
L
r

Y
a

b

c

a

A
R
R
1
A
A

K
L
S
P
I

1

o
w
T
i
o
w
c
p
fi
b

b
t
s

0
d

The Journal of Systems and Software 84 (2011) 864–884

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

oad and storage balanced posting file partitioning for parallel information
etrieval

ung-Cheng Maa,∗, Chung-Ping Chungb, Tien-Fu Chenc

Department of Computer Science and Information Engineering, Chang-Gung University, Kwei-Shan, Tao-Yuan, Taiwan
Department of Computer Science and Information Engineering, National Chiao-Tung University, Hsinchu, Taiwan
Department of Computer Science and Information Engineering, National Chung-Cheng University, Chiayi, Taiwan

r t i c l e i n f o

rticle history:
eceived 24 March 2010
eceived in revised form
2 November 2010
ccepted 12 January 2011
vailable online 1 February 2011

eywords:
oad balancing
torage balancing
arallel information retrieval

a b s t r a c t

Many recent major search engines on Internet use a large-scale cluster to store a large database and
cope with high query arrival rate. To design a large scale parallel information retrieval system, both
performance and storage cost has to be taken into integrated consideration. Moreover, a quantitative
method to design the cluster in systematical way is required. This paper proposes posting file partition-
ing algorithm for these requirements. The partitioning follows the partition-by-document-ID principle to
eliminate communication overhead. The kernel of the partitioning is a data allocation algorithm to allo-
cate variable-sized data items for both load and storage balancing. The data allocation algorithm is proven
to satisfy a load balancing constraint with asymptotical 1-optimal storage cost. A probability model is
established such that query processing throughput can be calculated from keyword popularities and data
allocation result. With these results, we show a quantitative method to design a cluster systematically.
nverted file This research provides a systematical approach to large-scale information retrieval system design. This
approach has the following features: (1) the differences to ideal load balancing and storage balancing
are negligible in real-world application. (2) Both load balancing and storage balancing can be taken into
integrated consideration without conflicting. (3) The data allocation algorithm is capable to deal with
data items of variable-sizes and variable loads. An algorithm having all these features together is never
achieved before and is the key factor for achieving load and storage balanced workstation cluster in a

real-world environment.

. Introduction

This paper studies parallel information retrieval on a cluster
f workstations. The research objective is to minimize the hard-
are cost of the cluster to satisfy a given throughput requirement.

he cluster consists of a set of identical workstations. The post-
ng file, a data structure for information retrieval, is partitioned
nto the workstations. A query is processed in parallel with the
orkstations. Hardware cost of the cluster depends on the cluster

onfiguration: the number of workstations and storage capacity
er workstation. Achieving the research objective lies in posting
le partitioning to efficiently use the processing and storage capa-
ilities of workstations.
Information retrieval on parallel and distributed systems has
een widely studied but none of the studies has fully considered
he requirements of contemporary major search engines. Previous
tudies (Jeong and Omiecinski, 1995; Tomasic and Molina, 1995;

∗ Corresponding author. Tel.: +886 3 2118800; fax: +886 3 2118700.
E-mail address: ycma@mail.cgu.edu.tw (Y.-C. Ma).

164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2011.01.028
© 2011 Elsevier Inc. All rights reserved.

Riberio-Neto et al., 1998; MacFarlane et al., 2000; Moffat et al.,
2006; Barroso et al., 2003; Cacheda et al., 2007; Badue et al., 2001;
Lucchese et al., 2007; Moffat et al., 2007) investigated data allo-
cation for high performance information retrieval. In these studies,
storage efficiency is not considered, whereas complex simulation is
required for performance evaluation. In recent years, many major
search engines use a large-scale cluster to store huge amount of
data and face high query arrival rate. Reducing storage cost is
important and quantitative method to design a cluster is desired.
This paper tackles these requirements.

This primary work is load and storage balanced posting file
partitioning. The objective of the partitioning is to minimize stor-
age requirement per workstation subject to a limited mean query
processing time. Mean query processing time is estimated with
popularities of keyword terms. Issues to be dealt with are
(1) load and storage balanced data allocation, and
(2) popularity-based posting file partitioning model.

The first issue is to allocate a set of items, each item being asso-
ciated with a load and a data size, onto a set of workstations. The

dx.doi.org/10.1016/j.jss.2011.01.028
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:ycma@mail.cgu.edu.tw
dx.doi.org/10.1016/j.jss.2011.01.028


tems a

o
l
fi
a
r
i
W
a
o

(

(

p
U
i

k
c
a
r
S
i
t
p

2

fi
t
S
s

2

l
r
m
s
m
s
w
n
L
t
l

A

w
“

(

Y.-C. Ma et al. / The Journal of Sys

bjective of the data allocation is storage balancing subject to a
oad balancing constraint. The second issue is to reduce posting
le partitioning to load and storage balanced data allocation. Stor-
ge balancing reduces the storage requirement and load balancing
educes mean query processing time. In the partitioning model,
tem loads are defined in terms of popularities of keyword terms.

ith the posting file partitioning algorithm, we show a systematic
pproach to determine the cluster configuration for the research
bjective. Contributions of this work are

1) An asymptotically 1-optimal algorithm for load and storage bal-
anced data allocation. This algorithm allocates variable-sized
data items onto a set of workstations with solution quality on
load and storage balancing been formally proved.

2) A probabilistic posting file partitioning model to avoid com-
munication overhead in parallel information retrieval. With
this model, a query is processed in parallel without having to
transfer postings between workstations. Moreover, this model
formulates the posting file partitioning problem as the load and
storage balanced data allocation problem. With this model, load
balancing refers to maximize average throughput of the cluster
of workstations.

As a result of these contributions, a quantitative method is pro-
osed to design a clustered search engine from statistics data.
sefulness of the posting file partitioning in real-world applications

s evaluated with TREC (Hardman, 1992) document collection.
This paper is organized as follows. Section 2 describes basic

nowledge of information retrieval. Section 3 defines the con-
erned data allocation problem and describes related work on data
llocation. Section 4 describes the proposed data allocation algo-
ithm. Section 5 describes how a query is processed in parallel.
ection 6 describes how the proposed data allocation algorithm
s applied for posting file partitioning. Section 7 describes a quan-
itative method to design a cluster with the proposed posting file
artitioning algorithm. Finally, conclusions are given in Section 9.

. Background and related work

This section presents the background to devise our posting
le partitioning algorithm. Section 2.1 describes the fundamen-
al knowledge, such as the inverted file, on information retrieval.
ection 2.2 presents our survey on parallel information retrieval
ystems.

.1. Fundamentals on information retrieval

This section describes information retrieval concepts and ana-
yzes its complexity to address research issues. An information
etrieval system receives users queries and responds with a set of
atched documents for each query. A query is a Boolean expres-

ion in which each operand is a keyword term. A document either
atches or mismatches a query in a binary fashion. For each query,

et operations (∩, ∪, etc.) are performed to compute the answer list,
hich is the set of all document IDs of matched documents. The
otation ANSq denotes the answer list for query q, and the notation
t denotes the set of all document IDs referring to documents con-
aining term t. For the query q=(processor < AND> text), the answer
ist is

NSq = Lprocessor ∩ Ltext,
hich indicates the set of all documents containing both the term
processor” and the term “text”.

An answer list of a query is computed using the inverted file
Frakes and Baeza-Yates, 1992; Witten et al., 1999). An example
nd Software 84 (2011) 864–884 865

inverted file is depicted in Fig. 1. An inverted file consists of an
index file and a posting file. The index file is a set of records, each
containing a keyword term t and a pointer to the posting list of
term t in the posting file. The posting list of term t is a sorted list
of Lt. An entry in the posting list is called a posting. To process a
query, the system first searches the index file and then performs set
operations on the posting lists of queried terms. The set operation
results can be obtained by simply merging posting lists according
to Boolean operators if the posting lists are sorted (Salton, 1989).

Time complexity of query processing is as follows. Time to
search the index file is no more than O(m × log n) (Frakes and
Baeza-Yates, 1992), where m is the number of queried terms and
n is the number of all indexed terms. Zipf’s law (Salton, 1989; Zipf,
1949) states that 95% of words in documents fall in a vocabulary
with no more than 8000 distinct terms. And m is usually small. Com-
plexity on index file side is not critical. Let fti

be the length of the
posting list of a queried term ti. The time to retrieve and merge
the posting lists is O(ft1 + ft2 + · · · + ftm ). The length of a posting
list increases with the size of document collection. Adding a docu-
ment into the collection is to add one posting to each posting list
of the terms appearing in the document. The challenge is to attack
the complexity on the posting file side: We tackle this problem
by proposing posting file partitioning algorithm for parallel query
processing.

2.2. Related work on parallel information retrieval

This section presents our survey on parallel information
retrieval. The general framework of a parallel information retrieval
system with a cluster of workstations is described. The key issue
to design such a parallel information retrieval system is inverted
file partitioning. This section gives a brief description to previous
works on inverted file partitioning.

Cacheda et al. (2007) describes a general framework of parallel
information retrieval. In the general framework, a set of brokers are
responsible for receiving user queries and delivering query results
to users through the Internet. Upon receiving a query, a broker
forwards the query to a set of query servers. The inverted file is
partitioned across the query servers and the query servers work
together to find out the query results. Our work is to study the
inverted file partitioning scheme for parallel query processing.

The key issue in designing a parallel information retrieval sys-
tem is inverted file partitioning. How the inverted file is partitioned
determines how queries are processed in parallel. The system
performance, both throughput and response time, depends on
the inverted file partitioning. For high performance, inverted file
partitioning has to balance workload and reduce communication
overhead among workstations. To reduce storage cost, storage bal-
ancing is required for a homogeneous cluster. In this paper, we
propose an inverted file partitioning algorithm taking integrated
consideration over all these considerations.

Previous researchers (Tomasic and Molina, 1995; Jeong and
Omiecinski, 1995) states that there are two ways to partition
an inverted file: partition-by-term and partition-by-document
scheme. With partition-by-term scheme, the partitioner finds a
mapping from indexed terms to workstations. A workstation stores
a subset of inverted lists from the inverted file. With partition-by-
document scheme, the partitioner finds a mapping from documents
to workstations. A workstation stores an inverted file covering a
subset of the document collection. We briefly describe algorithms
with partition-by-term scheme (Moffat et al., 2007; Lucchese

et al., 2007) and algorithms with partition-by-document scheme
(Cacheda et al., 2005) (Cacheda et al., 2007; Barroso et al., 2003).

