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A Real-Time Vision System for Nighttime Vehicle
Detection and Traffic Surveillance

Yen-Lin Chen, Member, IEEE, Bing-Fei Wu, Senior Member, IEEE, Hao-Yu Huang, and Chung-Jui Fan

Abstract—This paper presents an effective traffic surveillance
system for detecting and tracking moving vehicles in nighttime
traffic scenes. The proposed method identifies vehicles by detecting
and locating vehicle headlights and taillights using image segmen-
tation and pattern analysis techniques. First, a fast bright-object
segmentation process based on automatic multilevel histogram
thresholding is applied to effectively extract bright objects of in-
terest. This automatic multilevel thresholding approach provides
a robust and adaptable detection system that operates well under
various nighttime illumination conditions. The extracted bright
objects are then processed by a spatial clustering and tracking pro-
cedure that locates and analyzes the spatial and temporal features
of vehicle light patterns, and identifies and classifies moving cars
and motorbikes in traffic scenes. The proposed real-time vision
system has also been implemented and evaluated on a TI DM642
DSP-based embedded platform. The system is set up on elevated
platforms to perform traffic surveillance on real highways and
urban roads. Experimental results demonstrate that the proposed
traffic surveillance approach is feasible and effective for vehicle
detection and identification in various nighttime environments.

Index Terms—Traffic information system, traffic surveillance,
nighttime surveillance, vehicle detection, vehicle tracking.

I. INTRODUCTION

D ETECTING and recognizing vehicles are an important
emerging research area for intelligent transportation sys-

tems. Previous studies on this topic have discussed traffic sur-
veillance [1]–[21], driver assistance systems and autonomous
vehicle guidance [22]–[33], and road traffic information sys-
tems [34]–[36]. In traffic surveillance applications, information
about moving vehicles may be obtained from loop detectors,
slit sensors, or cameras. Among the aforementioned sensors,
camera-based systems can provide much more traffic analysis
information, including traffic flow, vehicle classification, and
vehicle speed.
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Due to the falling costs and growing power of computers,
vision-based technologies have become popular solutions for
traffic surveillance and intelligent transportation systems. Many
researchers have developed valuable techniques for detecting
and recognizing vehicles and obstacles in traffic images [2]–
[21], [34]–[36]. By monitoring illumination changes in pre-
specified detection regions, techniques based on virtual slit or
virtual loop detectors [2], [34]–[36] can rapidly detect vehi-
cles moving through their predetermined monitoring regions.
However, these methods are limited to the number of vehicles
passing through the specific detection regions and are difficult
to apply for vehicle classification, vehicle speed detection, and
vehicle motion analysis.

To more efficiently obtain traffic information from moving
vehicles, techniques based on frame differencing [3]–[9] have
been applied to differentiate moving vehicles from motionless
background scenes based on change detection or other statisti-
cal models. Other studies [3][4] use spatial–temporal difference
features to segment moving vehicles, while the methods in
[5]–[9] utilize techniques based on background subtraction
to extract moving vehicles. These methods can be efficiently
applied to daytime traffic scenes with stationary and unchanged
lighting conditions. However, spatial–temporal difference fea-
tures are no longer reliable when vehicles stop or move slowly
in congested traffic areas, and vehicles may be falsely de-
tected as background regions and missed. Moreover, in poorly
illuminated or nighttime conditions, background scenes are
substantially affected by the lighting effect of moving vehicles,
making the reliable hypotheses of background models which
are effective for vehicle detection during daytime invalid. Thus,
most of the aforementioned frame-differencing techniques may
be unreliable for handling nighttime and congested traffic
environments.

To efficiently deal with slowly moving or stationary vehicle
and nighttime traffic scenes, researchers have developed model-
and feature-based techniques [10]–[15] to detect and track
vehicles. Gardner and Lawton [10] and Sullivan et al. [11]
applied 3-D vehicle shape models to detect and track vehicles in
traffic scenes. Although 3-D models can provide high accuracy
in detecting vehicles in less crowded traffic scenes, it requires
a large set of vehicle models and has high computational costs.
Moreover, the effectiveness of this approach relies greatly on
detailed vehicle shapes and thus is not reliable in congested and
complicated traffic scenes with cluttered vehicles with indis-
tinct shapes. The methods in [12]–[14] employ an active con-
tour model to extract the contours of vehicles in traffic scenes
and then use these extracted contours to detect and track vehi-
cles. Contour-based methods can provide greater computational
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efficiency in detecting and tracking vehicles. However, their
detection effectiveness depends greatly on the appropriate ini-
tialization of the contour models applied to the vehicles. Thus,
these methods are sensitive to noisy objects, occlusions, and
variations in illumination. Tsai et al. [15] proposed an ap-
proach for detecting vehicles in still images based on color
and edge features. This approach can detect vehicles without
motion information, allowing static or slowly moving vehicles
to be efficiently detected from image sequences. Most of the
aforementioned methods rely on some hypothetical vehicle
appearance cues, which are only valid and efficient in daytime
with sufficient ambient illuminations.

However, at night, and under darkly illuminated conditions
in general, headlights and taillights are the only salient features
of moving vehicles. In addition, there are many other sources of
illumination that coexist with vehicle lights in nighttime traffic
scenes, including street lamps, traffic lights, and ground-level
road reflector plates. These nonvehicle sources of illumination
make it very difficult to obtain cues for detecting vehicles in
nighttime traffic scenes. To detect salient objects in nighttime
traffic surveillance, Beymer et al. [16] presented a feature-based
technique that extracts and tracks the corner features of moving
vehicles instead of their entire regions. Their approach works in
both daytime and nighttime traffic environments and is more ro-
bust to partial or complete occlusions. However, this technique
suffers from high computational costs, as it must simultane-
ously process numerous features of moving vehicles and is un-
able to classify the types of vehicles detected. Huang et al. [17]
proposed a method based on block-based contrast analysis and
interframe change information. This contrast-based method can
effectively detect outdoor objects in a given surveillance area
using a stationary camera. However, contrast and interframe
change information are sensitive to the lighting effects of mov-
ing vehicle headlights, resulting in erroneous vehicle detection.

Recently, vehicle lights have been used as salient features for
nighttime vehicle detection applications for traffic monitoring
systems [18]–[21] and driver assistance systems [29]–[33]. For
traffic surveillance applications, these methods use morpholog-
ical operations to extract candidate headlight objects and then
perform shape analysis [18], template matching [19], or pattern
classification [20] to find the paired headlights of moving vehi-
cles. Nevertheless, since the aforementioned methods attempt
to locate paired headlights in every single frame, the ambigui-
ties of pairing headlights may cause many false detections and
occlusions when vehicles move alongside each other. Robert
[21] proposed a nighttime vehicle detection system that first de-
tects paired headlights, uses a supervised machine learning sys-
tem to verify and recognize actual vehicles, and finally applies a
tracking approach to resolve occlusions. However, the detection
performance of this approach is limited by its reliance on suit-
able prior training samples of eigenvehicles and the undergone
large computational costs of performing multiple pattern classi-
fiers. Moreover, most of the aforementioned methods are unable
to deal with vehicles with single headlights, such as motorbikes.

