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Abstract
This paper presents a control algorithm that can compensate for imperfect dynamics of
vibrating gyroscopes. The compensated gyroscope dynamics can directly measure the rotation
angle without integrating the angular rate. The direct angle measurement approach is
promising because it is exempt from the error accumulation problem. However, using control
methods to compensate for imperfect dynamics for the direct angle measurement is very
challenging work, and very few control algorithms were reported to achieve that. Different
from existing approaches, the proposed method has the following advantages: it requires the
measurements of either the proof mass velocity or position, it does not require a calibration
phase prior to normal use, and it compensates different types of imperfection even when the
proof mass of a gyroscope is unknown. In a demonstration case, imperfections cause system
parameters 20% deviated from their designated values; the measured signals are the proof
mass velocities and contaminated by zero-mean white noise with a noise level of 0.1% full
scale output (FSO); the angular rate to be measured is 200 sin(2π × 10t) deg s−1. The
proposed algorithm can compensate for those imperfections and achieve an angle
measurement accuracy of 0.23◦.

Keywords: MEMS vibratory gyroscopes, direct angle measurement, state observer

(Some figures in this article are in colour only in the electronic version)

1. Introduction

MEMS gyroscopes are typically designed to be angular rate
sensors, and ideally, the rotation angle can be obtained by
integrating the angular rates. In practice, the bias and noise
existed in the measured angular rates cause the estimated
angles to drift over time [1]. This error accumulation problem
can be comprehended by an example shown in figure 1. The
upper plot shows a random signal with zero mean. Integrating
this signal over time produces a ‘random walk’ signal shown
as one line in the middle plot. If this integration process is
carried out several times (in this case, ten zero-mean random
signals which lead to ten random walk signals), one can show
that the standard deviation of the random walk signal increases
with time.

In 1978, Friedland and Hutton suggested the use of
a vibratory gyroscope for measuring rotation angles [2].
Their research showed that the precession angle of the proof

mass trajectory, induced by the Coriolis force only, equals
the rotation angle to be measured (see figure 2). This
precession angle can be calculated by the instantaneous values
of the proof mass position and velocity. Thus, there is no
error accumulation problem in obtaining the rotation angle.
Specifically, to achieve the precession induced by the Coriolis
force only, the vibratory gyroscope must consistently oscillate
along two axes at the same resonant frequency, no cross-axis
dynamics coupling except the coupling induced by the Coriolis
force.

A MEMS vibratory gyroscope can hardly have the
dynamics discussed above because the MEMS fabrication
process and structure designs can easily cause mechanical
structure imperfections. Those imperfections mainly come
from the dimension variations, residual film stress, layer
misalignment, etc [3, 4]. All these errors cause the
fabricated gyroscope parameters (mass, spring constants,
damping coefficients) to deviate from their designated values.
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Figure 1. Signal drifts due to integrating zero-mean white noises. Ten random signals are generated and integrated over time. The top plot
shows one of the ten signals; the middle plot shows the ten signals after integration; the bottom plot shows the standard deviation of the
integrated signals.

(a) (b)

Figure 2. Illustration of precession caused by Coriolis force. (i, j) is
an inertial frame, (x, y) is the rotation frame, and φ is the precession
angle. (a) An initial state, (b) after the gyroscope rotates 45◦.

Even worse, they induce cross-axis resilient force and cross-
axis damping force, which lead to the serious ‘quadrature
error’ in gyroscope systems [3]. Solutions to mechanical
structure imperfections included advanced micromachining
processes, complicated mechanical structure designs, post-
micromachining [5–7], etc. In a word, these imperfections
were often minimized by expensive tooling processes.

Using control techniques to compensate for undesired
dynamics caused by mechanical imperfections is promising
for MEMS gyroscopes because they can be of low cost.
However, it is a much more challenging task for the direct
angle measurement than for the angular rate measurement.
This is because, for the direct angle measurement, it needs
to achieve both ‘mode matching’ and ‘consistent vibration,’
while not interfering with the precession of the proof mass.
This research field is relatively new. Very few control
algorithms were reported to achieve that, and they were

all verified by numerical simulations, none by experimental
results yet. Besides, in those approaches, researchers made
various assumptions on the type of imperfections: some
assumed no cross-axis damping forces and/or resilient forces,
some assumed unknown but matched spring stiffness and/or
damping coefficients along two principal axes, etc. But, one
thing in common, they all assumed that the mass of the proof
mass was known, even in the research of angular rate sensing.