Several articles (Tomasic and Molina, 1995; Jeong and
Omiecinski, 1995; MacFarlane et al., 2000) (Badue et al., 2001)
reported performance comparisons of the two schemes. We



866 Y.-C. Ma et al. / The Journal of Systems and Software 84 (2011) 864–884

Invert

s
p

(

(

(

s

r
a
i
a
r

r
t
l
f
s
i
g
r

l
s
t
b
o
m
o

p
i
s
a
t
i
s
p

Fig. 1.

ummarize the comparisons as follows. The advantages of
artition-by-document scheme are

1) avoid the communication overhead of transferring posting lists
between workstations,

2) easy to achieve good load balancing (MacFarlane et al., 2000),
and

3) good scalability with the increase of document collection
(MacFarlane et al., 2000).

The disadvantage of partition-by-document scheme is long disk
eek time to retrieve an inverted list from disks(Moffat et al., 2007).

Moffat et al. (2007) proposed load balanced partitioning algo-
ithm with partition-by-term scheme. Workload of workstations
re estimated from term popularities. The algorithm assigns
nverted lists to workstations with fill-smallest policy for load bal-
ncing. Moreover, inverted lists of hot keyword terms may be
eplicated to multiple workstations to resolve overloading.

Lucchese et al. (2007) proposed inverted file partitioning algo-
ithm to improve both query processing throughput and response
ime. The algorithm follows the partition-by-term scheme. Inverted
ists are assigned to workstations according to term popularities
or load balancing. To improve query response time, a clustering
cheme is applied to group keyword terms frequently appearing
n the same query. The algorithm then assigns inverted lists of
rouped terms to the same workstation. The clustering scheme
educes the communication overhead between query servers.

Cacheda et al. (2005, 2007) proposed analytical models to ana-
yze the performance of a cluster with partition-by-document
cheme. The service rate of brokers, query servers, and network
ransfer are considered in the model. The effect of replicating
rokers and query servers are also analyzed. However, the effect
f documents-to-workstations mapping is not considered in this
odel. Our work builds a quantitative model to analyze the effect

f document mapping scheme.
The Google search engine (Barroso et al., 2003) follows the

artition-by-document scheme with replication. The inverted file
s partitioned into several pieces named “index shards”. An index
hard covers a set of randomly chosen subset of all documents

nd is replicated to a pool of workstations. To process a query,
he query has to be broadcast to a pool of query servers cover-
ng the whole document collection. In recent years, the indexing
ystem is re-written with MapReduce (Dean and Ghemawat, 2008)
rogramming scheme for better scalability.
ed file.

3. Fundamentals of data allocation

Development of posting file partitioning algorithm starts from
this section. This section defines the concerned data allocation
problem and surveys related work. Remaining sections propose a
data allocation algorithm and describe how posting file partitioning
is reduced to the data allocation problem.

3.1. Load and storage balanced data allocation model

The concerned data allocation problem is as follows. The input
to the data allocation algorithm is a set of data items I = {I0, I1, . . .,
IN−1} and a set of workstations WS = {WS0, WS1, . . ., WSM−1}. Each
item Ii is associated with a load Load(Ii) and a size si. We normalize
the size such that

0 < si ≤ 1.00 and maxIi {si} = 1.00 for 0 ≤ i < N.

The output is an allocation X that allocates items in I onto work-
stations in WS. Replicating an item to multiple workstations is
not allowed. The objective is to minimize storage requirement per
workstation subject to certain load balancing requirement. We for-
mally specify an allocation to formulate the optimization problem.

An allocation without replication is specified as follows. Fig. 2
depicts an example of such an allocation. An allocation is a matrix
X in which

• each row corresponds to an item to be allocated and each column
corresponds to a workstation.

• each entry is either 0 or 1, and
• there exists a unique 1 in each row of X.

The entry at row i and column k, denoted Xik, is set to 1 if item
Ii is allocated on workstation WSk. Note that each item is allocated
on a unique workstation. Load of WSk is the total load of all items
allocated on WSk.
LoadX (WSk) =
N−1∑
i=0

Xik × Load(Ii) =
∑

Ii:Xik=1

Load(Ii). (1)



Y.-C. Ma et al. / The Journal of Systems and Software 84 (2011) 864–884 867

ocatio

o

D

a
m
i

m

s

L

w
i

L

s

3

e
p
t
1
t
(
R
N

Fig. 2. (a–d) Example of all

Data size allocated on WSk is the total size of all items allocated
n WSk.

SX (WSk) =
N−1∑
i=0

Xik × si =
∑

Ii:Xik=1

si. (2)

The objective of the allocation is storage balancing subject to
load balancing constraint. Storage balancing is to minimize the
aximum amount of data allocated on a single workstation. That

s, to minimize

axWSk
{DSX (WSk)}. (3)

The constraint is that the load imbalancing is within the load of
ome item. That is,

oadX (WSk) ≤ L

M
+ maxIi {Load(Ii)} for any WSk, (4)

here M is the number of workstations and L is the total load of all
tems.

=
∑

Ii

Load(Ii).

The objective is to generate an allocation X to minimize Eq. (3)
ubject to Eq. (4).

.2. Related work on data allocation

Data allocation has been widely studied but none fully consid-
red the requirements of our research objective on posting file
artitioning. In early 1970s, researchers investigated data alloca-
ion for minimizing the storage cost (Johnson et al., 1974). Since

980s, needs in high performance database systems have turned
he research focus to improving the data retrieval performance
Dowdy and Foster, 1982; Wah, 1984; Wolf and Pattipati, 1990;
otem et al., 1993; Lee and Park, 1995; Little and Venkatesh, 1995;
arendran et al., 1997; Lee et al., 2000). Starting in late 1990s,
n without item replication.

information explosion brought by the Internet raises new chal-
lenges in designing storage systems–both performance and storage
cost have to be taken into consideration. Serpanos et al. (1998)
proposed the MMPacking algorithm, which distributes and repli-
cates identical-size data items onto workstations for both load and
storage balancing. MMPacking (Serpanos et al., 1998) is the most
closely related work but still not suitable for posting file partition-
ing. Requirements to achieve our research objective on posting file
partitioning are

(1) optimization for both load balancing and reducing storage cost,
(2) capability in dealing with variable-size items, and
(3) no item replication.

All related work except for MMPacking fail to satisfy the first
requirement. MMPacking satisfies the first requirement but not the
second and the third requirements.

We propose a data allocation algorithm satisfying all these
requirements. The key idea of the proposed algorithm is problem
reduction to MMPacking with bin packing. We introduce MMPack-
ing (Serpanos et al., 1998) and bin packing (Horowitz et al., 1996)
in detail.

3.2.1. MMPacking
MMPacking (Serpanos et al., 1998) deals with the following opti-

mization problem: The input is a set of n objects B = {B0, B1, . . ., Bn−1}
with identical data sizes, and a set of M workstations WS = {WS0,
WS1, . . ., WSM−1}. Each object Bj is associated with a load to access
Bj, denoted Load(Bj). The output is an allocation with replication that
allocates objects in B onto workstations in WS. The objective is to
minimize the maximum number of objects allocated on a single
workstation subject to the ideal load balancing constraint.

An allocation with replication is formulated as follows. An

allocation with replication is an n × M matrix Y similar to the
allocation matrix X defined in Section 3.1, with these differences:

• each entry in Y is a real number valued between 0 and 1, and
• there may be multiple non-zero entries in a row of Y.



868 Y.-C. Ma et al. / The Journal of Systems and Software 84 (2011) 864–884

xamp

r
h

M∑

f

L

a
r
o

a

i
r
t
n
r
o
o
p
i

for any workstation WSk (Serpanos et al., 1998).

Property 2. The MMPacking algorithm allocates at least �n/M	 and
at most �n/M� + 1 objects on a workstation (Serpanos et al., 1998).
Fig. 3. (a and b) E

The entry at row j and column k, denoted Yjk, represents the
atio of Load(Bj) shared by workstation WSk. The following equation
olds:

−1

k=0

Yjk = 1 for any row j. (5)

The load allocated on a workstation WSk by allocation Y is as
ollows.

oadY (WSk) =
n−1∑
j=0

Yjk × Load(Bj). (6)

A row j with multiple non-zero entries means that load of
ccessing Bj is shared by multiple workstations. The load sharing is
ealized by replicating the object to multiple workstations. A copy
f object Bj has to be stored in WSk if Yjk > 0. The number of objects

llocated on WSk by the allocation Y is
∑n−1

j=0 �Yjk�.
Fig. 3 illustrates how MMPacking works. Objects are sorted

n increasing order of load and then assigned to workstations in
ound-robin. Once the accumulated load of a workstation exceeds
he ideal balanced load, part of the load of the object is split to the
ext workstation in round-robin. Splitting the load of an object is to

eplicate the object to multiple workstations. In this example, the
bject B7 (with load 0.2) is replicated to WS3 and WS0. Replication
f the object B8 starts at WS0, which is the last workstation to share
artial load of B7. For this example, the resultant matrix Y is shown

n Fig. 4.
le of MMPacking.

The following properties of MMPacking are used to analyze our
proposed algorithm. Let L be the total load of all objects. Serpanos
et al. (1998) have proved the following properties for MMPacking.

Property 1. The MMPacking algorithm generates an allocation Y in
which

LoadY (WSk) = L

M

Fig. 4. Result matrix of MMPacking.



Y.-C. Ma et al. / The Journal of Systems a

P
a
b
b

3

T
x
p
B
w

e
p
s
w
a
b

P
o
b

4

a
i

S

S

S

•

The objective of bin splitting is to approximate the load sharing
Fig. 5. (a and b) Example of bin packing.

roperty 3. In the result of MMPacking, each workstation contains
t most two replicated bins. If a workstation contains two replicated
ins, one of the bins is in the last workstation to share the load of the
in (Serpanos et al., 1998).

.2.2. Bin packing
The bin packing problem (Horowitz et al., 1996) is as follows.

he input is a set of items I = {I0, I1, . . ., IN−1} and a bin capacity
. Each item Ii is associated with a size si of it. The objective is to
ack the set of items I into minimum number of bins B = {B0, B1, . . .,
n−1} with capacity x. Fig. 5 depicts an example of packing items
ith size not exceeding 1.00 to a set of bins with capacity x = 1.00.