This paper presents effective nighttime vehicle detection,
tracking, and identification approaches for traffic surveillance
by locating and analyzing the spatial and temporal features of
vehicle lights. By improving our previous work in [37], this

Fig. 1. Typical examples of nighttime traffic scenes. (a) Sample nighttime
traffic scene 1: An urban road. (b) Sample nighttime traffic scene 2: A highway.

paper presents a system comprising the following processing
stages for efficiently detecting and classifying moving vehicles
at night. First, a fast bright-object segmentation process based
on automatic multilevel histogram thresholding is performed
to extract pixels of bright objects from the captured image
sequences of nighttime traffic scenes. The advantage of this au-
tomatic multilevel thresholding approach is its robustness and
adaptability when dealing with various illumination conditions
at night. Then, to locate the connected components of these
bright objects, a connected-component analysis procedure is
applied to the bright pixels obtained by the previous stage. A
spatial clustering process then groups these bright components
to obtain groups of vehicle lights for potential moving cars and
motorbikes. Next, a feature-based vehicle tracking and identi-
fication process is applied to analyze the spatial and temporal
information of these potential vehicle light groups from consec-
utive frames. This step also refines the detection results and cor-
rects for errors and occlusions caused by noise and errors during
the segmentation and spatial clustering processes. Thus, actual
vehicles and their types can be efficiently detected and verified
from these tracked potential vehicles to obtain accurate traffic
flow information. We also implemented the proposed real-time
vision system on a TI DM642 DSP-based embedded platform
and set up the system on elevated platforms near highways
or urban roads. Experimental results show that the proposed
traffic surveillance system is feasible and effective for vehicle
detection and identification in various nighttime environments.

The rest of this paper is organized as follows. Section II
describes the lighting object segmentation approach for adap-
tively extracting possible vehicle lights. Section III presents
a spatial clustering process on the obtained lighting objects.
Then, Section IV proposes a feature-based vehicle tracking
and identification process for tracking and identifying actual
vehicles based on spatial and temporal information. Next,
Section V illustrates the comparative experimental results.
Finally, Section VI states the conclusions of this study.

II. LIGHTING OBJECT EXTRACTION

The first step in detecting and extracting moving vehicles
from nighttime traffic scenes is to segment the salient objects
of moving vehicles from traffic image sequences. Fig. 1 shows
samples of typical nighttime traffic scenes from an urban road
and highway under different environmental illumination con-
ditions. These sample figures depict that, in typical nighttime
traffic scenes, there are moving cars and motorbikes on the
road, and under poorly or brightly environmental illuminated
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Fig. 2. Edge features extracted from sample nighttime traffic scenes in Fig. 1.
(a) Edge features extracted from sample scene 1 in Fig. 1(a). (b) Edge features
extracted from sample scene 2 in Fig. 1(b).

Fig. 3. Foreground object images extracted from sample nighttime traffic
scenes in Fig. 1 by background subtraction techniques. (a) Foreground image
extracted from sample scene 1 in Fig. 1(a) by background subtraction.
(b) Foreground image extracted from sample scene 2 in Fig. 1(b) by background
subtraction.

conditions, vehicle lights are the only valid salient features.
In addition to the vehicle lights, some lamps, traffic lights,
and signs are also visible sources of illumination in the image
sequences of nighttime traffic scenes.

As Section I mentions, most recent studies on vehicle de-
tection adopt edge maps, frame differencing, and background
subtraction techniques to extract the features of moving ve-
hicles from traffic scenes. However, as Figs. 2 and 3 show,
these techniques, which are effective for vehicle detection in
daytime, become invalid in nighttime illumination conditions.
This is because the background scenes are greatly affected by
the varying lighting effect of moving vehicles. Fig. 2 shows
that the edge features of moving vehicles extracted from night-
time traffic scenes are mostly adjoined and blurred. There are
also numerous nonvehicle lighting objects, such as reflective
lane markings, road surfaces, and reflected beams caused by
nearby moving vehicle lights. Similarly, Fig. 3 shows the
foreground object images extracted by background-subtraction-
based methods. This figure shows that moving vehicles in the
extracted foreground object images are mostly smeared, with
large spurious nonvehicle and background regions. This is be-
cause the illumination intensities of these background regions
are sharply varied due to fluctuating lighting effects, preventing
such techniques from obtaining an appropriate background
model.

Therefore, performing vehicle detection and recognition for
nighttime traffic surveillance requires an effective approach
for correctly and rapidly locating and extracting the salient
features of vehicle lights under poorly illuminated conditions.
This would enable the efficient extraction and segmentation
of the object regions of moving vehicles. Therefore, this sec-

Fig. 4. Results of performing the bright-object segmentation process on the
traffic-scene images in Fig. 1. (a) Lighting objects extracted from Fig. 1(a).
(b) Lighting objects extracted from Fig. 1(b).

tion presents a fast bright-object segmentation process based
on automatic multilevel histogram thresholding. The proposed
method extracts the bright-object pixels of moving vehicles
from image sequences of nighttime traffic scenes.

The first step in the bright-object extraction process is to ex-
tract bright objects from the road image to facilitate subsequent
rule-based classification and tracking processes. To reduce
the computational complexity of extracting bright objects, we
first extracted the grayscale image, i.e., the Y -channel, of the
grabbed image by performing an RGB-to-Y transformation. To
extract bright objects from a given transformed gray-intensity
image, the pixels of bright objects must be separated from other
object pixels of different illuminations. For this purpose, we
have presented a fast effective multilevel thresholding tech-
nique [38]. In this paper, this effective multilevel thresholding
technique is applied to automatically determine the appropriate
levels of segmentation for extracting bright-object regions from
traffic-scene image sequences. More detailed descriptions of
this multilevel thresholding technique can be found in [38].

By applying this multilevel thresholding technique, the light-
ing object regions of moving vehicles can be efficiently and
adaptively segmented under various environmental illumination
conditions in different nighttime traffic scenes as in Fig. 1(a)
and (b). As a result, lighting objects can be appropriately
extracted from other objects contained in nighttime traffic
scenes. Accordingly, as Fig. 4(a) and (b) shows, performing
this lighting object segmentation process successfully separates
the lighting objects of interest in Fig. 1 into thresholded object
planes under different environmental illumination conditions in
nighttime traffic scenes.

III. SPATIAL CLASSIFICATION PROCESS

OF LIGHTING OBJECTS

To extract/obtain potential vehicle light components from
the detection zone in the bright-object plane, a connected-
component extraction process [39] can be performed to label
and locate the connected components of the bright objects.
Extracting the connected components reveals the meaningful
features of location, dimension, and pixel distribution asso-
ciated with each connected component. The location and di-
mension of a connected component can be represented by the
bounding box surrounding it.

