk, one by one. In Step 3,
we can easily merge SI with rI+1 without shifting any task of SI

because bn0
I
, the task by which anIþ1 should be preceded, is known

to be bnI . In case of Step 4(a), rI+1 can also be greedily embedded
in SI without shifting any task of SI because b1

I P aIþ1 and
b2

I 6 cIþ1. Notice that in Steps 4(b)–(d), it is required to defer
the processing of Jn0Iþ1, but all jobs other than Jn0Iþ1 are not yet
shifted. Step 5 involves calling Checking routines with the two
tasks bn0Iþ1 and an0Iþ1, respectively. Whenever Checking routine
is invoked, either Final checking or Checking and shifting will
s S2, r3 and r4.



Fig. 9. The step by step construction of optimal schedule S4.

Fig. 8. Subschedules S3 and r4.
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be executed. Subroutine Final checking indicates that the infea-
sible result can be concluded whenever task b1 (also, a1), anIþ1

or bnIþ1 needs to be shifted. In subroutine Checking and shifting,
we examine whether any job needs to be shifted due to the shift-
ing of the task passed to Checking routine. If the shifting of other
tasks are made, then Checking routine will be called again. Pro-
vided that a feasible schedule Sk is obtained after the recursive
procedure, either the first or second task of the job Jj in Sk tightly
adjoins the task preceding it in p, for each j = 2, . . . , n. No room is
possible to further condense Sk.

Consider the case of infeasibility. If the infeasibility of p arises
from Step 2, then it is due to the results of Property 1. If infeasible
comes from the subroutine Final checking, then some task
completes later than the start of b1, anIþ1 or bnIþ1. It is obvious
that shifting J1 is futile and shifting JnIþ1 causes an infinite shifting
recursion. Therefore, sequence p is infeasible if infeasibility is
reported by the algorithm.

As for the running time of the algorithm, Step 1 requires O(n)

time. Step 2 takes at most O eX1

��� ���þ eX2

��� ���þ � � � þ eXk

��� ���� �
¼ OðnÞ time,

and the recursion from Step 3 to Step 6 involves assembling k
partial schedules, each of which takes no more than O(n) time for
the checking processes in Step 5. Since k 6 n, the overall running
time is O(n2). h

4. Polynomially solvable cases

This section discusses three polynomially solvable cases for the
fixed-job-sequence problem. Notice that the complexity result in
this section is presented subject to the assumption of input size
such that, for example, in the case of identical jobs, we have n cop-
ies of processing times and delay times for the n jobs (Orman &
Potts, 1997).

4.1. 1j(pj, pj, pj,), fjsjCmax

Consider the case where aj = lj = bj = pj for all j 2 Nn. Despite the
strong NP-hardness of the 1j(pj, pj, pj,)jCmax problem (Orman &
Potts, 1997), its corresponding fixed-job-sequence version is poly-
nomially solvable. An optimal schedule can be obtained by the fol-
lowing procedure:
Algorithm PSC1

Step 1. Set j = 1.
Step 2. If pj = pj+1, then go to Step 4. Otherwise, append Jj+1 to the

end of Jj, and set j = j + 1.
Step 3. If j = n, then output the schedule and stop. Otherwise, go to

Step 2.
Step 4. Interleave Jj and Jj+1. Append Jj+2 to the end of Jj+1. Set

j = j + 2. Go to Step 3.

Theorem 2. The 1j(pj,pj, pj,), fjsjCmax problem can be solved in O(n)
by Algorithm PSC1. The makespan of the optimal schedule is 2

P
j2Epjþ

3
P

j2NnnEpj, where E is the set of jobs interleaving with each other.

Proof. It is obvious that no interleaving is possible for any two jobs
other than two adjacent identical jobs, Jj and Jj+1 with pj = pj+1. By
examining each pair of adjacent jobs, Algorithm PSC1 matches
any un-interleaved Jj with Jj+1 if pj = pj+1. Since no more interleaving
is possible, Algorithm PSC1 produces an optimal schedule. In the
obtained optimal schedule, each interleaved pair of jobs, Jj and
Jj+1 for j,j + 1 2 E, contributes 2(pj + pj+1) to the makespan. Any job
Jh that cannot be interleaved contributes 3ph to the makespan.
Thus, 2

P
j2Epj þ 3

P
j2NnnEpj. From Step 2 to Step 4, at most n itera-

tions are required, each of which takes a constant time. The overall
running time of Algorithm PSC1 is O(n). h

4.2. 1j(p, p, bj), fjs jCmax

Without the assumption of a fixed-job-sequence, this special
case can be solved in O(n) time (Orman & Potts, 1997). Since
aj = lj = p for j 2 Nn, any job cannot be interleaved with more than
one job. Subject to a given job sequence, we have the following
property of this special case.