Our proposed algorithm uses the best-fit algorithm (Horowitz
t al., 1996) to perform bin packing. This algorithm iteratively
laces an item to a bin with the smallest room left. Property 4
tates the key property of the best-fit algorithm. In Section 4.2.2,
e prove a guaranteed storage balancing property of our proposed

lgorithm based on Property 4. (See Lemma 3 for the effect of the
est-fit scheme.)

roperty 4. During the best-fit bin-packing, a new bin is initialized
nly when the current item to be packed cannot fit into any existing
in (Horowitz et al., 1996).

. Load and storage balanced data allocation

This section proposes an approximate algorithm for the data
llocation problem defined in Section 3.1. The proposed algorithm
s outlined as follows.

tep 1: Perform bin packing to pack items in I into bins B = {B0, B1,
. . ., Bn−1} with capacity x.

tep 2: Perform MMPacking to obtain allocation Y which allocates
load of bins in B onto workstations WS. The load of a bin Bj
is set as follows:

Load(Bj) =
∑
Ii ∈ Bj

Load(Ii).
tep 3: for each Bjdo /* allocate Ii ∈ Bj to workstations */

if MMPacking allocates all load of Bj to WSk: allocate all Ii ∈ Bj to
WSk in the final result X;
nd Software 84 (2011) 864–884 869

• if MMPacking replicates Bj: invoke bin splitting procedure to gen-

erate a partition PBj = {B(k)
j

|Yjk > 0} where B(k)
j

is the subset of Bj

allocated on WSk in the final result X.

The idea behind the algorithm is as follows. Step 1 packs
variable-size items into bins with approximately equal size. Step
2 performs MMPacking to determine the ideal load allocation and
(approximately) balance amount of bins allocated on workstations.
Step 3 generates the final result X in which each item is allocated
to a unique workstation. Fig. 6 depicts the final result X generated
from the MMPacking result Y shown in Fig. 3. For a bin Bj not repli-
cated by MMPacking, the whole bin is allocated to the workstation
that MMPacking allocates Bj. For a bin Bj replicated by MMPacking,
a bin splitting procedure is invoked to spread items in Bj to multiple
workstations. Workstation WSk is allocated a subset of Bj, denoted

B(k)
j

, if MMPacking allocates partial load of Bj on WSk (Yjk > 0). This
algorithm approximates storage balancing (when number of bins
is large) since

• most of the bins are of approximately equal size, and
• each workstation contains approximately equal number of bins.

We use the notation Load(B(k)
j

) to denote total load of all items

in B(k)
j

.

Load(B(k)
j

) =
∑

Ii ∈ B(k)
j

Load(Ii).

Load balancing is approximated if the bin splitting procedure in
Step 3 approximates the load sharing determined by MMPacking:

Load(B(k)
j

) ≈ Yjk × Load(Bj) for WSk : Yjk > 0. (7)

The remaining part of this section formalizes this idea. Issues to
realize the idea are

(1) design of bin splitting procedure to approximate the load shar-
ing determined by MMPacking, and

(2) selection of bin capacity x to minimize the worst-case storage
requirement of a workstation.

Section 4.1 deals with the first issue and Section 4.2 deals with
the second issue. Section 4.3 summarizes the discussion to form
the complete algorithm.

4.1. Bin splitting for load balancing

This sub-section presents the bin splitting procedure and proves
that the load balancing constraint (Eq. (4)) is satisfied. MMPack-
ing (Serpanos et al., 1998) achieves load balancing through data
replication. However, to apply for posting file partitioning, each
data item has to be mapped to a unique workstation. Data replica-
tion introduces additional overhead on parallel query processing.
To design a data allocation algorithm for posting file partitioning,
we apply the proposed bin-splitting method to approximate load
balancing without data replication.

4.1.1. Design of bin splitting procedure
The bin splitting procedure, named SplitBin, is shown in Fig. 7.
determined by MMPacking (Eq. (7)). The procedure generates a
partition PBj of bin Bj according to the MMPacking result Y. The

procedure examines each item Ii ∈ Bj and generates B(k)
j

s in the
order that MMPacking replicates Bj. A partition is made whenever



870 Y.-C. Ma et al. / The Journal of Systems and Software 84 (2011) 864–884

Fig. 6. (a and b) Final result generated from MMPacking result.

L

d
M
e

4

a
p
r
c
B
Y
(
(

oad(B(k)
j

) ≥ Yjk × Load(Bj). An example is shown in Fig. 8, which
epicts how the bin B7 (with load 0.2) is split to approximate the
MPacking result shown in Fig. 3. The procedure SplitBin first gen-

rates B(3)
7 and then generates B(0)

7 .

.1.2. Analysis on load balancing property
We prove that the load balancing constraint (Eq. (4)) is satisfied

fter executing the bin splitting procedure. The key idea is to com-
are the load allocations of the final result X and the MMPacking
esult Y. The load of a workstation is rewritten in Corollary 1 for the
omparison. Let WSk be a workstation sharing partial load of the bin
j in the result of MMPacking. The value Load(B(k)
j

) is compared to

jk × Load(Bj), which is the load sharing determined by MMPacking
Corollary 2 and 3). The load balancing property can then be derived
Theorem 1).

Fig. 7. Bin splitting procedure.
By observing Fig. 6, the load of a workstation is rewritten as
follows.

Corollary 1. The proposed algorithm generates an allocation X in
which the load of a workstation WSk is as follows.

LoadX (WSk) =
∑

Bj:Yjk=1

Yjk × Load(Bj) +
∑

Bj:0<Yjk<1

Load(B(k)
j

). (8)

Load partitioning property is as follows. Let WSk be a worksta-
tion sharing partial load of bin Bj in the result of MMPacking. The
bin splitting procedure generates items into a partition the accu-
mulated load is greater than or equal to the load share determined
by MMPacking (cf. Step (3.2) in Fig. 7). The difference between
Load(B(k)

j
) and Yjk × Load(Bj) is thus at most the load of the last item

included in the partition (to be stated in Corollary 2). If WSk is not
the last workstation to share load of Bj, Load(B(k)

j
) exceeds (if not

equal to) Yjk × Load(Bj). Total load of all partitions is fixed:∑
B(k)

j

Load(B(k)
j

) = Load(Bj) =
∑
WSk

Yjk × Load(Bj).

Hence, as to be stated in Corollary 3, for the last workstation
sharing the load of Bj, the allocated load is less than (if not equal to)
the load share determined by MMPacking.

Corollary 2. Let WSk be a workstation sharing partial load of bin Bj

in the result of MMPacking. The bin splitting procedure generates a B(k)
j

satisfying the following equation:

Load(B(k)
j

) ≤ Yjk × Load(Bj) + maxIi {Load(Ii)}. (9)

Corollary 3. Let WSk be the last workstation in MMPacking to share
the load of bin Bj. The bin splitting procedure generates a B(k)

j
satisfying

the following equation:
Load(B(k)
j

) ≤ Yjk × Load(Bj). (10)

Load balancing property of the proposed algorithm is as fol-
lows (where L is the total load of all items and M is the number
of workstations).



Y.-C. Ma et al. / The Journal of Systems and Software 84 (2011) 864–884 871

ple of

T
e

L

f

P
I
r
c

a

L

l
a

L

L

L

B

h

4

a
s
c
b

Fig. 8. Exam

heorem 1 (Load balancing property). The proposed algorithm gen-
rates an allocation X in which

oadX (WSk) ≤ L

M
+ maxIi {Load(Ii)} (11)

or any workstation WSk.

roof. The theorem is proved by rewriting Eq. (8) for various cases.
n the result of MMPacking, a workstation may contain 0, 1, or 2
eplicated bins (Property 3). We consider the case of a workstation
ontains two replicated bins.

We rewrite Eq. (8) for a workstation WSk in which MMPacking
llocates two replicated bins Bj1 and Bj2 .

oadX (WSk) =
∑

Bj:Yjk=1

Yjk × Load(Bj) + Load(B(k)
j1

) + Load(B(k)
j2

).

Property 3 states that one of the replicated bins, say Bj2 , is in the
ast workstation to share its partial load. According to Corollaries 2
nd 3, we have:

oad(B(k)
j1

) ≤ Yjk × Load(Bj1 ) + maxIi {Load(Ii)},

oad(B(k)
j2

) ≤ Yjk × Load(Bj2 ).

Load allocated on WSk satisfies the following equation:

oadX (WSk) ≤
∑

Bj:Yjk>0

Yjk × Load(Bj) + maxIi {Load(Ii)}.

MMPacking achieves exact load balancing (Property 1).∑
j:Yjk>0

Yjk × Load(Bj) = L

M
.

Eq. (11) is thus obtained. Proofs for other cases are similar and
ence omitted. �

.2. Bin capacity selection for storage balancing
We derive equations for selecting the bin capacity and indicate
n upper bound on the allocated data size for any workstation. In
electing the bin capacity, two cases are considered: (i) setting bin
apacity to the size of the largest item, (ii) setting bin capacity to
e larger than the largest item.
bin splitting.

4.2.1. Case of bin capacity being equal to largest item size
We first consider the case of setting bin capacity x = 1, the size

of the largest item, for bin packing. Bin packing will generate a
set of bins with used capacity exceeding 1/2 except for the small-
est bin (see Lemma 1 below). The number of bins required will be
bounded (Lemma 2), and the upper bound on allocated data size
will be obtained (Theorem 2).

Lemma 1. With bin capacity x = 1, there is at most one bin which is
less than half full in the output of the bin packing.

Proof. This lemma is proved by induction on the number of items
packed. The induction hypothesis is the lemma itself. Initially, I0 is
in B0. Suppose the lemma has not failed after packing Ii. The lemma
has not failed again after the packing of Ii+1 if no new bin is initial-
ized for Ii+1. Consider the case of a new bin being initialized to pack
Ii+1. If used capacity of each bin is at least 1/2 after the packing of Ii
(see Fig. 9(a)), the new bin is the only one possible with used capac-
ity not exceeding 1/2 after the packing of Ii+1. In case of there being
a unique bin Bj which is less than half full after the packing of Ii (see
Fig. 9(b)), according to Property 4, to use a new bin for Ii+1 indicates
that no existing bin has enough room and hence si+1 ≥ 1/2. Bj is still
the only bin with used capacity not exceeding 1/2 after the packing
of Ii+1. The lemma still has not failed after the packing of Ii+1 for all
possible cases. This argument holds until all items are packed into
bins. �

With Lemma 1, upper bound on the number of bins generated
can be derived. Let S be the total data size of all items,

S =
N∑

i=1

si, (12)

where si is the size of item Ii. Number of bins generated is bounded
as follows.