Since various nonvehicle light components, such as traffic
lamps, road signs, road reflector plates, reflected beams, and
some other illuminant objects, coexist with actual vehicle
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Fig. 5. Illustration of detection area of traffic scenes.

Fig. 6. Illustration of extracted bright components in the detection area.

lights, we applied a spatial classification process to prelimi-
narily detect potential vehicle lights and filter out nonvehicle
components. These detected potential vehicle lights are then
processed by the following vehicle light tracking and identi-
fication process to identify the actual moving vehicles.

To preliminarily screen out nonvehicle illuminating objects,
such as street lamps and traffic lights located at the top side
of traffic scenes, and to effectively and rapidly locate the
sufficiently reliable and clear features of moving vehicles,
and efficiently save the redundant computational costs for the
embedded system implementation, we apply a detection area
for each traffic scene. This detection area is the midline of
the traffic-scene image and bounded by the most left and right
lanes, as Fig. 5 shows. These lane boundaries were determined
by performing a lane detection process derived from our pre-
vious study [28] in the system initialization. The connected-
component extraction and spatial classification processes are
only performed on the bright objects located in the detection
area, as Fig. 6 shows.

To facilitate the description of the proposed spatial classifica-
tion processes, we first define the bright connected components
and their groups as follows.

1) Ci denotes the ith lighting component to be processed.
2) CSk denotes the kth set of bright components CSk =

{Ci, i = 0, 1, . . . , p}, while the amount of its contained
lighting components is denoted as |CSk|.

3) The locations of a certain component Ci employed in the
spatial classification process are their top, bottom, left,
and right coordinates, denoted as tCi

, bCi
, lCi

, and rCi
,

respectively.
4) The width and height of a bright component Ci are

denoted as W (Ci) and H(Ci), respectively.
5) The horizontal distance Dh and the vertical distance Dν

between a pair of ith and jth lighting components are
defined as

Dh(Ci, Cj) = max(lCi
, lCj

) − min(rCi
, rCj

) (1)

Dν(Ci, Cj) = max(tCi
, tCj

) − min(bCi
, bCj

). (2)

Fig. 7. Illustration of the approximated lane widths in the image coordinate.

If two bright components are overlapping in the horizon-
tal or vertical direction, then the value of the Dh(Ci, Cj)
or Dν(Ci, Cj) will be negative.

6) Hence, the measures of overlapping between the hori-
zontal and vertical projections of the ith and jth bright
components can be respectively computed as

Ph(Ci, Cj) =
−Dh(Ci, Cj)

min [W (Ci),W (Cj)]
(3)

Pν(Ci, Cj) =
−Dν(Ci, Cj)

min [H(Ci),H(Cj)]
. (4)

Fig. 7 shows the image coordinate system used for vehicle
detection. In this image coordinate system, the vehicles located
at a relatively distant place on the road will appear in a higher
location and become progressively smaller until converging
into a vanishing point. Therefore, the driving lanes stretched
from the vanishing point can be modeled by a set of line
equations by

fl(y) =
y − cl

ml
; l = 1, 2, . . . , L (5)

where y denotes the vertical coordinate; ml and cl are the
slope and intercept of the lth driving lane, respectively; and L
represents the number of driving lanes. Here, the driving lanes
are obtained by using the lane detection method of our previous
study [28] in the system initialization process.

The approximate lane width associated with a bright com-
ponent Ci at a distance on the image coordinate, denoted by
LW (Ci), can be obtained by

LW (Ci) = |fl+1 (CY (Ci)) − fl (CY (Ci))| (6)

where CY (Ci) represents the vertical position of the component
Ci on the image coordinate and is defined by CY (Ci) = (tCi

+
bCi

)/2.
Based on the aforementioned definitions of bright compo-

nents, a preliminary classification procedure can be applied to
the obtained bright components to identify potential vehicle
light components and filter out most nonvehicle-illuminant light
components, such as large ground reflectors and beams. For
this purpose, a bright component Ci is identified as a potential
vehicle light component if it satisfies the following conditions.
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1) Since most vehicle lights have a nearly circular shape,
the enclosing bounding box of a potential vehicle light
component should form a square shape, i.e., the size-ratio
feature of Ci must satisfy the following condition:

τRL ≤ W (Ci)/H(Ci) ≤ τRH (7)

where the thresholds τRL and τRH for the size-ratio con-
dition are set as 0.8 and 1.2, respectively, to determine the
circular-shaped appearance of a potential vehicle light.

2) A vehicle light object should also have a reasonable area
compared to the area of the lane. Thus, the area feature of
Ci must satisfy the following condition:

τAL < A(Ci) < τAH (8)

where the thresholds τAL and τAH for the area condi-
tion are determined as τAL = (LW (Ci)/8)2 and τAH =
(LW (Ci)/4)2, respectively, to adaptively reflect the rea-
sonable area characteristics of a potential vehicle light.

Accordingly, if two neighboring bright components Ci and
Cj satisfy the following conditions, they are categorized as a
homogeneous potential vehicle light set and are merged and
clustered as a potential vehicle light set CS.

1) They are horizontally close to each other, i.e.,

Dh(Ci, Cj) < min [W (Ci),W (Cj)] . (9)

2) They are also vertically close to each other, i.e.,

Dν(Ci, Cj) < 2.0 × (min [H(Ci),H(Cj)]) . (10)

3) Two vertically overlapping bright objects with high hor-
izontal projection profiles should be grouped the same
group CS

Ph(Ci, Cj) > Thp (11)

where the threshold Thp is chosen as 0.6 to reflect the
vertical alignment characteristics of compound vehicle
lights.

Figs. 8 and 9 show the results of the spatial clustering
process. This process yields several sets of potential vehicle
components CSs in the detection area, and these are labeled
as P in the following tracking processes. For example, consider
the bottom-right car with a set of compound headlights (marked
by a yellow circle). Fig. 8 shows that its meaningful light
components are preliminarily refined and grouped into sets of
potential vehicle components, in which the light components
of the bottom-right car are grouped into two potential vehicle
component sets. This stage also filters out some nonvehicle
bright components, such as reflected beams on the ground.
Fig. 9 shows another sample of the spatial clustering process
of bright components, in which the reflections of the headlights
of the bottom-right car are excluded from the resulting potential
vehicle component sets.

Note that the current stage does not yet merge the vehicle
light sets on the two sides of the vehicle body into paired
groups. This is because vehicles, which have paired light sets,
and motorbikes, which have single-light sets, both exist in most

Fig. 8. Results of the spatial clustering of bright components. (a) Original
traffic-scene image. (b) Extracted bright components after performing the
preliminary classification procedure. (c) Sets of potential vehicle components
obtained by (9)–(11).