Among those reports, Shkel et al assumed unknown but
matched spring stiffness and zero cross-axis damping force
for the imperfect gyroscope dynamics. They proposed using
energy and angular momentum as the feedback terms to control
the proof mass trajectory [8–10]. However, the effectiveness
in the direct angle measurement was not explicitly shown.
Piyabongkarn et al proposed an algorithm for the angle
and angular rate sensing [11]. The effects from cross-axis
damping forces and resilient forces were ignored, and the
system stability was not theoretically proven. Park et al
assumed zero cross-axis damping force [1]. They proposed an
algorithm that consisted of energy controls and mode tuning
controls to compensate those imperfections. The stability was
theoretically proven. But their approach required a calibration
phase prior to the normal operation. Note that implementing
those three algorithms needs the measurements of both the
proof mass position and the velocity.

This paper proposes a novel approach for the direct
angle measurement when mechanical imperfections exist.
Compared to existing approaches, the proposed method does
not need to measure both the positions and velocities, and it
works with few assumptions on uncertain system parameters.
Most importantly, it does not need to know the mass of the
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Figure 3. A design of a single-mass vibratory gyroscope.

proof mass beforehand, which is expected to further reduce
the calibration work for MEMS vibratory gyroscopes. The
proposed method was developed based on state estimation
techniques. The system parameter estimation was skillfully
arranged so that it can be done using various existing state
observer algorithms and thus benefits from their advantages.
The design procedures and stability analysis of the proposed
method are discussed in detail.

2. Gyroscope dynamics

A MEMS gyroscope suitable for this application is shown in
figure 3. It consists of a single proof mass suspended in a
rigid frame by four flexures. Due to the symmetric design of
the flexures, the proof mass can move freely in the xy plane.
The dynamics of this gyroscope can be described as follows
[3, 12–14]:

mẍ + dxxẋ + dxyẏ + kxxx + kxyy = usx + 2m�zẏ,

mÿ + dxyẋ + dyyẏ + kxyx + kyyy = usy − 2m�zẋ,
(1)

where m is the mass of the proof mass; dxx , dyy and kxx ,
kyy are damping coefficients and spring stiffnesses along the
two principal axes, respectively; �z is the angular rate to be
measured; dxy and kxy are respectively the cross-axis damping
coefficient and spring stiffness; usx and usy are the control
inputs along the x and y axes, respectively. Note that the
angular acceleration terms (m�̇zy, m�̇zx) and centrifugal
force terms

(
m�2

zx, m�2
zy

)
have been omitted from (1). The

angular acceleration terms were omitted by assuming that the
measured angular rate is almost constant over a long enough
time; the centrifugal force terms were omitted by designing the
spring stiffness of the device much larger than the measured
angular rates.

As discussed before, mechanical imperfections are
inevitably present in MEMS devices. In this vibratory
gyroscope design, imperfections mainly contribute to the
existence of dxy and kxy and uncertain values of all system
parameters including spring stiffness, damping coefficients
and the mass. To have precise measurements of angular
information from gyroscopes, these uncertain values must be
either calibrated prior to practical use or their influence must
be compensated in real time.

3. Feedback controls of gyroscope systems

This paper uses control methods to compensate for the
dynamics alternation caused by mechanical imperfections.
Assuming that unknown system parameters and the angular
rate are constants, the dynamic equations of a vibratory
gyroscope can be reformulated into the following:

Ẋs = fs(Xs) + BsUs,

Zs = CsXs + N,

Xs =
[
x y ẋ ẏ �z

kxx

m

kyy

m

kxy

m

dxx

m

dyy

m

dxy

m
1
m

]T

,

fs(Xs) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

− kxx

m
x − kxy

m
y − dxx

m
ẋ − dxy

m
ẏ + 2�zẏ

− kxy

m
x − kyy

m
y − dxy

m
ẋ − dyy

m
ẏ − 2�zẋ

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
12×1

,

Bs =
[

0 0 1
m

0

0 0 0 1
m

[
0

]
2×8

]T

,

Cs =
[

0 0 1 0

0 0 0 1
[0]2×8

]
,

Us = [usx usy ]T , N = [nx ny ]T , (2)

where N is the measurement noise of the gyroscope system;
Xs is a state vector consisting of system dynamics (proof mass
position and velocity), unknown system parameters and the
angular rate. Cs denotes the measurement of this gyroscope
system. Normally, they were the proof mass positions and/or
velocities. The proposed method only needs either one
of them. Here, we demonstrate the control method using
measurements of the proof mass velocity.

The assumption of constant system parameters and
angular rate is impractical in real applications. When these
unknown values are time varying, their effects are treated
as modeling error and minimized by the robustness of the
proposed control method.

3.1. State observer design

For system equations shown in (2), a state observer can be
constructed to estimate the proof mass dynamics and system
parameters simultaneously:

˙̂Xs = fs(X̂s) + Bs(m̂)Us + Ls(Zs − Ẑs),

Ẑs = CsX̂s,
(3)

where X̂s is the estimation of Xs ; Ls is the observer gain
matrix, which can be obtained from various existing observer
algorithms. The observer gain matrix can be divided into Ls1

and Ls2 with proper dimensions. Ls1 is the feedback gain for
the estimation of the proof mass dynamics, while Ls2 is for
the system parameters.
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Here, for the proof of system stability, we derive the
observer gain using Lyapunov theory. Ls1 and Ls2 are chosen
as follows to ensure the correct estimation of all states in Xs :

LT
s = [

LT
s1L

T
s2

]
,

LT
s1 =

[
0 0 ls31 0

0 0 0 ls42

]
, (4)

LT
s2 =

[
2 ˙̂y −x̂ 0 −ŷ − ˙̂x 0 − ˙̂y usx

−2 ˙̂x 0 −ŷ x̂ 0 − ˙̂y − ˙̂x usy

]
,

where ls31 and ls42 can be any positive numbers.
As discussed before, the error due to time-varying system

parameters and time-varying angular rates can be minimized
by the robustness of the feedback controller design. In
the proposed method, it is minimized by the robustness of
the observer design. Besides the proposed method, other
applicable observer algorithms include extended Kalman filter
with fading memory [15], sliding observers [16], etc.

3.2. Feedback controller design

The observability of a system can be altered by the applied
feedback controller. Thus, two main tasks for the feedback
controller are as follows: (1) to meet the ‘observability
[17]’ requirements so that all states in Xs can be correctly
estimated, and (2) to regulate the proof mass trajectory so that
the direct calculation of the rotation angle can be processed
subsequently. To achieve these two goals, the control inputs
are designed as follows:

Us =
[
usx

usy

]

= m̂

⎡⎢⎢⎣
ˆdxx

m̂
˙̂x +

ˆdxy

m̂
˙̂y +

ˆkxx

m̂
x̂ +

ˆkxy

m̂
ŷ − ω2

0x̂ + βx

ˆdxy

m̂
˙̂x +

ˆdyy

m̂
˙̂y +

ˆkxy

m̂
x̂ +

ˆkyy

m̂
ŷ − ω2

0ŷ + βy

⎤⎥⎥⎦ , (5)

where ω0 is the designated resonant frequency of the
compensated system; βx and βy are two signals independent of
state feedback. This independence requirement is mainly for
estimating the quantity of the proof mass. Other requirements
for selecting βx and βy will be discussed shortly.

Once the estimated outputs converge to the system
measurements (Ẑs → Zs), the dynamics of the estimated
states can be described as follows:

¨̂x + ω2
0x̂ = 2�̂z

˙̂y + βx,

¨̂y + ω2
0ŷ = −2�̂z

˙̂x + βy.
(6)

Furthermore, once the estimated state values converge to the
correct state values X̂s → Xs , equation (6) describes the proof
mass dynamics of a compensated gyroscope system.