Lemma 2. With bin capacity x = 1, the number of bins n generated
by the bin packing is bounded,

n ≤ 2 × S + 1. (13)

Proof. According to Lemma 1, the total size of all items is at least
the total data size packed in the (n − 1) bins with size exceeding

1/2.

S ≥ 1
2

× (n − 1).

Eq. (13) is thus obtained. �



872 Y.-C. Ma et al. / The Journal of Systems and Software 84 (2011) 864–884

item i

r

T
W
X

D

f

P
c
b
i
a

D

o

4

F
o
s
w
d
b
t

c
t
i
e
s
b
w

m

only possible one with used capacity less than x − 1. For case (ii),
no new bin will be initialized (Property 4) since size si+1 ≤ 1 and
Bj has enough room for Ii+1, and afterwards Bj is the only possible
Fig. 9. (a and b) Packing an

Let M be the number of workstations. We derive the storage
equirement of a workstation as follows.

heorem 2 (Workstation storage requirement for bin capacity = 1).
ith bin capacity x = 1, the proposed algorithm generates an allocation
in which

SX (WSk) ≤ 2 × S

M
+ 3 (14)

or any workstation WSk.

roof. The theorem is obtained by calculating number of bins allo-
ated on a workstation WSk. MMPacking allocates at most �n/M� + 1
ins in a workstation (Property 2) and the used capacity of a bin

s at most 1.00. Hence we have the upper bound on the data size
llocated on WSk:

SX (WSk) ≤
⌈

n

M

⌉
+ 1.

Total number of bins n is bounded by Eq. (13). Eq. (14) is thus
btained. �

.2.2. Case of bin capacity being larger than item sizes
We improve storage balancing by allowing larger bin capacity.

ig. 10 shows an example of no size = 1 bins contain more than
ne item. (Recall that item sizes are normalized to the largest item
ize.) In the worst case, the most storage demanded workstation
ill contain twice the amount of data as those in the least storage
emanded workstation. However, the worst case can be improved
y enlarging bin capacity. The key issue is to select the bin capacity
o minimize the (worst-case) storage requirement of a workstation.

There is a tradeoff in selecting bin capacity. Suppose the bin
apacity is x > 1.00. Let n be the number of bins generated and M be
he number of workstations. Fig. 11 shows the maximum difference
n allocated data size between workstations. MMPacking (Serpanos
t al., 1998) allocates from �n/M	 to �n/M	 + 2 bins on each work-
tation. Except for the least demanded bin, the used capacity of a

in lies between x − 1 and x (Lemma 3). Data size allocated on a
orkstation is bounded as follows from the above:

axWSk
{DSX (WSk)} ≤

(⌊
n

M

⌋
+ 2
)

× x.

Fig. 10. Worst case of setting bin capacity to be equal to the largest item.
nto bins with capacity one.

In a workstation, there are at most three bins with used capacity
not exceeding x − 1: one bin resulted from bin packing and two
from bin splitting. Data size allocated on a workstation is bounded
as follows from the below:

min
WSk

{DSX (WSk)} ≥
(⌊

n

M

⌋
− 3
)

× (x − 1).

The maximum difference in allocated data size between work-
stations is as follows:

maxWSk
{DSX (WSk)} − min

WSk

{DSX (WSk)} = O
(

n

M

)
+ O(x). (15)

Selecting a large x reduces number of bins n generated and hence
O(n/M) in Eq. (15). However, selecting a large x increases O(x) in Eq.
(15). The tradeoff is resolved analytically.

How to select x is outlined as follows. Lemma 3 below states
packed bin sizes. Lemma 4 bounds number of generated bins
according to packed bin sizes. With the bound on number of gen-
erated bins, Lemma 5 relates storage requirement to selected bin
capacity, and defines the storage requirement function (Eq. (18)).
The bin capacity x is selected to minimize the storage requirement
function. The storage requirement for a workstation can then be
derived (Theorem 3).

Lemma 3. With bin capacity x > 1, there exists at most one bin with
used capacity less than x − 1 in the result of bin packing.

Proof. This lemma is proved by induction on the number of items
packed. The induction hypothesis is the lemma itself. The initial
condition, condition after packing of item I0, is trivial. Suppose the
lemma holds after the packing of Ii. Two possibilities exist here: (i)
used capacity of each bin exceeds x − 1 (Fig. 12(a)), and (ii) there is
only one bin Bj with used capacity not exceeding x − 1 (Fig. 12(b)).
For case (i), after packing of Ii+1, the new bin (if initialized) is the
bin with used capacity not exceeding x − 1. The lemma thus holds
again after the packing of Ii+1. �

Fig. 11. Effects of bin capacity selection on storage balancing.



Y.-C. Ma et al. / The Journal of Systems and Software 84 (2011) 864–884 873

m to b

o

L
b

n

P
s
o

S

a
o

L
a

D

f

P
t
e

D

i

m
t

f

F
S
b

x

t

f

et al., 1996). The time complexity of the MMPacking to allocate
n (≤N) bins is O(n + M) (Serpanos et al., 1998). Hence the time com-
plexity of the proposed algorithm is O(N2 + M + n). To implement
the algorithm, an O(n × M) space is required to store the result of
MMPacking Y. The final result X can be implemented as a mapping
Fig. 12. (a and b) Packing an ite

Similar to Lemma 2, following lemma shows the upper bound
n the number of bins generated. (S is the total size of all items.)

emma 4. With bin capacity x > 1, the number of bins n generated
y bin packing is bounded,

≤ S

x − 1
+ 1. (16)

roof. According to Lemma 3, there are at least n − 1 bins with
izes exceeding x − 1, and the total data size S exceeds the total size
f these n − 1 bins,

≥ (x − 1) × (n − 1).

Eq. (16) is obtained immediately. �

The storage requirement of a workstation can then be written
s a function of bin capacity x, stated as follows. (M is the number
f workstations.)

emma 5. With bin capacity x > 1, the proposed algorithm generates
n allocation X in which

SX (WSk) ≤ S

M
×
(

1 + 1
x − 1

)
+ 3x (17)

or any workstation WSk.

roof. In the output of the proposed algorithm, each worksta-
ion WSk contains at most �n/M� + 1 bins with the use capacity not
xceeding x for all bins.

SX (WSk) ≤
(⌈

n

M

⌉
+ 1
)

× x.

Lemma 4 gives an upper bound on n and Eq. (17) is obtained
mmediately. �

The bin capacity is selected to minimize the storage require-
ent function. The storage requirement function f(x) indicates

he required storage of a workstation if bin capacity is set to be x.

(x) ≡ S

M
×
(

1 + 1
x − 1

)
+ 3x. (18)

The storage requirement function on the x-y plane is shown in
ig. 13, which reflects the tradeoff in selecting the bin capacity.
olving the differential equation f′(x) = 0, we obtain the optimal
in capacity x0 to minimize f(x):

0 = 1 +
√

S

3 × M
. (19)
And the most efficient required storage capacity for a worksta-
ion is obtained:

(x0) = S

M
+ 2

√
3 ×
√

S

M
+ 3. (20)
ins with enlarged bin capacity.

Theorem 3 (Workstation storage requirement for bin capacity ¿1).
By selecting bin capacity x = 1 +

√
S/(3 × M), the proposed algorithm

generates an allocation X in which

DSX (WSk) ≤ S

M
+ 2

√
3 ×
√

S

M
+ 3 (21)

for any workstation WSk.

Proof. This is the conclusion of previous discussion. �

The theorem indicates the optimization quality of the proposed
algorithm in storage balancing.

4.3. Summary of proposed algorithm

We summarize previous discussion to derive a complete algo-
rithm and analyze the complexity and asymptotic behavior of the
algorithm.

The proposed data allocation algorithm, LSB Alloc (Load and
Storage Balanced Allocation), is shown in Fig. 14. The algorithm
determines the bin capacity as discussed in Section 4.2. By com-
paring Eq. (14) and Eq. (21), whether to enlarge the bin capacity or
not is best determined by S/M, where S is the total data size and
M is the number of workstations. (Note that the results of the two
equations Eqs. (14) and (21) equals at S/M = 12.) Properties of the
output are proved in previous sections.

The complexity of the data allocation algorithm is as follows.
The time complexity of best-fit bin packing is O(N2) (Horowitz
Fig. 13. Capacity function for selecting bin capacity.



874 Y.-C. Ma et al. / The Journal of Systems and Software 84 (2011) 864–884

lanced

t
i

L
f
f
a
a
r

a
s
r

is to apply the proposed data allocation algorithm LSB Alloc for
posting file partitioning. We first specify what a data item is.
We follow the partition-by-document-ID principle to partition the
posting file. The principle states that an item for data allocation is
Fig. 14. Proposed load and storage ba

able with O(N) space. Hence the space complexity of the algorithm
s O(n × M + N).

The algorithm is asymptotically 1-optimal on storage balancing.
et J be an instance (for given data items I and workstations WS)
or the optimization problem. Eq. (3) defines the cost of a solution
or J. The notation OPT(J) denotes the cost of the optimal solution
nd F(J) denotes the cost of the solution found by the proposed
lgorithm. It is clear that OPT(J) ≥ S/M. According to Theorem 3, the
atio F(J)/OPT(J) is bounded as follows.

F(J)
OPT(J)

≤ 1 + 2
√

3√
S/M

+ 3
S/M

. (22)
Fig. 15 depicts the curve of Eq. (22). The ratio F(J)/OPT(J)
pproaches one when S/M exceeds certain threshold. Section 7
hows that very near optimal storage balancing is achieved for
eal-world applications.
data allocation algorithm, LSB Alloc.

5. Parallel information retrieval

We come back to information retrieval problem. The work here
Fig. 15. Storage balancing property of proposed algorithm.



Y.-C. Ma et al. / The Journal of Systems and Software 84 (2011) 864–884 875

-by-do

t
t
p
o
c
t
d
a

T
m
c
c
f
1
d
r
t
t
t
a

t
q
c

5

a
p
t
w

L

i
i
1

t
i

).