Fig. 9. Results of the spatial clustering of bright components when the
reflected beams are filtered. (a) Original traffic-scene image. (b) Extracted
bright components after performing the preliminary classification procedure.
(c) Sets of potential vehicle components obtained by (9)–(11).

nighttime road scenes. Therefore, without motion information
in the subsequent frames, it is difficult to determine if the
approaching light sets represent paired lights belonging to the
same vehicle. Thus, the vehicle light tracking and identification
process described in the following section is applied to these
potential vehicle light sets to identify actual moving vehicles
and motorbikes.

IV. TRACKING AND IDENTIFICATION OF POTENTIAL

VEHICLES AND MOTORBIKES

The aforementioned processes identify potential vehicle
components entering the detection area, which are represented
by lighting object sets in each image frame. However, since
complete information for determining the types of potential
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vehicles may not be immediately obtained from single image
frames, a component-based tracking and grouping procedure
is applied to analyze the motion information of these potential
vehicle components based on consecutive image frames. This
procedure accurately identifies and classifies moving vehicles
and motorbikes. This tracking information is used to refine the
detection results of potential vehicle components and correct
the errors caused by occlusions, noise, and errors in the bright-
object segmentation and spatial classification processes. The
tracked potential vehicle components that move rigidly together
are grouped as whole moving vehicles by evaluating their
common motion information. After the whole moving vehicles
are obtained, it is possible to identify the types of tracked
vehicles.

The proposed vehicle tracking and identification process
includes three phases. First, the phase of potential vehicle com-
ponent tracking process is associated with the motion relation
of vehicle components in succeeding frames by analyzing their
spatial and temporal features. Then, the phase of motion-based
grouping process is applied to the tracked vehicle components
to construct whole moving vehicles. These moving vehicles are
then tracked in the vehicle tracking phase. Finally, the vehicle
recognition phase identifies and classifies the types of tracked
vehicles.

A. Tracking Process of Potential Vehicle Components

When a potential vehicle component is initially detected in
the detection area, a tracker will be created to associate this
potential vehicle component with those in subsequent frames
based on spatial–temporal features. The features used in the
tracking process are described and defined as follows.

1) P t
i denotes the ith potential vehicle component appearing

in the detection zone in frame t. The location of P t
i

employed in the tracking process is represented by its
central position, which can be expressed by

P t
i =

(
l (P t

i ) + r (P t
i )

2
,
t (P t

i ) + b (P t
i )

2

)
. (12)

2) The tracker TP t
i represents the trajectory of Pi, which

has been tracked in sequential frames 1 to t, and is
defined as

TP t
i =

〈
P 1

i , P 2
i , . . . , P t

i

〉
. (13)

3) The overlapping score of the two potential vehicle com-
ponents P t

i and P t′
j , detected at two different times t and

t′, can be computed using their area of intersection

So

(
P t

i , P t′
j

)
=

A
(
P t

i ∩ P t′
j

)
Max

(
A (P t

i ) , A
(
P t′

j

)) . (14)

In each recursion of the tracking process for a newly in-
coming frame t, the potential vehicle components appearing
in the incoming frame, denoted by Pt = {P t

i | i = 1, . . . , k′},
will be analyzed and associated with the set of potential vehicle
components tracked in the previous frame t − 1, denoted by
TPt−1 = {TP t−1

j | j = 1, . . . , k}. The set of tracked potential

vehicles TPt will then be updated according to the following
process.

During the tracking process, a potential vehicle component
might be in one of the three possible tracking states. The com-
ponent tracking process applies different relevant operations
according to the given states of each tracked potential vehicle
component in each frame. The tracking states and associated
operations for the tracked potential vehicle components are as
follows.

1) Update: When a potential vehicle component P t
i ∈ Pt

in the current frame matches a tracked potential vehicle
component TP t−1

j ∈ TPt−1, then the tracker updates the
set of the tracked potential components TPt by associ-
ating P t

i with the tracker TP t
j if the following tracker

matching condition is satisfied. This matching con-
dition is

So

(
P t

i , TP t−1
j

)
> τmp (15)

where τmp is a predefined threshold that represents the
reasonable spatial–temporal coherence for P t

i to be as-
sociated with TP t−1

j . For performing under free-flown
traffic scenes with sufficiently high frame-grabbing rate,
i.e., at least 15 frames per second (FPS), the movement
of a potential component between two subsequent frames
will probably be less than its size. Thus, a value of τmp =
0.25 is experimentally determined to obtain sufficiently
intact tracks.

2) Appear: If a newly appearing potential vehicle compo-
nent P t

i ∈ Pt does not match any TP t−1
j ∈ TPt−1 at

the previous time, then a new tracker is created for this
potential vehicle component and appended to the updated
set TPt.

3) Disappear: An existing tracker of potential vehicle com-
ponent TP t−1

j ∈ TPt−1 cannot be matched by any newly
coming potential vehicle components P t

i ∈ Pt. A tracked
potential vehicle component may sometimes be tem-
porarily sheltered or occluded in some frames and will
soon reappear in subsequent frames. Thus, to prevent
this vehicle component from being regarded as a newly
appearing potential vehicle, its tracker is retained for a
span of 0.5 seconds, i.e., 0.5 · FPS frames, where FPS
denotes the grabbing frame rate (FPS) of the charge-
coupled device (CCD) camera, to appropriately cope with
vehicles leaving straightforward or making turns. If a
tracker of potential vehicle component TP t−1

j cannot be
matched with any potential vehicles P t

i ∈ Pt for more
than five succeeding frames, then this potential vehicle
component is judged to have disappeared, and its tracker
is removed from the tracker set TPt in the following
frames.

Fig. 10 shows that, after performing the component tracking
process, the potential vehicle components entering the detection
area, including cars and motorbikes with different amounts of
vehicle lights, are tracked accordingly. These potential compo-
nent tracks are then analyzed and associated by the following
motion-based grouping process.
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Fig. 10. Results of the component tracking process of potential vehicle
components. (a) Tracked potential vehicle components of moving cars with
symmetric headlight pairs. (b) Tracked potential vehicle components of moving
cars along with motorbikes. (c) Tracked potential vehicle components of
moving cars with asymmetric headlights.

Fig. 11. Illustration of motion-based grouping process.

B. Motion-Based Grouping of Vehicle Components

With the tracks of potential vehicle components, the subse-
quent motion-based grouping process groups potential vehicle
components belonging to the same vehicles. For this purpose,
potential vehicle components with rigidly similar motions in
successive frames are grouped into a single vehicle. Fig. 11
shows this concept.

The pairing tracks of nearby potential vehicle components
TP t

i and TP t
j are determined to belong to the same vehicle

if they continue to move coherently and reveal homogeneous
features for a period of time. The coherent motion of vehicle
components can be determined by the following coherent mo-
tion conditions.

1) They are consistently moving together on the same
driving lane for a period of time. First, their spatial motion
coherence can be determined by the following spatial
coherence criterion, including

Dh

(
TP t−τ

i , TP t−τ
j

)
<

LW
(
TP t−τ

i

)
+ LW

(
TP t−τ

j

)
2

Dv

(
TP t−τ

i , TP t−τ
j

)
<

(
min

[
H

(
TP t−τ

i

)
,H

(
TP t−τ

j

)])
2

.