3.3. Angle calculation

In a special case when �̂z = βx = βy = 0, the analytical
solution of (6) is

x̂ = a cos θ cos φ − b sin θ sin φ,

ŷ = a cos θ sin φ + b sin θ cos φ,

˙̂x = ω0(−a sin θ cos φ − b cos θ sin φ),

˙̂y = ω0(−a sin θ sin φ + b cos θ cos φ),

(7)

Figure 4. Ellipse trajectory of the proof mass when the gyroscope
system is not rotating. The ellipse has a semi-major axis a,
semi-minor axis b, an inclination angle φ and an orbital angle θ .

where θ = ω0t + θ0. The parameters a, b, φ and θ0 are
constants and depend on the initial conditions. This trajectory
can be better visualized in figure 4. It is an ellipse with
semi-major axis length a, semi-minor axis length b and an
inclination angle φ from the X–Y coordinate.

Friedland and Hutton developed analytical solutions for
the case when βx and βy in (6) are zero [2]. To work with our
control method, we developed the analytical solution for (6)
with the solution format completely imitating the one shown
in (7). In that case, the parameters a, b, φ and θ become time
varying and can be described as follows:[

ȧ

ḃ

]
=

[− �̂zb sin 2θ

�̂za sin 2θ

]
+

1

ω0

[− sin θ 0
0 cos θ

] [
cos φ sin φ

− sin φ cos φ

] [
βx

βy

]
,

[
φ̇

θ̇

]
=

⎡⎢⎢⎣
2�̂z(b

2 cos2 θ − a2 sin2 θ)

a2 − b2

−2�̂zab cos 2θ

a2 − b2
+ ω0

⎤⎥⎥⎦ +
−1

ω0(a2 − b2)

×
[−b cos θ a sin θ

a cos θ −b sin θ

] [
cos φ sin φ

− sin φ cos φ

] [
βx

βy

]
,

(8)

where φ̇ in the above equation can be further processed and
regrouped into three terms:

φ̇ = −�̂z + F1H + F2H ,

F1H = �̂z cos 2θ(a2 + b2)

a2 − b2
,

F2H = −1

ω0(a2 − b2)
[−b cos θ a sin θ ] (9)

×
[

cos φ sin φ

− sin φ cos φ

] [
βx

βy

]
.

Most MEMS vibratory gyroscopes measure angular rates
with a range around ± 300◦ s−1 and a bandwidth of a few
hundred Hz [18]. Therefore, if ω0 is designed to be much
larger than the measured angular rate, according to (8), θ̇ ≈ ω0.
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Figure 5. Signal process flow of the proposed direct angle
measurement method.

Furthermore, �̂z is of a few hundred Hz and thus a low-
frequency signal; F1H is the �̂z modulated by the frequency
2ω0; F2H are the control inputs βx and βy modulated by both
ω0 and the frequency of �̂z. Therefore, if the frequency
contents of βx and βy are designed to be distant from ω0

and the frequency content of �z, �̂z in (9) can be separated
from F1H and F2H using a low pass filter. This leads to the
following:

φ =
∫

φ̇ dt =
∫

−�̂z dt +
∫

F1H (·) dt +
∫

F2H (·) dt,∫
−�̂z dt = LPF(φ), (10)

where LPF(·) stands for a filtered signal from a low pass filter.
Note that the angle φ does not need to come from (9). It can be
calculated from (11) according to the ellipse trajectory shown
in figure 4:

φ = 1

2
tan−1 2

(
ω2

0x̂ŷ + ˙̂x ˙̂y
)

ω2
0(x̂

2 − ŷ2) + ( ˙̂x
2 − ˙̂y

2
)
. (11)

Thus, we can obtain the rotation angle from the
instantaneous values of the estimated proof mass dynamics.

3.4. Signal process flow

The signal process steps of the proposed direct angle
measurement are summarized as follows. From the measured
proof mass velocities, the state observer calculated the
estimated proof mass dynamics and system parameters. These
estimated values were fed back to regulate the proof mass
trajectory and to calculate φ using (11). This calculated angle
value is then sent to a low pass filter. The output of the low pass
filter is equivalent to the integration of the estimated angular
rate. If the estimated angular rate converges to the angular rate
to be measured due to the proposed feedback controller design,
this algorithm obtains the rotation angle without integrating
angular rates. The signal processing flow is shown in figure 5.