Suppose the theorem holds when the number of Boolean oper-
ators in q is less than n and we prove that the theorem also holds
when q contains n Boolean operators. The query q is either “(q1) <
AND> (q2)” or “(q1) < OR> (q2)” where q1 and q2 are queries contain-
ing no more than n − 1 Boolean operators. Consider the case that q
Fig. 16. The partition

he set of all postings referring to the same document ID. This sec-
ion describes how a query is processed in parallel following the
rinciple. With this principle, a query is processed in parallel with-
ut having to transferring postings between workstations. Time
omplexity of parallel query processing will be analyzed. Based on
he analysis, Section 6 formulates posting file partitioning as the
ata allocation problem and proposes the posting file partitioning
lgorithm.

The partition-by-document-ID principle is illustrated in Fig. 16.
he principle dictates that all postings referring to the same docu-
ent ID be allocated on the same workstation. Each workstation

overs an exclusive set of document IDs. In parallel query pro-
essing, workstation WSk is responsible for providing answers only
rom document IDs covered by it. For example, for the query (term
< AND> term 2), WS1 provides answers {4, 8}. Checking whether a
ocument ID d matches a query or not requires only postings refer-
ing to document ID d, which are all in the same workstation. For
he above example, checking whether document 4 contains both
erm 1 and term 2 requires only the local data in WS1. Following
he principle, a query is processed independently and in parallel by
ll workstations.

This section describes how a query is processed in parallel. Sec-
ion 5.1 deals with the set theory and the time complexity of parallel
uery processing. Section 5.2 deals with implementation issues on
luster of workstations.

.1. The theory

The partitioned posting file is formalized as follows. To partition
posting file is to map document IDs to workstations. Let Lt be the
osting list of term t, and Dk be the set of document IDs mapped
o WSk. The notation Lt(WSk) denotes the set of document IDs in Lt

hich are mapped to WSk.

t(WSk) = Lt ∩ Dk. (23)

The local posting list of term t in WSk is the set of document IDs
n Lt(WSk) stored in increasing order. The local posting file in WSk

s the set of local posting lists for all terms t. For the example in Fig.
6, local posting files for all workstations are shown in Fig. 17.

Parallel query processing works as follows. For a given query q,
he parallel query processing is to compute the answer list ANSq

n parallel. Each workstation WSk is responsible for computing its
cument-ID principle.

own partial answer list ANSq(WSk):

ANSq(WSk) = ANSq ∩ Dk. (24)

The set ANSq(WSk) is the set of all document IDs matching query
q and mapped to WSk. The union of all partial answer lists from all
workstations is hence the complete answer list,

Ansq =
⋃
WSk

Ansq(WSk). (25)

The following theorem states the set operation to compute a
partial answer list.

Theorem 4 (Computation of partial answer list). The partial answer
list, ANSq(WSk), can be represented in set operations on local posting
lists of queried terms in WSk.

Proof. We prove this theorem by induction on the number of
Boolean operators in the given query q. The induction hypothesis
is the theorem itself.

The basis, when q contains only one Boolean operator, is as fol-
lows. Query q is either “term i < AND> term j” or “term i < OR> term
j”. Consider the case that q is “term i < AND> term j”. The partial
answer list at WSk is

ANSq(WSk) = (Li ∩ Lj) ∩ Dk = (Li ∩ Dk) ∩ (Lj ∩ Dk) = Li(WSk) ∩ Lj(WSk

This rewrites ANSq(WSk) with set operations on local posting
lists in WSk. The case that q is “term i < OR> term j” is similar and is
omitted.
Fig. 17. Local posting files in above example.



8 tems a

i

A

A

A
l
t
h

l
a
a
t
A
t
o

A

f
u
s
i
T

C
t

5

o
p
m
d

l
r
s
g
i
2
o
o
o
s
a
E
l
t
p
t

u
q
a
s
l
s
b

ing the mapping of document IDs (items) to workstations. For the
allocation X, local posting list of term t at workstation WSk, denoted
Lt(WSk), is as follows.
76 Y.-C. Ma et al. / The Journal of Sys

s “(q1) < AND> (q2)”. The partial answer list at WSk is

NSq(WSk) = (ANSq1 ∩ ANSq2 ) ∩ Dk = (ANSq1 ∩ Dk) ∩ (ANSq2 ∩ Dk).

The above equation can be written as

NSq(WSk) = ANSq1 (WSk) ∩ ANSq2 (WSk).

The induction hypothesis states that ANSq1 (WSk) and
NSq2 (WSk) can be represented in set operations on local posting

ists of queried terms in WSk, and hence so is ANSq(WSk). The case
hat q is “(q1) < OR> (q2)” is similar and is omitted. This theorem is
ence proved by induction. �

Theorem 4 states an efficient way to compute a partial answer
ist. To compute ANSq(WSk), WSk only has to perform basic set oper-
tions on its local posting lists of queried terms, without examining
ll document IDs mapped to it. An example is as follows. Consider
he partitioned posting file in Fig. 16, and let query q be “(term0 <
ND> term3) < OR> term4”. Local posting lists of term0, term3, and

erm4 in WS2 are {5, 9}, {9}, and {5}, respectively. The series of set
perations to compute the partial answer list at WS2 is as follows:

NSq(WS2) = ({5, 9} ∩ {9}) ∪ {5} = {5, 9}.

Note that no postings referring to document ID 2 is examined.
The time complexity of computing a partial answer list is as

ollows. Any set operation algorithm operating on sorted lists can be
sed. We use the list merging algorithm (Salton, 1989) to perform
et operations. Let f (k)

ti
be the length of the local posting list of the

th queried term ti in WSk, and m be the number of queried terms.
he following corollary states the time complexity.

orollary 4. With list merging (Salton, 1989), the time complexity
o compute ANSq(WSk) is O(f (k)

t1
+ f (k)

t2
+ · · · + f (k)

tm
).

.2. Implementation on cluster of workstations

This section describes the flow of processing a query on a cluster
f workstations, starting from receiving a user query to the com-
letion of the answer list. While Boolean query processing is the
ajor concern here, the proposed scheme can also be extended to

eal with ranking with the addition of parallel sorting.
The flow of computing the answer list for a query is as fol-

ows. Fig. 18 shows the system overview of a clustered information
etrieval system. The parallel flow to compute the answer list for
uch a cluster is shown in Fig. 19. A specific workstation, called the
ateway, is dedicated for receiving user queries and performing the
ndex file search. The gateway searches the index file shown in Fig.
0(a), and substitutes a term ID for each term in the query. All the
ther workstations are called the backend workstations. Records
f frequently used terms are often stored in random access mem-
ry so that the average index search time will not scale with the
ize of the keyword collection. The query is then broadcasted to
ll back-end workstations to compute the answer list in parallel.
ach workstation stores an index array of pointers to local posting
ists, as shown in Fig. 20(b). Upon receiving a broadcasted query,
he workstation retrieves local posting lists and computes its own
artial answer list. The partial answer list is buffered locally, and
he number of document IDs found is sent back to the gateway.

The remaining work is for the gateway to reply answers to the
ser page by page. A page contains the number of answers to the
uery, and a page full of titles of matched documents. The number of

nswers is useful for a user to determine whether a different query
hould be requested: for example, when the number of answers is
arge, a user may decide to discard the query results and give a more
pecific query. The gateway accumulates number of answers found
y each back-end workstation to obtain total number of answers.
nd Software 84 (2011) 864–884

The first page is then generated and delivered to the user. Paral-
lelization of query processing reduces the time to deliver the first
page, in which the total number of answers must be contained.
Remaining pages are generated and delivered upon user demands.
To generate a page, the gateway polls some back-end worksta-
tion(s) to get answers just enough to fill a page. Since a user may
not request all of the results to a query, the answers distributed on
multiple workstations need not be collected at once.

Recent progress on parallel sorting provides efficient ways to
rank answers on multiple workstations. Let r be the number of
answers to be presented on a page. Each workstation scores and
selects the top r answers within its partial answer list indepen-
dently. The top r answers in the complete answer list is obtained
by parallel sorting (Kumar, 1994) of all workstations’ top r answers.
With architectural support, Patterson’s group shows that more than
1 G integers can be sorted in 2.41 s using 64 workstations (Arpaci-
Dusseau et al., 1997, 1998). The time to rank answers for a page is
small since r is small and does not scale with the collection size.

6. Posting file partitioning algorithm

We are now ready to partition the posting file using the data
allocation algorithm. The input includes

• posting file PFseq good only for sequential processing,
• popularities of keyword terms pt for each term t, and
• a set of workstations WS = {WS0, WS1, . . ., WSM−1}.

The output is a partitioned form of PFseq to be distributed on
WS, following the partition-by-document-ID principle. Mean query
processing time in parallel processing of the partitioned posting file
is estimated according to popularities of keyword terms. The objec-
tive is to minimize the storage requirement per workstation subject
to the constraint: the mean query processing time of a workstation
is at most one document processing time more than the ideal value.
We first formulate posting file partitioning as the data allocation
problem defined in Section 3.1. The proposed algorithm LSB Alloc
is then applied to generate a partitioned posting file.

6.1. Formulating as data allocation problem

Posting file partitioning can be formulated as the data allocation
problem defined in Section 3.1. Three rules are given to specify (1)
an item, (2) size of an item, and (3) load of an item. The key issue is
to define item loads such that the mean query processing time of
a workstation can be calculated by accumulating loads of allocated
items. We establish a probability model to define item loads.

The following rule specifies what an item is. This rule is the
partition-by-document-ID principle described in Section 5.

Rule 1 An itemIi to be allocated by Algorithm LSB Alloc is the set
of all postings referring to doc. ID i.

With the rule, a partitioned posting file is generated as follows.
The algorithm LSB Alloc generates an allocation matrix X, indicat-
Lt(WSk) = {doc. IDi|i ∈ LtandXik = 1}. (26)

The local posting file at WSk is the set of local posting lists for all
term t.

The following rule specifies the size of an item.



Y.-C. Ma et al. / The Journal of Systems and Software 84 (2011) 864–884 877

ustere

s

T
d
c
p

Fig. 18. System overview of a cl

Rule 2 Data size si of item Ii is normalized and defined as follows:

i = number of postings referring to doc. ID i

maxdoc. ID j{number of postings referring to doc. ID j} . (27)
Storage requirement of a workstation is calculated as follows.
he data size allocated on workstation WSk, denoted DSX(WSk)
efined in Eq. (2), indicates (normalized) amount of postings allo-
ated on WSk. The space, in bytes, occupied by an item Ii is [(bytes
er posting)× (number of postings in Ii)]. For workstation WSk, the

Fig. 19. Flow of parallel
d information retrieval system.

required storage space in bytes is [DSX(WSk) × (space occupied by
the largest item)].

