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The design of MIMO PI controller is for-
mulated as an LQR problem. The weighting
matrices of the quadratic performance index
are chosen so that tuning can be done for each
input-output channel and for tradeoff between
transient response and robustness with respect
to modeling error. The number of tuning pa-
rameters is the same as that of a decentralized
PI controller. A design example is given to
demonstrate the feasibility of the proposed ap-
proach.

1 Introduction

The PI (proportional plus integral) controller
is probably the most commonly used controller
in the industry. Arguably the PI controller is
the simplest practical controller that provides
integral action which is required in many pro-
cess control applications for asymptotic track-
ing of setpoint commands and rejection of con-
stant load disturbances [3],[11],[8]. There is
much research on the design (or tuning) of PI
controllers for SISO systems but very little is

done on MIMO design. Proportional plus inte-
gral state feedback design, in the LQR frame-
work, is discussed in [1] and [2], however the
state estimator included for output feedback
implementation gives away the simplicity of PI
control. So far almost all the MIMO PI con-
trollers proposed have a decentralized struc-
ture, although some design include static pre-
compensation to achieve diagonal dominance
at steady-state [13], [4], [5]. In general decen-
tralized structure limits performance although,
being simpler, it may have some advantage in
real-time implementations, e. g., fewer tun-
ing parameters and easier to make the design
fault-tolerant [10], [7]..

We formulate the design of MIMO PI con-
troller as an LQR problem. The weighting ma-
trices of the quadratic performance index are
chosen so that tuning can be done for each
input-output channel and for tradeoff between
transient response and robustness with respect
to modeling error.There are two tuning pa-
rameters for each input-output channel. For
low order plants, the number of input equals
the number of output, the PI controller imple-
ments exactly the optimal state feedback. For
high order plants, the design involves approxi-
mations: either model reduction of the plant or
approximation of the feedback gain matrix or
both. The error in the approximation is taken
into account in robustness consideration and
tuning can be done accordingly. A design ex-
ample is given to demonstrate the feasibility of
the proposed approach.



2 Problem Formulation

Consider the linear time-invariant multi-input
multi-output plant

T =

y:

Ax + Bu

(2.1)
Cz (2.2)
where A € IR™", B € R"™ and C' € R™".
The plant has m inputs and m outputs and
the input-output transfer matrix is P(s) =
C(sI—A)~'B. We make the following assump-
tions throughout
(A1) The plant is controllable, observable and
(asymptotically) stable, and
(A2) The plant has no transmission zero at
s = 0, that is, P(0) = —CA™'B is nonsin-
gular.
It follows from (A2) that A is nonsingular and
both B and C are full rank. We note also that

(A.2) is equivalent to that [ -4 is non-

B
Cc 0
singular. The problem studied is the follow-
ing. Given the MIMO plant (2.1) and (2.2)
and a fixed PI controller structure, how do we
design the PI gain matrices so that the closed-
loop system is stable and achieves some perfor-
mance requirements? The block diagram of the
feedback system is shown in Figure 1, where K,
and K; are respectively the proportional gain
matrix and the integral gain matrix. We note
that in decentralized PI controllers these gain
matrices are constrained to be diagonal; in our
proposed design they are in general full matri-
ces.

Figure 1: Closed-loop system with PI con-

troller

For design purpose we will assume that the
command input is a vector of step functions,
ie., r(t) =71(t) and 7 € R™.

If the closed-loop system is stable, then
K; is nonsingular and the system reaches con-
stant steady-state as t — oo. In steady-state,
y(oo) =T, e(00) = 0, u() = —(CA™1B)~1r,
v(o) = —K;Y(CA'B)"'7 and x(c0) =
A7'B(CA™'B)~'r. Define the deviation vari-
ables T = x — z(00), 7 = v —v(c0), & =
u—u(oo)and gy = y — 7 and rewrite the state
equations of the closed-loop system as

[ﬂ _ AO[§]+BOQ (2.3)
j=[C m[ﬂ (2.4)
i = —K,Cit+Ki  (25)

where
Agzl_é 8] Bozlﬂ (2.6)

We note that e = —g. We can think of the de-
sign problem as one of constrained state feed-
back design or if we take v as part of the out-
put (in addition to ¢), as one of output feed-
back design. The design goal here is to obtain
good dynamic response of the tracking error e
while maintaining a certain degree of robust-
ness. Before discussing the design approaches,
we show first that a stabilizing design exist,
that is, there is always a nontrivial (K; # 0)
PI controller which stabilizes the closed-loop
system.

Proposition 1 Under the assumptions (A.1)
and (A.2), there is a PI controller with K; non-
singular so that the closed-loop system shown
in Figure 1 is stable.