4. Stability analysis

The proposed feedback controller design is essentially a task
of stabilizing a nonlinear system using estimated system
dynamics and parameters. For the stability analysis, we
first show the observability of the system, and then the state
convergence of the proposed feedback controller design.

4.1. System observability

The success of state estimations depends on the observability
of a system, which can be examined by the rank of the
corresponding observability matrix. The observability matrix
of a nonlinear system can be obtained as follows [17]:

Wso ≡ ∂

∂Xs

[Zs Żs Z̈s · · · ]. (12)

For this feedback control gyroscope system, we examine up
to the fourth derivative of the system outputs. In that case, the
observability matrix (Wso) has the following format:

Wso =
[

[Wss]4×4 [0]4×8

[0]8×4 [Wsp]8×8

]
12×12

. (13)

After tedious derivations, the above Wss and Wsp matrices can
be greatly simplified as follows:

Wss =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

−kxx

m
−kxy

m
0 0

−kxy

m
−kyy

m
0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Wsp

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2ÿ −ẋ 0 −ẏ −ẍ 0 −ÿ u̇sx

−2ẍ 0 −ẏ −ẋ 0 −ÿ −ẍ u̇sy

2y(3) −ẍ 0 −ÿ −x(3) 0 −y(3) üsx

−2x(3) 0 −ÿ −ẍ 0 −y(3) −x(3) üsy

2y(4) −x(3) 0 −y(3) −x(4) 0 −y(4) u(3)
sx

−2x(4) 0 −y(3) −x(3) 0 −y(4) −x(4) u(3)
sy

2y(5) −x(4) 0 −y(4) −x(5) 0 −y(5) u(4)
sx

−2x(5) 0 −y(4) −x(4) 0 −y(5) −x(5) u(4)
sy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(14)

Due to a diagonal form of Wso, Wss is the observability
matrix of the proof mass dynamics (x, y, ẋ, ẏ) and Wsp is
the observability matrix for the unknown system parameters.

According to (14), the rank of Wss is 4 when kxxkyy �=
k2
xy . In that case, those four states are globally observable.

Similarly, the rank of Wsp needs to be 8 for the correct
estimation of all unknown system parameters. As shown in
Wsp, its rank depends on the proof mass trajectory and thus
influenced by the feedback controller design. It can be shown
that the rank of Wsp is 8 when two conditions are met: (1)
the proof mass trajectory contains more than one frequency;
(2) βx and βy are bounded signals and β̇x and β̇y are nonzero.

4.2. Stability analysis

The stability of this control system is proven by the Lyapunov
stability theorem [17]. The error dynamics (e � Xs − X̂s)
can be obtained by subtracting (2) from (3), which leads to the
following:

ė = −(LsCs + F̃ )e,

eT = [
ẽ1

T ẽ2
T θ̃T

]
,

ẽ1
T = [ex ey],

5
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ẽ2
T = [eẋ eẏ],

θ̃ T =
[
e�z

e kxx
m

e kyy

m

e kxy

m

e dxx
m

e dyy

m

e dxy

m

e 1
m

]
,

F̃ T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 kxx

m

kxy

m

0 0 kxy

m

kyy

m

−1 0 dxx

m

( dxy

m
+ 2�z

)
0 −1

( dxy

m
− 2�z

) dyy

m

0 0 −2 ˙̂y 2 ˙̂x

0 0 x̂ 0

0 0 0 ŷ

0 0 ŷ x̂

0 0 ˙̂x 0

0 0 0 ˙̂y

0 0 ˙̂y ˙̂x

0 0 −usx −usy

[0]12×8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(15)

A Lyapunov function is chosen as

V = 1

2
eT P e,

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣

kxx

m

kxy

m
0

dxy

m
kxy

m

kyy

m

dxy

m
0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ [0]4×8

[0]8×4 [I ]8×8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(16)

The above P matrix is positive definite if kxxkyy > k2
xy .

Using the observer gain Ls shown in (4), the derivative of
the Lyapunov function is greatly simplified to the following:

V̇ = −ẽ2
T

⎡⎢⎣dxx

m
+ ls31 0

0
dyy

m
+ ls42

⎤⎥⎦ ẽ2. (17)

The above equation is negative semi-definite, which implies
that the system is stable and all states in e are bounded.
Furthermore, according to (15), the value of ė is also
bounded.