Mean query processing time is estimated by the following prob-
ability model. Let TQt be a random Boolean variable representing
whether term t appears in a query: TQt = 1 if term t appears in

a query and TQt = 0 otherwise. The term popularity pt of a term
t is the probability that a query contains the term t. That is,
pt = Pr{TQt = 1}. The expected value of TQt is thus

E[TQt] = 1 × Pr{TQt = 1} + 0 × Pr{TQt = 0} = pt. (28)

query processing.



878 Y.-C. Ma et al. / The Journal of Systems and Software 84 (2011) 864–884

verted

s
p
t
f

Q

w

•

Q

M

a
a

Q

M

a
l

L

r
e
i
T
g
t

T
M
o

M

P
T

Fig. 20. (a and b) Partitioned in

Let f (k)
t be the length of the local posting list of term t in work-

tation WSk. Corollary 4 states that the query processing time is
roportional to amount of postings to be processed. With alloca-
ion X, the query processing time at WSk, denoted QPTX(WSk), is as
ollows:

PTX (WSk) =
∑
termt

TQt × f (k)
t , (29)

here time quantity is normalized such that

one unit of time is the average time to process a posting.

The mean query processing time of WSk is the expected value of
PTX(WSk).

QPTX (WSk) = E[QPTX (WSk)]. (30)

Similarly, the sequential query processing time, denoted QPTseq,
nd the mean sequential query processing time, denoted MQPTseq,
re as follows:

PTseq =
∑
termt

TQt × ft, (31)

QPTseq = E[QPTseq]. (32)

(Notation ft stands for the length of the posting list of term t.)
Item loads are defined to indicate mean query processing time,

s stated in the following rule and theorems. Let Lt be the posting
ist of term t. The rule to define item loads is as follows.

Rule 3 The load of the item Ii is as follows:

oad(Ii) =
∑

termt:i ∈ Lt

E[TQt] =
∑

termt:i ∈ Lt

pt. (33)

The load of an item Ii can be calculated by accumulating cor-
esponding term popularities for all postings in Ii. Consider the
xample in Fig. 16. There are three postings in the item correspond-
ng to document ID 7: postings corresponds to terms 0, 1, and 4.
he load is thus Load(I7) = p0 + p1 + p4. The load of Ii is the aggre-
ated mean query processing time imposed by Ii. This is stated in
he following theorems.

heorem 5 (Mean query processing time in parallel processing).
ean query processing time of a workstation WSk is the summed load
f all items allocated on WSk.

QPTX (WSk) =
∑

Ii:Xik=1

Load(Ii) = LoadX (WSk). (34)

roof. Eq. (34) is derived by rewriting QPTX(WSk) as accumulating
Qt s corresponding to all postings. Refer againto Fig. 16. QPTX(WSk)
file on cluster of workstations.

can be calculated by scanning the local posting file row by row.
Each time a posting is found, the corresponding TQt is added to the
current sum. This rewrites Eq. (29) to be

QPTX (WSk) =
∑
termt

⎛
⎝ ∑

Ii:Xik=1andi ∈ Lt

TQt

⎞
⎠

(where Lt is the posting list of term t). Scanning the local posting
file column by column also yields the same result and the above
equation is equivalent to:

QPTX (WSk) =
∑

Ii:Xik=1

( ∑
termt:i ∈ Lt

TQt

)
.

The mean query processing time is thus:

MQPTX (WSk) =
∑

Ii:Xik=1

( ∑
termt:i ∈ Lt

E[TQt]

)
.

By observing Eq. (33) and the above equation, Eq. (34) is
obtained. �

Theorem 6 (Mean query processing time in sequential processing).
Mean query processing time in sequential processing is the total load
of all items.

MQPTseq =
∑

Ii

Load(Ii) = L. (35)

Proof. This is similar to the proof of Theorem 5. �

With these three rules, Algorithm LSB Alloc can be applied to
generate a partitioned posting file with the following properties.
The three rules specify inputs to Algorithm LSB Alloc. Algorithm
LSB Alloc then generates an allocation X, and the partitioned post-
ing file is generated from X according to Eq. (26). The objective of
posting file partitioning is to balance amount of postings allocated
on workstations subject to a limited difference to ideal mean query
processing time. Storage requirement is indicated by Theorems 2
and 3. Mean query processing time in parallel processing is stated in
the following Corollary, which is a direct consequence of Theorems
1, 5, and 6.

Corollary 5. Applying AlgorithmLSB Alloc generates a partitioned

posting file such that

MQPTX (WSk) ≤ MQPTseq

M
+ maxIi {Load(Ii)} (36)

for any workstation WSk.



Y.-C. Ma et al. / The Journal of Systems and Software 84 (2011) 864–884 879

itione

w
o

6

fi
t
m
t

f
b
b
p
O
o
i

Fig. 21. Algorithm for generating part

Corollary 5 states that the mean query processing time of a
orkstation is at most the ideal value, MQPTseq/M, plus the effect

f a single document.

.2. Generation of partitioned posting file

Fig. 21 shows the algorithm to generate the partitioned posting
le. The first step scans the input posting file to assign parameters
o items. Algorithm LSB Alloc is then invoked to obtain allocation

atrix X. Finally, the input posting file is scanned again to generate
he partitioned posting file from X.

The complexity of generating a partitioned posting file is as
ollows. Let N be the number of documents, M be the num-
er of workstations, n be the number of bins generated by

in packing, and f be the number of postings in the input
osting file. The time complexity is O(N2 + M + n + f), in which
(N2 + M + n) is spent on the algorithm LSB Alloc and O(f) is spent
n scanning the input posting file twice. The space complexity
s O(n × M + N + f), in which O(f) space is used to store the input
d posting file, LSB PostingFilePartition.

and generated posting file and O(n × M + N) space for algorithm
LSB Alloc.

7. Application: quantitative method for workstation
cluster design

With the proposed posting file partitioning algorithm, we are
ready to show a quantitative method to design a parallel infor-
mation retrieval system systematically. The quantitative method
determines number of workstations and storage capacity per work-
station of a cluster. The objective of the quantitative method is to
minimize the hardware cost to satisfy a given throughput require-

ment. Load balancing reduces the number of workstations to satisfy
a given throughput requirement. Storage balancing reduces storage
requirement of all workstations. We show the usefulness of our
work on real-world applications with TREC document collection
(Hardman, 1992).



8 tems a

7

t
a
p

•
•
•

•
•
•

c
o
c

•
•

A

�

t
u
1
p

7

l
a
l

o
t
i
w

m

o
b

M

o

m

m

80 Y.-C. Ma et al. / The Journal of Sys

.1. Cluster configuration problem

The concerned problem is to determine the workstation clus-
er configuration according to statistical data. The input includes

posting file for sequential query processing and the following
arameters obtained from profiling:

term popularity pt for each term t,
average time per posting in sequential query processing, and
throughput requirement �.

The output, workstation cluster configuration, should specify

number of workstations M in the cluster,
storage capacity CAP per workstation, and
data allocation X to generate the partitioned posting file for the
M workstations.

Hardware cost of the cluster is [M × (cost per workstation)]. The
ost per workstation is a function of the storage capacity CAP. The
bjective is to minimize the hardware cost subject to the following
onstraints:

throughput of the cluster ≥�, and
amount of data allocated on a workstation ≤ storage capacity CAP,

DSX (WSk) ≤ CAP for any WSk.

The following throughput requirement is assumed.

ssumption 1. The throughput requirement � satisfies

<
1

maxIi {Load(Ii)}
. (37)

Recall that the load of an item Ii is the mean query processing
ime of document i. And the time unit is normalized such that one
nit of time is average processing time per posting. Assumption
ensures the existence of a solution to the cluster configuration

roblem (see the next subsection).

.2. Cluster configuration procedure

Workstation cluster configuration is calculated according to
oad and storage balancing properties of proposed data allocation
lgorithm. The key issue is to relate throughput requirement to the
oad balancing property.

Load balancing property determines the throughput capability
f a cluster. Theorem 5 states that load allocated on a workstation is
he mean query processing time of the workstation. Load balancing
s to minimize the maximum amount of load allocated on a single

orkstation. That is, to minimize

axWSk
{LoadX (WSk)} = maxWSk

{MQPTX (WSk)}.
With a query arrival rate of �, the mean query processing time

f each workstation should not exceed the average time interval
etween two arrived queries. That is,

QPTX (WSk) <
1
�

for any WSk

r equivalently,
axWSk
{MQPTX (WSk)} <

1
�

.

With fixed number of workstations M, load balancing is to
aximize the throughput capability �. Whereas if throughput
nd Software 84 (2011) 864–884

requirement is given and M is to be determined, load balancing
is to minimize M that meets the throughput requirement.

Performance limitation exists for parallel information retrieval.
Following the partition-by-document-ID principle, no paral-
lel information retrieval system can achieve throughput � >
1/maxIi {Load(Ii)}. The throughput limit is derived as follows. Let
Ij be the item with maximum load among all items. Suppose the
throughput requirement � exceeds the inverse of the maximum
item load.

� >
1

maxIi {Load(Ii)}
= 1

Load(Ij)
.

Let WSk be the workstation that Ij is assigned to. The mean query
processing time of WSk is at least the load of Ij, which exceeds 1/�.

MQPTX (WSk) = LoadX (WSk) ≥ Load(Ij) >
1
�

.

The workstation WSk is overwhelmed by the query arrival rate
�. According to the throughput limitation, Assumption 1 ensures
the existence of a solution to the cluster configuration problem.

Cluster configuration is calculated as follows. According to
Corollary 5, the required number of workstations M to achieve
throughput requirement � is:

M =
⌈

MQPTseq

(1/�) − maxIi {Load(Ii)}

⌉
. (38)

Note that Assumption 1 ensures that (1/�) − maxIi {Load(Ii)} >
0. Let S be the total data size. Storage requirement CAP is determined
according to Theorem 3:

CAP ≥ S

M
+ 2

√
3 ×
√

S

M
+ 3. (39)

Recall that quantities in Eq. (39) is normalized with the factor
that one unit of space is the space occupied by the largest item.
The next subsection justifies that S/M exceeds 12 in real world
applications.

8. Evaluation of proposed posting file partitioning
algorithm

This section presents our evaluation on the proposed posting
file partitioning algorithm. The evaluation is to show the effective-
ness of the proposed algorithm on real-world large-scale document
collection. We use TREC/Blogs08 (Macdonald et al., 2010) as the
document collection and AOL query log as sample queries for this
evaluation. The evaluation result shows that, with the proposed
algorithm, one may design a clustered information retrieval system
with simple quantitative method and still approximates optimal
throughput and storage cost.