(16)

Fig. 12. Example of the motion-based grouping process. (a) Extracted poten-
tial vehicle components of separate headlights. (b) Tracked potential vehicle
components of separate headlights. (c) Component group track of a potential
vehicle obtained by the motion-based grouping process.

Then, the following lane coherence criterion is used to
determine whether they are moving on the same given
lane:

fl

(
CY

(
TP t−τ

i

))
< CX

(
TP t−τ

i

)
< fl+1

(
CY

(
TP t−τ

i

))
fl

(
CY

(
TP t−τ

j

))
< CX

(
TP t−τ

j

)
< fl+1

(
CY

(
TP t−τ

j

))
(17)

where l represents the lth driving lane shown in Fig. 7;
CX(TP t

i ) denotes the horizontal position of the compo-
nent TP t

i on the image coordinate [as CY defined for (6)]
and is defined by CX(TP t

i ) = (lTP t
i

+ rTP t
i
)/2. Here,

τ = 0, . . . , n − 1, n is also determined to be the frames
of a duration of 0.5 s (i.e., 0.5 · FPS frames), to properly
reflect the sufficient sustained time of their coherent mo-
tion information in most traffic flow conditions, including
free-flowing and congestion cases.

2) They have similar heights for a span of time, i.e.,

H
(
TP t−τ

S

)
/H

(
TP t−τ

L

)
> Th (18)

where TP t−τ
S is the one with the smaller height among

the two potential vehicle components TP t−τ
i and TP t−τ

j

at time t − τ , while TP t−τ
L is the larger one. To reason-

ably reveal the alignment features of paired vehicle lights,
Th is chosen to be 0.6.

If the tracks TP t
i and TP t

j meet the aforementioned coherent
motion conditions, they are merged into the same “compo-
nent group track” of a potential vehicle, denoted by TGt

k.
After performing the motion-based grouping process, a set of
K component group tracks, denoted by TGt = {TGt

k| k =
1, . . . , K}, which consist of two or more vehicle components,
can be obtained for the subsequent tracking process. Fig. 12
shows the motion-based grouping process on the vehicle com-
ponent tracks. In this figure, two headlights of a white car are
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Fig. 13. Example of the tracking process of vehicle component groups.
(a) Tracked potential vehicle components of the bus’ headlights. (b) Headlights
of the bus are merged into a component group by the motion-based grouping
process. (c) Tracked potential component group of the bus.

first detected as two potential vehicle components after upon
entering the detection area [as in Fig. 12(a)]. Two separate
trackers for these two potential vehicle components are then
created [as in Fig. 12(b)], and they are accordingly grouped
after they continue to move coherently for a period of time
[as in Fig. 12(c)]. Notably, in Fig. 12(c), one larger headlight
of the following car on the same lane is just detected as a
potential vehicle component and tracked. The headlight pair of
this car will subsequently be detected, tracked, and grouped as
the subsequent car [as shown in Fig. 13(a)].

C. Tracking Process of Vehicle Component Groups

When a potential vehicle represented by a component group
is being tracked across the detection area, the segmentation
process and the motion-based grouping process can cause some
occlusion problems, such as follows: 1) Two vehicles that are
simultaneously moving parallel on the same lane are too close
to each other (particularly large vehicles, such as buses, vans, or
lorries, parallel moving with nearby motorbikes), and they may
be occluded for a while because this may not be completely
avoided in the spatial coherence criterion based on the lane
information during the motion-based grouping process, and
2) some large vehicles may have multiple light pairs and
therefore may not be immediately merged into single groups
during the motion-based grouping process. Therefore, using
the potential vehicle tracks of component groups TGt

k ∈ TGt

obtained by the motion-based grouping process, the component
group tracking process can update the position, motion, and
dimensions of each potential vehicle. This process progres-
sively refines the detection results of potential vehicles using
spatial–temporal information in sequential frames. This section
describes the tracking process for component groups of po-
tential vehicles, which handles the aforementioned occlusion
problems.

First, the possible location of each tracked component group
of a potential vehicle in the current frame t will be preliminarily

estimated by an adaptive search window based on motion
information from the previous frame. To rapidly determine
the search window of a tracked vehicle component group, its
motion vector is first computed as

Δxt−1
k = CX

(
TGt−1

k

) − CX

(
TGt−2

k

)
Δyt−1

k = CY

(
TGt−1

k

) − CY

(
TGt−2

k

)
(19)

where CX(TGt
k) and CY (TGt

k) represent the horizontal and
vertical positions of the tracked component group TGt

k on the
image coordinate, respectively, and are defined by CX(TGt

k) =
(lTGt

k
+ rTGt

k
)/2 and CY (TGt

k) = (tTGt
k

+ bTGt
k
)/2, respec-

tively. A displacement factor (w1, w2), which reflects the pos-
sible position of the potential vehicle in the current frame, can
then be respectively computed as

w1 =1+
Δxt−1

k∥∥Δxt−1
k ,Δyt−1

k

∥∥ w2 =1+
Δyt−1

k∥∥Δxt−1
k ,Δyt−1

k

∥∥
(20)

where ‖Δxt−1
k ,Δyt−1

k ‖ indicates the Euclidian distance be-
tween TGt−1

k and TGt−2
k . The center of the search window

of a tracked potential vehicle in the current frame can then
be determined as (w1 × CX(TGt−1

k ), w2 × CY (TGt−1
k )), and

its width and height can be defined as 1.5 × W (TGt−1
k ) and

3 × H(TGt−1
k ), respectively.

Accordingly, the possible positions of tracked potential com-
ponents TP t

i , which are matched with a tracked potential
component group TGt

k in the current frame, can be more
rapidly and correctly obtained in the search window. A tracked
component group TGt

k appearing in the search window may be
in one of four possible states associated with its own component
tracks TP t

i , . . . , TP t
i+n. This potential vehicle tracking process

conducts different operations according to the current state of
TGt

k.
1) Update: All of the grouped component tracks

TP t−1
i , . . . , TP t−1

i+n owned by a tracked component
group TGt−1

k in the previous frame still exactly and
respectively match a set of vehicle component tracks
TP t

i′ , . . . , TP t
i′+n in the current frame within the search

window. In other words, they all satisfy the following
group matching condition:

So

(
TP t

i′ , TGt−1
k

)
> τmg. (21)

The vehicle tracker then updates the component group
TGt

k of a potential vehicle to include the renewed group
of TP t

i′ , . . . , TP t
i′+n. Here, the threshold τmg reflects a

reasonable spatial–temporal coherence confirmation for
TP t

i′ , . . . , TP t
i′+n to be continuously associated with the

same group as TGt−1
k . Like the tracker matching condi-

tion in (15), for efficient performance under free-flowing
traffic scenes with at least a 15 FPS frame-grabbing
rate, τmg should be reasonably firmer than the value of
tracker matching criterion parameter τmp in (15). This
will ensure that the updated TGt

k is sufficiently coherent
with the associated group of TP t

i′ , . . . , TP t
i′+n. Thus, the

value of τmg = 0.5 is experimentally chosen to obtain
adequately intact track groups.
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2) Shelter/Absorb: The grouped component tracks
TP t−1

i , . . . , TP t−1
i+n owned by TGt−1

k in the
previous frame now have fewer component tracks
TP t

i′ , . . . , TP t
i′+m (where m < n) in the current

frame within the search window. The group matching
condition (21) of the component group TGt−1

k with
TP t

i′ , . . . , TP t
i′+m will be respectively checked, and the

component tracks that satisfy the matching condition will
remain associated with the renewed TGt

k. The tracks
of unexpectedly disappeared or absorbed components
missing from TGt

k are retained in the TGt
k until they are

regarded as disappeared components and removed by the
potential vehicle component tracking process.