Taking one more derivative of (17) leads to the following:

V̈ = −2ėT (LC + F̃ )T P e − eT (L̇C + F̃
.
)T P e. (18)

V̈ is bounded because each term on the right-hand side of (18)
is bounded. According to Barbalat’s lemma [17], V̇ converges
to zero as time approaches infinity. Thus,

‖ẽ2‖ → 0. (19)

After each state in ẽ2 converging to zero, equation (15)
can be simplified and rearranged as follows:

	ẽ1 = −WT (x̂, ˙̂x, ŷ, ˙̂y)θ̃ ,

	 =

⎡⎢⎣
kxx

m

kxy

m
kxy

m

kyy

m

⎤⎥⎦ ,

WT =
[
−2 ˙̂y x̂ 0 ŷ ˙̂x 0 ˙̂y −usx

2 ˙̂x 0 ŷ x̂ 0 ˙̂y ˙̂x −usy

]
.

(20)

Since each term in the above equation is bounded, taking the
integration of the above equation leads to the following:∫ ∞

0
	ẽ1dt = −

∫ ∞

0
WT θ̃ dt = −W̄ T θ̃

∣∣∞
0 +

∫ ∞

0
W̄ T ˙̃θ dt,

W̄ T =
∫

WT dt. (21)

W consists of estimated proof mass dynamics only, once ẽ2

is zero, whose values are governed by (6). Therefore, W̄ is
bounded. Using the triangle inequality, one can obtain the
following:∥∥∥∥∫ ∞

0
	ẽ1 dt

∥∥∥∥ � ‖W̄ T θ̃ |∞0 ‖ + ‖W̄ T ‖∞ · ‖θ̃ |∞0 ‖. (22)

Again, since each term on the right-hand side of the above
equation is bounded, from (20) and (22), the following two
conditions are met:

lim
t→∞ ‖ẽ1‖ → 0,

lim
t→∞ WT θ̃ → 0.

(23)

According to the equation above, θ̃ would converge to zero
only if the row rank of W is 8. This can be verified by
examining the rank of the following matrix:

[W Ẇ Ẅ · · ·]. (24)

Note that the above matrix is almost the same as the
observability matrix of the system parameters Wsp; only the
real state trajectory is replaced by the estimated state trajectory
described in (6). Therefore, as long as the frequency content
of βx and βy is not ω0, the estimated trajectory contains more
than one frequency, and thus θ̃ converges to zero.

Combining the above conclusions, (19) and (23), one can
show that e → 0. Therefore, the estimated system dynamics
and parameters converge to their correct values, meaning that,
in the steady state, the proof mass dynamics are the same as
the estimated proof mass dynamics described in (6).

5. Simulations

In the numerical verification, the spring stiffness, damping
coefficients, and the mass of a fabricated vibratory gyroscope
are listed in table 1. These numbers are roughly the
same as those of a fabricated MEMS gyroscope [19]. The
measurements of the gyroscope system are the proof mass
velocities along two axes, and are contaminated by zero-mean
white noise with a standard deviation of 20 μm s−1, which

6
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Figure 6. Estimation of the proof mass positions and velocities. The estimated values and correct values are almost identical.

Table 1. System parameters of a MEMS vibratory gyroscope.

Parameters Values

m 1.8 × 10−7 kg
�z 0◦ s−1, t � 0.5 s

200 sin(2π × 10t) deg s−1, t � 0.5 s
kxx 63.96 N m−1

kyy 95.92 N m−1

kxy 12.78 N m−1

dxx 3.6 × 10−6 N s m−1

dyy 4.5 × 10−6 N s m−1

dxy 3.6 × 10−7 N s m−1

equals a noise level of 0.1% FSO (full scale output). Note
that MEMS gyroscopes having this measurement accuracy
can normally achieve an accuracy of 1◦ s−1 for the angular
rate sensing, on the premises that most system parameters are
well calibrated [18].