8.1. Evaluation method on load and storage balancing effect

The evaluation method is as follows. The objective of the eval-
uation is to show how throughput and storage cost scales with
cluster size for real-world document collection. An advantage of
our proposed algorithm is that we have analytical properties on
load and storage balancing properties been proved. We thus profile
the inverted file built upon the document collection to get statis-
tics data. Throughput and storage cost of a clustered information
retrieval system is thus calculated from the analytical properties

with the statistics data.

Fig. 22 shows the evaluation flow to collect required data. Utility
programs built for collecting data are (1) inverted file builder, (2)
query-log profiler, (3) item profiler, and (4) query evaluator. The
evaluation flow is as follows.



Y.-C. Ma et al. / The Journal of Systems and Software 84 (2011) 864–884 881

inverted file
builder

query evaluator (OR)

item statistics

item profiler

inverted filequery−log
profiler

document collectionquery log

time−per−posting

term popularities

n the

•

•

•

•

s
r
i
�

�

w
o
f

w
i

t
7

setup the cluster with the following steps:

• Step 1: Find a range on amount of workstations to fit storage
capacity per workstation. Thestorage requirement for a worksta-

Table 1
Basic data of TREC/Blogs08 document collection.
Fig. 22. Overview o

Stage 1: We build an inverted file over the test document col-
lection. The MG package (Witten et al., 1999) is applied to build
the inverted file. The inverted file built by MG is then dumped
and converted to our internal format for the convenience of the
evaluation.
Stage 2: The query-log profiler reads all queries in the AOL query
log and annotates appearance counts for all indexed keywords
in the inverted file. This generates term popularities, probability
that a term appears in a query, for all keyword terms.
Stage 3: The item profiler takes the term popularities and reads
the whole posting file to get statistics data for all data items. An
item is the set of postings referring to the same document ID. This
stage generates loads and data sizes for all data items.
Stage 4: The query evaluator performs query processing for all
queries in the test query log. An OR operation is performed on all
keyword terms in a query. Besides the query results, the process-
ing time on the test computer is also recorded. With this utility,
we got average time-per-posting for query processing.

The throughput of a clustered information retrieval system con-
tructed by the proposed algorithm is calculated as follows. We
e-write formulas in Sections 6 and 7 to get the throughput equation
n unit of queries-per-second. With M workstations, the throughput
(M) is guaranteed to meet the following lower-bound:

(M) ≥ 1
TPP × ((L/M) + maxIi {Load(Ii)})

, (40)

here TPP is the average time-per-posting and L is the total load
f all data items. The ratio-to-ideal on throughput aspect is thus as
ollows:

�(M)
�ideal(M)

≥ 1
1 + maxIi {Load(Ii)}/(L/M)

, (41)
here the ideal throughput �ideal(M) occurs when each workstation
s allocated balanced load L/M.

With the proposed algorithm, storage requirement per worksta-
ion is also calculated from re-writing formulas in Sections 6 and
.

(Load(Ii) and Size(Ii))

experiment system.

For a cluster of M workstations, the required storage space per
workstation in bytes is obtained from the following equation:

SC(M) ≤ MIS ×
(

S

M
+ 2

√
3

√
S

M
+ 3

)
, (42)

where MIS is the maximum item size in bytes and S is the total data
size normalized such that the maximum item size is 1. The ratio-to-
ideal on the aspect of storage cost is calculated from the following
equation:

maxWSk
{DSX (WSk)}
S/M

≤ 1 + 2
√

3√
S/M

+ 3
S/M

. (43)

Note that all parameters required to calculate throughput and
storage requirement are obtained from the evaluation system in
Fig. 22.

8.2. Evaluation results and analysis

We present the evaluation results as a case study. Consider the
case of setting up a clustered information retrieval system over
TREC/Blogs08 document collection (Macdonald et al., 2010) with
profiling information provided from AOL query log. Table 1 shows
basic statistics data over TREC/Blogs08. The system manager may
Total documents 624,470
Total postings 4,545,314,247
Maximum amount of postings for a document (item) 15,979
Total load 513,258.210938
Maximum load of an item 1.033949



882 Y.-C. Ma et al. / The Journal of Systems and Software 84 (2011) 864–884

Table 2
Statistics data for performance.

Parameter Value Comments

Average time per posting TPP 0.009701 �s Operating with RAM
Postings a query accessed
Postings referred to a document
Normalized to maximum item size
Normalized for calculation

•

•

c
t
q

c
F
fi
t
t
p
t
i
t
s

f
s
o
A
o

c
w
f
M

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 1.04

 5  10  15  20  25  30
ra

tio
-t

o-
id

ea
l o

n 
st

or
ag

e 
re

qu
ire

m
en

t
amount of workstations

ratio to ideal

Fig. 24. Ratio-to-ideal scaling on storage requirement.

 2000

 3000

 4000

 5000

 6000

th
ro

ug
hp

ut
 (

qu
er

ie
s/

se
c)

throughput(M)
Total load L 513,258.210938
Maximum item load maxIi {Load(Ii)} 1.033949
Total data size S 284,455
Maximum item size 1.00

tion can be calculated from Eq. (42). Ratio-to-ideal on the aspect
of storage cost is given by Eq. (43).
Step 2: Observe the query processing throughput for the inter-
ested cluster size addressed in Step 1. The query processing
throughput is indicated by Eq. (40). The ratio-to-ideal on through-
put aspect is given by Eq. (41).
Step 3: Make the final decision on cluster size from observations
in Step 1 and 2.

Table 2 shows collected parameters over TREC/Blogs08 for
alculating throughput and storage cost with the mentioned equa-
ions. We thus observe the cluster configuration results from the
uantitative method.

Fig. 23 shows the scaling curve on storage requirement indi-
ated by Eq. (42). Assume that a posting occupies 4 bytes in space.
or high-performance, we may decide to store the whole posting
le in the random access memory (RAM). In recent years, a con-
emporary desktop computer may contain 1–4 GB RAM. We find
hat, for TREC/Blogs08 document collection, the whole partitioned
osting file can be stored in RAM with 5–30 workstations. The ratio-
o-ideal on the aspect of storage cost, indicated by Eq. (43) is given
n Fig. 24. With the proposed posting file partitioning algorithm,
he required storage cost is no more than 4% more than the ideal
torage cost.

Fig. 25 shows the throughput scaling curve indicated by Eq. (40)
or TREC/Blogs08. We draw the curve for the range of 5 to 30 work-
tations to fit storage capacity per workstation. The ratio-to-ideal
n throughput aspect, indicated by Eq. (41), is shown in Fig. 26.
lmost optimal throughput is achieved within the selected range
n cluster size.

The evaluation result shows that, for TREC/Blogs08 document

ollection, the proposed partitioning algorithm results in a cluster
ith almost optimal throughput and storage cost. The reason is as

ollows. A system manager tends to select amount of workstations
such that

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 5  10  15  20  25  30

st
or

ag
e 

re
qu

ire
m

en
t p

er
 w

or
ks

ta
tio

n 
(M

B
yt

e)

amount of workstations

storage cost per workstation

Fig. 23. Storage requirement scaling.

 1000
 5  10  15  20  25  30

amount of workstations

Fig. 25. Throughput scaling.

 0.99993

 0.99994

 0.99995

 0.99996

 0.99997

 0.99998

 0.99999

 5  10  15  20  25  30

ra
tio

-t
o-

id
ea

l o
n 

th
ro

up
ut

amount of workstations

ratio_to_ideal (M)

Fig. 26. Ratio-to-ideal on throughput aspect.



Y.-C. Ma et al. / The Journal of Systems and Software 84 (2011) 864–884 883

 2000

 4000

 6000

 8000

 10000

 12000

th
ro

ug
hp

ut
 (

qu
er

ie
s/

se
c)

throughput(M)

(

(

�

i

(

(

 0.99986

 0.99988

 0.9999

 0.99992

 0.99994

 0.99996

 0.99998

 1

ra
tio

-t
o-

id
ea

l o
n 

th
ro

up
ut

ratio_to_ideal (M)
 10  20  30  40  50  60
amount of workstations

Fig. 27. Throughput scaling to meet ten thousands of requests per second.

1) Storage capacity per workstation (CAP) approximates the bal-
anced data size.

CAP ≈ S

M
.

2) The required throughput � is achieved when workload is uni-
formly distributed across all workstations.

≈ 1
TPP × (L/M)

.

Analysis in Section 4 shows that the proposed algorithm approx-
mates optimal load and storage balancing when

1) the balanced data size is far larger than the size of a data item

S

M
� max. item size;

2) the balanced load is far larger than the workload contributed
by a data item
L

M
� maxIi {Load(Ii)}.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10  20  30  40  50  60

st
or

ag
e 

re
qu

ire
m

en
t p

er
 w

or
ks

ta
tio

n 
(M

B
yt

e)

amount of workstations

storage cost per workstation

Fig. 28. Storage scaling for enlarged cluster size.
 10  20  30  40  50  60
amount of workstations

Fig. 29. Ratio-to-ideal for large throughput requirements.

Statistics data on TREC/Blogs08 shows that the above two con-
ditions are met and we believe that this will be usual case for a
large-scale document collection.

We also observe the performance for a cluster with higher
throughput demand. Fig. 27 shows the throughput scaling curve
to provide more than ten thousand queries per second. The clus-
ter size is scaled up to contain 60 workstations. The scaling curve
on storage requirement per workstation for the enlarged cluster
is shown in Fig. 28. We find that, for such an enlarged cluster size,
approximation factor on storage balancing is no longer a key design
concern. The required storage space per workstation is within the
RAM size that a contemporary computer will have. Moreover, our
algorithm still approximates optimal throughput for the enlarged
cluster size. Fig. 29 shows the ratio-to-ideal on throughput aspect.
This result shows that our algorithm is still suitable for a clustered
information retrieval system with high throughput demand.

9. Conclusions

This paper establishes the asymptotic 1-optimal result for static
posting file partitioning. The partitioning considers all aspects on
load balancing, storage balancing, and communication overhead.
Communication overhead is avoided by partition-by-document-
ID principle. The key result is that the algorithm is proved to be
asymptotic 1-optimal on both load and storage balancing. The
result indicates that, for large document collection, the algorithm
achieves almost optimal result. Usefulness of the partitioning algo-
rithm on real-world application is evaluated with TREC document
collection. The partitioning algorithm is static in the sense that it
partitions the whole inverted file at once and has to work off-line.
For a Web search engine, the document collection growth rapidly
and term popularities may change day by day. Based on the results
in this paper, the future work is to adopt the theory to cope with
dynamic changes on document collection and query log behavior.