3) Extend/Split: The grouped component tracks
TP t−1

i , . . . , TP t−1
i+n owned by TGt−1

k in the previous
frame are now extended or split into more component
tracks TP t

i′ , . . . , TP t
i′+m (where m > n) in the current

frame within the search window. The group matching
condition (21) of TGt−1

k with TP t
i′ , . . . , TP t

i′+m will
be respectively checked, and the component tracks
which coincide with TGt−1

k will remain associated with
the renewed TGt

k. The tracks of newly appearing or
split components are not matched with TGt−1

k , and the
motion-based grouping process (16)–(18) will be applied
to these nonmatched component tracks to determine if
they have coherent motion property with TGt−1

k . The
component tracks that have coherent motion will be
assigned to the updated TGt

k, and the others will be
detached as orphan component tracks.

4) Exit: Once a tracked potential component group TGt
k

has moved across the boundary of the detection area, the
potential vehicle component tracking process determines
that all of its component tracks have disappeared.

According to the examples in Fig. 12, Fig. 13 shows the
examples of the potential vehicles analyzed by the component
group tracking process. In this example, two headlights of a bus
are first detected and tracked as two separate potential vehicle
components after entering the detection area [as in Fig. 13(a)].
They are then merged into a component group by the motion-
based grouping process [as in Fig. 13(b)], and its component
group is accordingly tracked as a potential vehicle [as in
Fig. 13(c)]. After the potential vehicles are tracked for a certain
time, the following verification and classification process is
performed on these tracked potential vehicles to identify the
actual vehicles and their associated types.

D. Vehicle Identification and Classification From
the Tracking Process

During the tracking process of the potential vehicles, a rule-
based vehicle verification and classification process is applied
to each of the potential components and component groups
of potential vehicles tracked for more than ten frames. This
process determines whether it comprises a car or a motorcycle,
and filters out other on-road nonvehicle-illuminant objects.

1) Car identification. First, to identify moving cars in a
frame, we can reasonably assume that a group of lighting
components has a higher possibility of being a car. There-

fore, a tracked component group TGt
k which has been

consistently tracked by the component group tracking
process for a span of more than ten frames after being
created by the motion-based grouping process can be
nominated as a moving car candidate. Accordingly, if
TGt

k contains a set of actual vehicle lights that reveal an
actual car, then TGt

k must satisfy the following discrimi-
nating rules of statistical features.
a) Since a moving car can be approximately modeled as a

rectangular patch, the enclosing bounding box of a po-
tential car should form a horizontal rectangular shape,
i.e., the size-ratio feature of the enclosing bounding
box of TGt

k must satisfy the following condition:

τr1 ≤ W
(
TGt

k

)
/H

(
TGt

k

) ≤ τr2 (22)

where the threshold values τr1 and τr2 of the size-
ratio condition are selected as 2.0 and 8.0, respec-
tively. These values are based on our analysis of the
typical rectangular-shaped front and rear appearances
of paired headlights and taillights on most cars.

b) The number of lighting components of TGt
k should

also be symmetrical and well aligned, and the number
of these components should be in reasonable propor-
tion to the size of the size-ratio feature of its enclosing
bounding box. Thus, the following alignment condi-
tion should be satisfied:

τa1

(
W (TGt

k)
H (TGt

k)

)
≤ ∣∣TGt

k

∣∣ ≤ τa2

(
W (TGt

k)
H (TGt

k)

)
(23)

where τa1 serves as a criterion to reveal the thinner
and slenderer rectangularly aligned characteristics for
detecting taillight sets in the rear view of moving cars,
while τa2 reflects the thicker rectangularly aligned
characteristics for detecting headlight sets in the front
view of moving cars. According to our analysis of
typical visual alignment characteristics of most mov-
ing cars appearing in nighttime traffic scenes, the
thresholds τa1 and τa2 are determined to be 0.4 and
2.0, respectively, to suitably identify moving cars in
both front and rear views.

c) Moreover, since a moving car occupies a considerable
area on a driving lane, the width of TGt

k of a potential
car should occupy a reasonable ratio with respect to
the lane width, i.e., the following width condition
should be met:

τw1 · LW
(
TGt

k

) ≤ W
(
TGt

k

) ≤ τw2 · LW
(
TGt

k

)
(24)

where LW (TGt
k) is the approximate lane width asso-

ciated with TGt
k at its position on the image coordi-

nate and is computed by (6), and the thresholds τw1

and τw2 are determined as 0.5 and 0.9, respectively,
to reveal the width property of the most types of
different sized cars, such as sedans, buses, and trucks,
appearing in traffic scenes with typical lane widths.

2) Motorbike identification. To identify motorbikes, we can
adopt the fact that a motorbike usually appears as a
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single and nearly square-shaped or vertical rectangular-
shaped lighting component in nighttime traffic scenes.
Thus, a single tracked component TP t

i which has not
been associated to any component groups and been con-
sistently and alone tracked by the vehicle component
tracking process for a significant span of more than 1 s,
i.e., 1.0 · FPS frames, can be identified as a moving
motorbike candidate. Therefore, if a single tracked com-
ponent is actually a motorbike, then the size-ratio feature
of its enclosing bounding box should reflect a square or
vertical rectangular shape and should satisfy the follow-
ing discriminating rule:

τm1 ≤ W
(
TP t

i

)
/H

(
TP t

i

) ≤ τm2 (25)

where the threshold values τm1 and τm2 on the size-
ratio condition are selected as 0.6 and 1.2, respectively,
to suitably identify the shape appearance characteristic of
the motorbikes, which are obviously different from those
of the cars.

The aforementioned discriminating rules can be ob-
tained by analyzing many experimental videos of real
nighttime traffic environments, in which vehicle lights
appear in different shapes and sizes, and move in different
directions at different distances. The threshold values
utilized for these discriminating rules were determined
to yield good performance in most general cases of
nighttime traffic scenes.