Property 2. If the interleaving of jobs exists in a feasible schedule for
problem 1j(p, p, bj, fjsjCmax, then the interleaved pair are some two
consecutive jobs Jj and Jj+1, where bj 6 p; j 2 Nn�1.

With Property 2, a forward dynamic program can be designed. A
job is called isolated if it is not interleaved with any other job. A
subschedule of {J1, J2, . . . , Jj} can be completely characterized by
the 2-tuples (j,k), where j and k are the number of jobs in the sub-



Fig. 11. The complexity graph of the fixed-job-sequence problems.

Fig. 10. The complexity graph of the prototypical problems (Orman & Potts, 1997).
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schedule and the interleaving status of job Jj, respectively. If k = 0,
then job Jj is isolated. If k = 1, then job Jj is interleaved with job
Jj�1. Denote the corresponding minimum makespan as f(j, k) for
1 6 j 6 n and k 2 {0, 1}.

Algorithm PSC2

Initialization: f(1, 0) = 2p + b1 and f(1, 1) =1.
Recursive function: For 2 6 j 6 n,
f ðj;0Þ ¼minff ðj� 1;0Þ; f ðj� 1;1Þg þ 2pþ bj: ð3Þ

f ðj;1Þ ¼
f ðj� 1;0Þ þ pþ bj � bj�1; bj�1 6 p;

1; otherwise:

�
ð4Þ

Goal: mink2{0,1}f(n, k).

Theorem 3. An optimal schedule for the 1j(p, p, bj), fjs j Cmax problem
can be produced in O(n) by Algorithm PSC2.
Proof. Eq. (3) indicates that any isolated job Jj adjoins Jj�1 which
is either isolated or interleaved with Jj�2. In Eq. (4), job Jj can be
interleaved with job Jj�1 if Jj�1 is isolated and bj�1 6 p. A
subschedule in the state (j, k) with value f(j, k) dominates all
other subschedules in the same state in the sense that it contrib-
utes the minimum value to the makespan among those of all
subschedules in this state. The principle of optimality holds
and Algorithm PSC2 can generate an optimal schedule. To
obtain minkf(n, k), at most n � 1 iterations are required, each of
which takes a constant time. The overall running time of
Algorithm PSC2 is O(n). h

Corollary 1. The 1j(aj, p, P), fjs j Cmax, problem is solvable in O(n).

Proof. Orman & Potts (1997) proved that the coupled-task make-
span problem and its reverse are equivalent. Given the fixed-job-
sequence constraint, the equivalence still holds. By virtue of
Lemma 3, this corollary follows. h
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4.3. 1j(p, l, p), fjs j Cmax

Since all jobs are identical, any feasible schedule for 1j(p, l,
p)jCmax satisfies the fixed-job-sequence constraint. By the results
of Orman & Potts (1997) for problem 1jp, l, p,)jCmax, the fixed-
job-sequence problem 1j(p, l, p), fis jCmax can be solved in O(n).

By virtue of these three polynomially solvable cases, we can put
the borderline between polynomially solvable problems and open
problems in the complexity graph. In correspondence with the
complexity graph of the coupled-task scheduling problems shown
in Fig. 10, that of the fixed-job-sequence problems is given in
Fig. 11. The strongly NP-hard problem 1j(pj, pj, pj) j Cmax, becomes
polynomially solvable when the fixed-job-sequence assumption
is imposed. For each polynomially solvable case of the prototypical
problem, the corresponding fixed-job-sequence problem is also
solvable in O(n) time. However, it cannot be concluded that a
fixed-job-sequence problem is easier to deal with than its counter-
part problem without the fixed-job-sequence assumption

5. Concluding remarks

In this paper, we studied a single machine coupled-task make-
span minimization problem subject to a fixed-job-sequence. To
schedule a given task sequence abiding by the fixed-job-sequence
constraint, we designed an O(n2) algorithm determine its feasibil-
ity and a schedule with the minimum makespan, if such a feasible
schedule exists. Three polynomially solvable cases for the fixed-
job-sequence problem were discussed. We also presented a com-
plexity graph to depict the complexity statuses of the studied
cases.

Although the complexity status of 1j(aj, lj, bj), fjs j Cmax remains
open, the results presented in this study could inspire further re-
search attention on this subject. It is also interesting to investigate
the complexity status of the open problems indicated in the com-
plexity graph of the fixed-job-sequence problems. Further research
could also be conducted in developing branch-and-bound proce-
dures in which our proposed algorithm for plausible task se-
quences could be exploited. In addition, different fixed-sequence
constraint, e.g. given a fixed task-1 sequence or a fixed task-2 se-
quence, can be considered.
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