In the feedback controller design, the designated resonant
frequency ω0 was designed to be (2π × 3.2 × 103). Two
control input signals were designed to be βx = βy = 7.27 ×
10−6 sin (2π × 500t)N . �z was 200◦ s−1 with a frequency
of 10 Hz. The sampling rate of the control algorithm was
200 kHz.

Figures 6 and 7 show the estimations of the proof mass
dynamics and unknown system parameters. The initial guesses
of those values were 20% off from their correct values.
According to the plot, the estimated proof mass dynamics
quickly converge to their correct values; the lines for the system
dynamics and estimated ones overlap each other and thus
are not clearly shown. Besides, the compensated dynamics
show more than one frequency, which complies with the
requirements of system observability. Calculating from 0.005
to 0.01 s, the standard deviations of the estimation errors are

0.01 μm, 3.45 μm s−1, 0.02 μm and 4.26 μm s−1 for x, ẋ, y
and ẏ, respectively.

The estimated system parameters converge to their correct
values within 0.2 s. However, due to large noises present in
the measured signals, the estimation oscillated a lot especially
for the angular rate and damping terms. Calculating from
0.7 to 1 s, the estimation errors for the system parameters are
as follows: the standard deviation of �z is 226.3◦ s−1; the
relative errors for the unknown system parameters m, kxx , kyy ,
kxy , dxx , dyy and dxy are 7.0 × 10−5, 1.9 × 10−4, 1.6 × 10−4,
8.5 × 10−4, 0.11, 0.06 and 1.36, respectively.

Figure 8 shows the compensated proof mass trajectory
from 0.7 to 0.75 s, which is half of a rotation cycle. The
precession of the proof mass is significantly interfered by
the control inputs βx and βy . Thus, the suggested signal
processing steps are required to facilitate the direct angle
measurement.

The upper plot of figure 9 shows the frequency content of
the estimated angle before low pass filtering. This frequency
content can be grouped into three sets: the frequencies below
200 Hz, two resonance peaks at 2.7 and 3.7 kHz, and several
resonance around 6.4 kHz. According to the analysis shown
in (10), these three sets correspond to the frequency content
of �z, F2H and F1H , respectively. Therefore, using a low
pass filter with the corner frequency of 200 Hz, the angular
information is separated from the rest of signals, which is
shown at the lower plot of figure 9. The low pass filter in this
simulation was a fifth-order, digital, Butterworth filter.

Figure 10 shows angle estimations using the proposed
method. Note that the low pass filtering introduces an 8◦phase
lag in the angle output. To better understand the error
introduced by other means, the estimated angle was shifted
8◦and compared to the angle to be measured. The simulation
results showed that the standard deviation of the estimation
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Figure 7. Estimation of eight unknown system parameters. The estimated values converge to their correct values within 0.2 s. The
estimation of mass and spring stiffness is accurate, while the estimation of angular rates and damping coefficients is noisy.
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Figure 8. The compensated proof mass trajectory.

error was 0.23◦. For comparison purposes, the angle obtained
by integrating the angular rate is shown in the right column.
The error drifts with time and the largest error is 1.5◦

within 1 s.
Figures 11 and 12 show the case when the system

parameters are changed during operation, for example,
damping increases at 0.5 s due to a leakage of the device
package. The proposed method was able to compensate this
sudden change and retained the rotation angles. Note that
there exists a bias value in the estimated angle after 0.5 s.
That is because the system loses track of rotation angles
during the transient response of the parameter estimation and
compensation.
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Figure 9. Frequency content of the estimated rotation angle before
and after low pass filtering (	 200 Hz).

6. Discussion

The proposed method is proven to be globally asymptotically
stable in this problem definition (shown in section 4), meaning
that the state/parameter convergence does not depend on
the initial conditions. However, due to the presence of
measurement noise and numerical computation errors, our
simulation results showed that the state convergence occurred
only when the initial estimation error is within ± 25%. In real
applications, it may not be practical to estimate all the system
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Figure 10. Angle estimations using the direct angle measurement method and integrating the angular rates.
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Figure 11. Estimations of eight unknown system parameters when the damping coefficients suddenly change at 0.5 s. The estimated values
converge to their correct values.

parameters simultaneously and limit the frequency content of
the proof mass trajectory to its minimum requirement. Our
simulation results also showed that several properties can be
improved when more frequencies are present in the proof mass
trajectory and/or a smaller number of unknown parameters
are estimated. These properties include convergence range,
convergence speed, estimation accuracy and feedback control
sampling rate.