The major impact of the results is that the effort to design a large-
scale information retrieval system is simplified. In recent years,
major Web search engines use large-scale clusters to store huge
amount of data and handle high query arrival rate. Reducing stor-
age cost as well as improving query processing throughput are
required. Moreover, instead of running complex simulations, an
analytical method to design a large-scale cluster is desired. In the

previous work, storage efficiency was not considered and complex
simulation was required for performance evaluation. Our algorithm
has guaranteed load and storage balancing factor been proved and
experiment shows that the guaranteed factors approximate opti-
mal in real-world application. These results enable the system



8 tems a

m
l
a
s

R

A

A

B

B

C

C

D

D

F

H
H

J

J

K

L

L

L

L

M

M

M

84 Y.-C. Ma et al. / The Journal of Sys

anager to setup the cluster configuration from the proposed ana-
ytical model. With the success of this research, the traditionally
d-hoc approaches to the design of parallel information retrieval
ystem can now become very systematic and analytical.

eferences

rpaci-Dusseau, A., Arpaci-Dusseau, R., Culler, D.E., Hellerstein, J.M., Patterson, D.,
1997. High performance sorting on networks of workstations. In: Proceedings
of 1997 ACM SIGMOD Conference.

rpaci-Dusseau, A., Arpaci-Dusseau, R., Culler, D.E., Hellerstein, J.M., Patterson, D.,
1998. Searching for the sorting record: experiences in tuning now-sort. In: Pro-
ceedings of 1998 Symposium on Parallel and Distributed Tools.

adue, C., Ribeiro-Neto, B., Baeza-Yates, R., Ziviani, N., 2001. Distributed query
processing using partitioned inverted files. String Processing and Information
Retrieval (November) 10–20.

arroso, L., Dean, J., Holzle, U., 2003. Web search for a planet: the Google cluster
architecture. Micro, IEEE 23 (March–April), 22–28.

acheda, F., Carneiro, V., Plachouras, V., Ounis, I., 2007. Performance analysis of
distributed information retrieval architectures using an improved network sim-
ulation model. Information Processing and Management 43 (1), 204–224.

acheda, F., Plachouras, V., Ounis, I., 2005. A case study of distributed information
retrieval architectures to index one terabyte of text. Information Processing and
Management 41 (5), 1141–1161.

ean, J., Ghemawat, S., 2008. MapReduce: simplified data processing on large clus-
ters. Communications of the ACM 51 (1), 107–113.

owdy, W., Foster, D., 1982. Comparative models of the file assignment problem.
ACM Computing Surveys 14 (2), 287–313.

rakes, W.B., Baeza-Yates, R., 1992. Information Retrieval: Data Structures and Algo-
rithms. Prentice-Hall.

ardman, D.K., 1992. Proceedings of TREC Text Retrieval Conference.
orowitz, E., Sahni, S., Rajasekaran, B., 1996. Computer Algorithms/C++. W.H. Free-

man and Company.
eong, B.S., Omiecinski, E., 1995. Inverted file partitioning schemes in multiple disk

systems. IEEE Transactions on Parallel and Distributed Systems 6 (2), 142–153.
ohnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L., 1974. Worst-

case performance bounds for simple one-dimensional packing algorithms. SIAM
Journal on Computing 3 (4), 299–325.

umar, V.P., 1994. Introduction to Parallel Computing: Design and Analysis of Algo-
rithms. Benjamin Cummings Ltd.

ee, H., Park, T., 1995. Allocating data and workload among multiple servers in a
local area network. Information Systems 20 (3).

ee, L.W., Scheuermann, P., Vingralek, R., 2000. File assignment in parallel i/o systems
with minimal variance of service time. IEEE Transactions on Computers 49 (2),
127–140.

ittle, T.D.C., Venkatesh, D., 1995. Popularity-based assignment of movies to storage
devices and video-on-demand system. ACM/Springer Multimedia System 2 (6),
280–287.

ucchese, C., Orlando, S., Perego, R., Silvestri, F., 2007. Mining query logs to optimize
index partitioning in parallel web search engines. In: InfoScale ‘07: Proceed-
ings of the 2nd International Conference on Scalable Information Systems ,. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), Brussels, Belgium, pp. 1–9.

acdonald, C., Santos, R.L., Ounis, I., Soboroff, I., 2010. Blog track research at TREC.

SIGIR Forum 44 (1), 58–75.

acFarlane, A., McCann, J.A., Robertson, S.E., 2000. Parallel search using partitioned
inverted files. In: Proceedings of the 7th International Symposium on String
Processing and Information Retrieval , pp. 209–220.

offat, A., Webber, W., Zobel, J., 2006. Load balancing for term-distributed parallel
retrieval. In: SIGIR ‘06: Proceedings of the 29th Annual International ACM SIGIR
nd Software 84 (2011) 864–884

Conference on Research and Development in Information Retrieval ,. ACM Press,
New York, NY, USA, pp. 348–355.

Moffat, A., Webber, W., Zobel, J., Baeza-Yates, R., 2007. A pipelined architecture for
distributed text query evaluation. Information Retrieval 10 (3), 205–231.

Narendran, B., Rangarajan, S., Yajnik, S., 1997. Data distribution algorithm for load
balanced fault-tolerant web access. In: Proceedings of 16th Symposium on Reli-
able Distributed Systems , pp. 97–106.

Riberio-Neto, B.A., Kitajima, J.P., Navarro, G., 1998. Parallel generation of inverted
files for distributed text collections. In: Proceedings of the 18th International
Conference of the Chilean Society of Computer Science , pp. 149–157.

Rotem, D., Schloss, G., Segev, A., 1993. Data allocation of multi-disk databases. IEEE
Transactions on Knowledge and Data Engineering 5 (5), 877–882.

Salton, G., 1989. Automatic Text Processing: The Transformation, Analysis, and
Retrieval of Information by Computer. Addison-Wesley.

Serpanos, D.N., Georgiadis, L., Bouloutas, T., 1998. MMPacking: a load and storage
balancing algorithm for distributed multimedia servers. IEEE Transactions on
Circuits and Systems for Video Technology 8 (1), 13–17.

Tomasic, A., Molina, H.G., 1995. Performance of inverted indices in shared-nothing
distributed text document information retrieval systems. IEEE Transactions on
Parallel and Distributed Systems 6 (2), 142–153.

Wah, B., 1984. File placement on distributed computer systems. Computer 17 (1),
23–32.

Witten, I.H., Moffat, A., Bell, T.C., 1999. Managing Gigabytes: Compressing and Index-
ing on Documents and Images. Morgan Kaufmann Publishers, Inc.

Wolf, J., Pattipati, K., 1990. A file assignment problem model for extended local
area network environments. In: Proceedings of 10th International Conference
on Distributed Computing Systems, vol. 17, no. 1.

Zipf, G., 1949. Human Behavior and the Principle of Least Effort. Addison-Wesley.

Yung-Cheng Ma received the B.S and Ph.D. degree in computer science and infor-
mation engineering from National Chiao-Tung University (NCTU), Hsinchu, Taiwan,
in 1994 and 2002, respectively. After graduating from NCTU, he joined computers
and communication laboratory of Industry Technology Research Institute (ITRI) in
Taiwan as a hardware engineer. In ITRI, he leaded a group to develope embedded
VLIW DSP processors. He joined Chang-Gung University at 2008 and is currently an
assitant professor at Department of Computer Science and Information Engineer-
ing. His research interests include computer architecture, parallel and distributed
systems, low-power embedded systems, and multi-core SoC design.

Tien-Fu Chen received the B.S. degree in Computer Science from National Taiwan
University in 1983. After completed his military services, he joined Wang Com-
puter Ltd., Taiwan as a software engineer for three years. From 1988 to 1993 he
attended the University of Washington, receiving the M.S. degree and Ph.D. degrees
in Computer Science and Engineering in 1991 and 1993 respectively. He is currently
a Professor in the Department of Computer Science and Information Engineering at
the National Chung Cheng University, Chiayi, Taiwan. In recently years, he has pub-
lished several widely-cited papers on dynamic hardware prefetching algorithms
and designs. His current research interests are computer architectures, distributed
operating systems, parallel and distributed systems, and performance evaluation.

Chung-Ping Chung received the B.E. degree from the National Cheng-Kung Univer-
sity, Hsinchu, Taiwan, Republic of China in 1976, and the M.E. and Ph.D. degrees
from the Texas A&M University in 1981 and 1986, respectively, all in electrical engi-
neering. He was a lecturer in electrical engineering at the Texas A&M University
while working towards the Ph.D. degree. Since 1986 he has been with the Depart-
ment of Computer Science and Information Engineering at the National Chiao-Tung
University, Hsinchu, Taiwan, Republic of China, where he is a professor. From 1991

to 1992, he was a visiting associate professor of computer science at the Michigan
State University. From 1998, he joint the Computer and Communications Laborato-
ries, Industrial Technology Research Institute, R.O.C. as the Director of the Advanced
Technology Center, and then the Consultant to the General Director. He returned to
his teaching position after this three-year assignment. His research interests include
computer architecture, parallel processing, and parallelizing compiler.


	Load and storage balanced posting file partitioning for parallel information retrieval
	Introduction
	Background and related work
	Fundamentals on information retrieval
	Related work on parallel information retrieval

	Fundamentals of data allocation
	Load and storage balanced data allocation model
	Related work on data allocation
	MMPacking
	Bin packing


	Load and storage balanced data allocation
	Bin splitting for load balancing
	Design of bin splitting procedure
	Analysis on load balancing property

	Bin capacity selection for storage balancing
	Case of bin capacity being equal to largest item size
	Case of bin capacity being larger than item sizes

	Summary of proposed algorithm

	Parallel information retrieval
	The theory
	Implementation on cluster of workstations

	Posting file partitioning algorithm
	Formulating as data allocation problem
	Generation of partitioned posting file

	Application: quantitative method for workstation cluster design
	Cluster configuration problem
	Cluster configuration procedure

	Evaluation of proposed posting file partitioning algorithm
	Evaluation method on load and storage balancing effect
	Evaluation results and analysis

	Conclusions
	References