3) Motorbike identification. A tracked component group or
single potential component of a potential vehicle will be
identified and classified as an actual car or a motorbike
based on the aforementioned vehicle classification rules.
When a classified vehicle leaves the detection area, the
count of its associated vehicle type is then incremented
and recorded to update the traffic flow information. Thus,
each detected vehicle is guaranteed to be counted once,
and the redundant counting of vehicles can be efficiently
avoided.

In summary, Fig. 14 shows the overall process flow of the
proposed nighttime traffic surveillance system.

V. EXPERIMENTAL RESULTS

This section describes the implementation of the proposed
vehicle detection, tracking, and classification system on a DSP-
based real-time system. We conducted various representative
real-time experiments to evaluate the vehicle detection and
classification performance obtained by the proposed system.
The proposed real-time vision system was implemented on a TI
DM642 DSP-based embedded platform, operated at 600 MHz
with 32-MB DRAM, and set up on elevated platforms near
highways and urban roads.

Initially, the detection area for each traffic scene was first
determined using a lane detection process derived from our
previous study [28]. The detection area was located along the
midline of the traffic-scene image, bounded by the most left and
right lane boundaries (as Fig. 5 shows), and divided into driving
lanes (as Fig. 7 shows). To make the proposed system operate

Fig. 14. Block diagram of the proposed nighttime traffic surveillance system.

Fig. 15. Illustration of the proposed real-time system.

well, the CCD camera should be set up on an elevated platform
with a sufficient height to capture an appropriate region for
covering all the driving lanes to be monitored, and the view
angles of the CCD camera should be adjusted to be oriented
to the monitored region for suitably obtaining reliable and
clear features of vehicle lights. Fig. 15 shows the processing
architecture of the proposed real-time system. The frame rate
of this vision system is 30 true-color FPS, and each frame in
the grabbed image sequences measures 320 by 240 pixels. The
computation required to process one input frame depends on the
traffic-scene complexity. Most of the computation time is spent
on the connected-component analysis and the spatial clustering
process of lighting objects. For an input video sequence with
320 × 240 pixels per frame, the proposed real-time system
takes an average of 26.3 ms to process each frame on the
600-MHz TI-DM642 DSP-based embedded platform. This
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Fig. 16. Illustration of the vehicle detection and classification results.

minimal computation cost ensures that the proposed system can
effectively satisfy the demand of real-time processing at more
than 30 FPS.

The proposed system was tested on several videos of real
nighttime highway and urban traffic scenes in various traffic
conditions in Taiwan. Fig. 16 shows that the proposed system
counts the numbers of detected cars and motorbikes appearing
in each driving lane of the detection area and displays the
number of detected cars on the top right of the screen and the
amount of detected motorbikes on the top left.

For the quantitative evaluation of vehicle detection perfor-
mance, this study adopts the Jaccard coefficient [40], which
is commonly used for evaluating performance in information
retrieval. This measure is defined as

J =
Tp

Tp + Fp + Fn
(26)

where Tp (true positives) represents the number of correctly
detected vehicles, Fp (false positives) represents the number of
falsely detected vehicles, and Fn (false negatives) is the number
of missed vehicles. We determined the Jaccard coefficient J for
the vehicle detection results of each frame of the traffic video
sequences by manually counting the number of correctly de-
tected vehicles, falsely detected vehicles, and missed detections
of vehicles in each frame. The average value of the Jaccard
coefficients J was then obtained from all frames of the video
sequences by

J̄ =
∑
N

J/N (27)

where N is the total number of video frames. Here, the ground
truth of detected vehicles was obtained by manual counting.

Figs. 17–20 and Tables I–IV exhibit the most representative
experimental samples of traffic scenes with different traffic
flows and different environmental illumination conditions on
performance evaluation. First, Fig. 17 shows a nighttime urban
traffic scene with a dark environmental illuminated condition
and low traffic flow. As Fig. 17 shows, although nonvehicle
illuminating objects and reflected beams on the ground coexist
with the vehicle in this scene, the proposed system correctly
detected and tracked nearly all moving cars and motorbikes on
a free-flowing urban road by locating, grouping, and classifying
their vehicle lights. However, a few detection errors occurred
when some cars with broken (single) headlights were misclas-
sified as motorbikes. Table I depicts the quantitative results of

Fig. 17. Results of different car/motorbike detection and classification results
for a nighttime urban traffic scene with a dark environmental illuminated
condition.

Fig. 18. Snapshots of different car/motorbike detection and classification
results of a busy urban road under bright illumination condition.

the proposed approach for vehicle detection and tracking on this
urban road.

Fig. 18 shows another sample of a more complicated traffic
scene from a nighttime urban road at rush hour under a bright
environmental illumination condition. Due to traffic signal
changes, the vehicles, including large and small cars, and mo-
torbikes, stop and move intermittently. As Fig. 18 shows, most
of these cars and motorbikes are correctly detected, tracked,
and classified, although many nonvehicle illuminating objects,
such as street lamps, reflected beams, and road reflectors on the
ground, appear very close to the lights of the detected vehicles.
Moreover, as shown in Fig. 18(b) and (c), most vehicles driving
very close to nearby lanes are also successfully discriminated
and detected. Table II shows the experimental data of the
proposed approach on vehicle detection and tracking for the
traffic scene in Fig. 18. Notably, in this traffic scene, many cars
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Fig. 19. Results of vehicle detection and classification for a congested high-
way traffic scene under a light environmental illumination condition.

Fig. 20. Snapshots of different car/motorbike detection and classification
results for a nighttime urban traffic scene in a rainy day.

and motorbikes are mixed and closely comoved (particularly
in the first lane), and many cars and motorbikes intending to
turn right also drive in the first lane. Although this lane has
more complicated traffic flow patterns and vehicle features than
the other two lanes, and causes a few more misdetections than
the other two lanes, the proposed system still appropriately
detected and classified most of the moving cars and motorbikes.

Fig. 19 shows another experimental scene of a congested
nighttime highway at rush hour under a light environmental il-
lumination condition. These images were obtained by a closed-
circuit television (CCTV) camera. Since motorbikes are not
allowed to drive on highways in Taiwan, only cars appeared in
this highway traffic scene. This figure shows that even though
multiple vehicles are stopped or moving slowly close to each
other in this congested traffic scene [particularly in Fig. 19(a)
and (c)], the proposed method still successfully detects and
tracks almost all vehicles. Table III shows the quantitative

TABLE I
EXPERIMENTAL DATA OF THE PROPOSED APPROACH ON TEST

SEQUENCE 1 FOR THE URBAN ROAD SCENE IN FIG. 17

TABLE II
EXPERIMENTAL DATA OF THE PROPOSED APPROACH FOR TEST

SEQUENCE 2 OF THE URBAN ROAD IN FIG. 18

TABLE III
EXPERIMENTAL DATA OF THE PROPOSED APPROACH FOR TEST

SEQUENCE 3 OF THE HIGHWAY SCENE IN FIG. 19

TABLE IV
EXPERIMENTAL DATA OF THE PROPOSED APPROACH FOR TEST

SEQUENCE 4 OF THE RAINY URBAN ROAD IN FIG. 20

results of the proposed approach for vehicle detection on a
nighttime highway. Due to the unsatisfactory view angle of the
CCTV camera, the first lane is partially occluded. Thus, the
vehicle light sets of some few detected cars may be occluded
and misclassified as single-light motorbikes. However, this does
not significantly influence the determination of typical traffic
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Fig. 21. Comparative results of vehicle detection on test sequence 1 for
an urban road scene. (a) Proposed method. (b) Contrast-based method.
(c) Background-subtraction-based method. (d) Pairing-light-based method of
Wang et al.

flow parameters, including congestion, throughput, and queue
length.