One of the major concerns in MEMS vibratory gyroscopes
is the temperature effect. The temperature variation may
result in stress mismatch in packaging [20], variation of
energy dissipation [21], variation of elastic modulus and film
oxidation [22], which cause serious performance degradation
for MEMS devices. Therefore, most quality MEMS
gyroscopes integrate a temperature sensor into the device for
temperature compensation. These temperature effects can be
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accounted as slow drifting system parameters, including the
damping coefficient and spring stiffness [23]. Figure 11 shows
that the proposed algorithm can track system parameters even
when those parameters are changing with time. Therefore, we
expect that, without using a temperature sensor, the proposed
algorithm can compensate temperature effects for MEMS
gyroscopes.

According to the simulation results shown in figure 10,
the angle estimation error is 0.23◦. This error may result
from two paths: errors in the estimated states, which leads
to angle errors when using (11); errors in the estimated
system parameters, which leads to angle errors because the
compensated gyroscope dynamics deviated from (6). Both
these errors originate from the noise in the measured velocity
signals. To clarify the influence of each path, we added the
same amount of position/velocity errors as those shown in
figure 6 to an ‘ideal’ gyroscope dynamics described by (6).
The estimated angle accuracy was 0.037◦. Therefore, we
concluded that the angle accuracy of the proposed method
is dominated by estimation errors of system parameters,
particularly in the damping terms and angular rates.

The proposed signal processing can be done differently.
An alternative approach is to use a bandpass filter, with the
passband centered at ω0 and the bandwidth twice that of the
measured angles. According to the signal process flow shown
in figure 13, this approach filters out the influence of βx and
βy prior to the calculation of rotation angles. This approach is
doable, but it requires a bandpass filter with a bandwidth twice
that of the proposed approach. The major disadvantage is the
noisy signal due to a large bandwidth.

Like most existing gyroscope control papers, this paper
only discussed imperfections that can be attributed to uncertain
system parameters. However, more imperfections exist in
real applications such as unstructure dynamics, structure
uncertainties, and angular accelerations. Although the
proposed method can tolerate more parameter uncertainty than
other control algorithms, it is possible that some imperfections
that can be neglected in other control algorithms are crucial

Figure 13. An alternative signal process flow using a bandpass filter.

to the proposed one. Therefore, other types of imperfection
should be investigated and/or experiments using real devices
should be performed to verify the feasibility of this method.
When implementing the proposed algorithm in digital format,
the major concern is the sampling rate 200 kHz. Since the
proposed algorithm does not involve mass computations, the
throughput of the digital controller is likely limited by the
speed of the digital-to-analog converter (DAC). Currently, a
10 bit, 500 kHz DAC is classified as a middle-level product.

7. Conclusion

This paper proposed an online compensation method for a
vibratory gyroscope for direct angle measurement. Using
measured proof mass velocities only, the proposed method
can oscillate the proof mass along two axes at a designated
frequency while preserving its precession motion, when
mechanical imperfections exist. The rotation angle was
directly calculated without integrating angular rates.

The proposed method can compensate for imperfections
including unknown proof mass, unknown cross-axis spring
stiffness and damping coefficients, unknown and unmatched
spring stiffness and damping coefficients along the two
principal axes. Our analysis showed that when all these
imperfections exist simultaneously, the proposed method
can compensate for their influences on two conditions: the
regulated proof mass trajectory contains more than one
frequency, control inputs contain signals that are independent
of state feedback and the first derivatives of those signals are
nonzero.

Simulation results showed that the proposed method
can compensate for imperfections even when those system
parameters change with time. In a simulation case, the
imperfections caused all the system parameters to be 20% off
from their designated values; the measured signals were the
proof mass velocities along the two principal axes and the noise
level was 0.1% FSO; the proposed method can obtain correct
rotation angle with an angle accuracy of 0.23◦. This angle
measurement accuracy is dominated by the error in estimating
system parameters, which originated from the noise in the
measured velocity signals.
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