Fig. 20 shows the alternative experimental samples of vehicle
detection on a nighttime urban road in a rainy day. In the
rainy condition, the most significant difficulty is the numerous
scattering glares caused by reflected lights on the ground.
As Fig. 20 shows, although there are many spurious lighting
objects appeared close to actual vehicle lights in the traffic
scene, the proposed system is able to avoid most of the re-
flected glares and appropriately detect, classify, and track most
cars and motorbikes. Table IV depicts the results of vehicle
detection in the rainy traffic scene. Although few motorbikes
with smaller single headlights being misdetected due to large
reflected glares, the vehicles in each lane are almost properly
detected because glaring effects can be efficiently suppressed
by the proposed adaptive lighting object segmentation, spatial
classification, and motion-based tracking methods.

The aforementioned experimental traffic video sequences
in various environmental illumination conditions and differ-
ent road environments were also employed for a comparative
performance evaluation of vehicle detection. The following
part evaluates the performance of the proposed system and
compares it to the contrast-based method of Huang et al.
[17], the background-subtraction-based method of Wu et al.
[8], and the pairing-light-based method of Wang et al. [30].
Figs. 21–23 show the representative comparative results of
nighttime vehicle detection for the aforementioned three test
sequences produced by the proposed approach, the contrast-
based method, the background-subtraction-based method, and
the pairing-light-based method.

Fig. 21(a), Fig. 22(a), and Fig. 23(a) show that, although the
vehicles of interest move and stop at various speeds and are
interfered with by many nonvehicle illuminating objects, the
proposed system successfully detects cars and motorbikes with
different moving speeds despite the various difficulties associ-
ated with traffic-scene complexity. By comparison, Fig. 21(b),

Fig. 22. Comparative results of vehicle detection on test sequence 2 for
an urban road scene. (a) Proposed method. (b) Contrast-based method.
(c) Background-subtraction-based method. (d) Pairing-light-based method of
Wang et al.

Fig. 23. Comparative results of vehicle detection on test sequence 3 for a con-
gested highway traffic scene. (a) Proposed method. (b) Contrast-based method.
(c) Background-subtraction-based method. (d) Pairing-light-based method of
Wang et al.

Fig. 22(b), and Fig. 23(b) show that the contrast-based method
does not perform well in detecting vehicles under some com-
plicated nighttime traffic scenes, and several detected vehicles
are broken and blurred by spurious detections of nonvehicle
illuminating objects. This is because the block-based detec-
tion scheme of the contrast-based method is often unable to
accurately locate the object regions of nighttime vehicles. The
detection results in Fig. 21(c), Fig. 22(c), and Fig. 23(c) show
that the vehicles of interest are seriously smeared with large
spurious nonvehicle and background regions. This is because
sharp changes in illumination intensities caused by fluctuating
vehicle lights frustrate background-based models. Fig. 21(d),
Fig. 22(d), and Fig. 23(d) show that, while the pairing-light-
based method can efficiently detect vehicles under free-flowing
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TABLE V
COMPARATIVE DATA ON THE VEHICLE DETECTION PERFORMANCE OF

THE PROPOSED SYSTEM, THE CONTRAST-BASED METHOD, THE

BACKGROUND-SUBTRACTION-BASED METHOD, AND THE

PAIRING-LIGHT-BASED METHOD OF WANG et al.

conditions, it does not perform well on detecting vehicles
under traffic congestion conditions, and many occlusions and
misdetections occur when they are closely moved with large
amount. Moreover, most motorbikes are missed because they
have only single headlights.

Table V depicts the quantitative evaluation results for the
proposed approach, contrast-based method of Huang et al. [17],
background subtraction method of Wu et al. [8], and pairing-
light-based method of Wang et al. [30]. To fairly conduct
a comparative evaluation of computational costs, all these
methods were implemented on a 2.4-GHz Pentium-IV personal
computer platform with a frame resolution of 320 × 240 true-
color pixels per frame. The average computing times of the
proposed approach, the method of Huang et al. [17], the method
of Wu et al. [8], and the method of Wang et al. [30] are
12, 41, 18, and 10 ms, respectively. Therefore, according to
Table V and the computational timings, although the proposed
system requires a little more computing time than the pairing-
light-based method of Wang et al., the proposed system can
provide better vehicle detection performance for nighttime
traffic surveillance than other existing methods. Accordingly,
the experimental and comparative results of numerous different
traffic scenes can demonstrate that the proposed system can
provide fast, effective, and robust vehicle detection and identifi-
cation performance on different nighttime traffic environments,
including various illumination conditions, traffic flows, and
road environments for nighttime traffic surveillance.

VI. CONCLUSION

This paper has proposed an effective nighttime vehicle de-
tection and tracking system for identifying and classifying
moving vehicles for traffic surveillance. The proposed approach
uses an efficient and fast bright-object segmentation process
based on automatic multilevel histogram thresholding to extract
bright objects from nighttime traffic image sequences. This
technique is robust and adaptable when dealing with varying
lighting conditions at night. A spatial analysis and clustering
procedure is applied to group lighting objects into groups of
vehicle lights for potential moving cars and motorbikes. Next, a
new effective feature-based vehicle tracking and identification
process analyzes the spatial and temporal information of these
potential vehicle light groups from consecutive frames, refines

the detection results, and corrects for errors and occlusions. Ac-
tual vehicles and their types can then be efficiently detected and
classified from these tracked potential vehicles to obtain traffic
flow information from traffic monitoring images. The proposed
nighttime vehicle detection and classification approaches were
also implemented on a TI DM642 DSP-based real-time vision
system and tested with real highway and urban nighttime traf-
fic scenes. Experimental results and comparison with existing
methods have shown that the proposed system is effective and
offers advantages for vehicle detection and classification for
traffic surveillance in various nighttime environments. For fur-
ther studies, the vehicle type classification function can be fur-
ther improved and extended by integrating some sophisticated
machine learning techniques such as support vector machine
classifiers on multiple features, including vehicle lights and
vehicle bodies, to further enhance the classification capability
on more detailed vehicle types, such as sedans, buses, trucks,
lorries, and light and heavy motorbikes.
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