3 Design Approach

We discuss the determination of the gain ma-
trices K, and K; by LQR design . Con-
sider the system defined in (2.3). Let G =
diaga?, -+, a?] > 0 and let the quadratic per-
formance be defined as

1= [T e



+a(t)TP(0)"RP(0)a(t))dt

T
where () COGC?] and R =
diag[B?,...,32] > 0 Since e = —y = —C'z, the

first two terms of the performance index is sim-
ply the weighted sum of square tracking error
and sum of square integrated error. The choice
of the third term requires some explanation.
Define u(t) = P(0)u(t) then the third term in-
side the integral becomes a(t)" Ra(t). If we
think of @ as the input to the plant P(s) with
output g, then 4 is the input to the 'normalized
plant” P(0)~'P(s) to produce the same output
g. Since P(0)"'P(s) is diagonal at s = 0, it
is nearly decoupled at low frequencies. Hence,
roughly speaking, weighting a component of 4
has the effect of weighting the control input re-
quired for the performance of the correspond-
ing component of output . The performance
index can be written as

J = / i2y0; lei (8] +10:(0) "+ 67 (1) [*))dt

where the subscripts ¢ indicate the ith compo-
nent of the respective vector. The parameters
«; and (; are to be selected for the trade-off
between the tracking error response and the
control effort required in each channel. If the
response of every channel is of the same impor-
tance then GG and R can be chosen as a multiple
of identity matrix (to start with.) Roughly, in-
creasing R and decreasing GG improves robust-
ness at the expense of deteriorating dynamic
response. The LQR solution gives a state feed-
back control law

u(t) = —(Ky () + Kyo(t))  (3.7)

where K; € R™*" and Ky € R™*™. The fol-
lowing result shows that the LQR control law
(3.7) always gives a stable closed-loop system.

Proposition 2 {A,, B,} is controllable and
{QY?%, A,} is observable.

Comparing (2.5) and (3.7), if we assign
K; := —K, and if the proportional gain ma-
trix is such that

K,C = K, (3.8)

then the PI control law and the state feed-
back law are identical. The equation (3.8) has
a unique solution if m = n, the number of
outputs equals the number of states. In this
case, K, = K;C~'. We note that there are
many processes which can be adequately repre-
sented by low order models staisfying the above
condition[10], including models for rapid ther-
mal processing systems [12], [9].

If the plant has more states than outputs,
that is, m < n, then the equation (3.8) have
no solution in general. So the LQR control
law can not be implemented as a PI controller.
One way to approach this problem is the fol-
lowing. Perform a balanced model reduction
on the plant to obtain a reduced plant model
with the number of states equals the number of
outputs, and then determine the gain matrices
K, and K; by the LQR design with reduced
model. of the reduced system. How

Suppose A(s) is the additive model reduc-
tion error transfer matrix, then a condition for
robust stability is for all w

I
UmaX(A(jw))

If condition (3.9) is satisfied with some margin,
then the design can be expected to perform
well for the original model. In general increase
R will decrease ||Hyr|loo- Of course we have
to make sure that the reduced model (which is
stable) has a nonsingular dc-gain. A sufficient
condition for the balanced reduced model to
have a nonsingular dc-gain is given as follows.
Suppose 01 > <1+ > Op > Opy1 = 0 2 Op
are the Hankel singular values of the plant and
gy > +-- > 0, are singular values of P(0).
If 7, > Y 4104, then the reduced model
obtained using balanced realization by keep m
states has a nonsingular dc-gain.

Another way to determine the gain matri-
ces is to set K; = —K, and K, as the least
square solution of (3.8), that is,

Tmax (Hur (jw)) < (3.9)

K,=K,ct(cch)!

where K = [K; K5 is the gain matrix ob-
tained by solving the original LQR problem.



Error is now introduced to the supposedly op-
timal state feedback controller. Performance
of this approximated design depends on the
error K(I — CT(CCT)~'C), small error en-
sures good performance. A combination of the
two approaches above is to do model reduction
keeping enough states (> m) to ensure small
reduction error and to determine K, by least
square approximation.

4 A Design Example

We illustrate the proposed design approach by
the following example.

ExampleConsider the 2-input 2-output 2-
state stable transfer matrix describing a high-
purity distillation column near certain operat-
ing point,

s7.5 818 | 14
_ | Ty1oz 1+10ds T 1115
P(s)=| Hog3° g ¥
1+194s  1+194s  1+15s

The design specifications are:(a) Each chan-
nel should have a step response that settles to
within 10% of the desired final value within
40 minutes. (b) The design should allow for
a worst-case time delay of one minute on the
control action and for £20% uncertainty in the
actuator gains.

We note that the plant is ill-conditioned
with the condition number 140 at s = 0. Since
the uncertainty and unmodeled dynamics oc-
cur at the input, plant input relative uncer-
tainty model is used. We will take as the worst
plant model as

Po(s) = P(s)(I+A4) exp(—s) = P(s)(I+Li(s))

where A, = diag[0.2 0.2] and L;(s) =
exp(—s)(A, + I) — I. The design is to re-
main stable for the worst plant and to satisfy
the time response specification. Let C(s) =
K, + % A sufficient condition for roust sta-
bility is for all w

1

UmaX(Li (]w))
(4.10)

Omax (CP(I + CP) '(jw)) <

This condition is checked as we tune the design
parameters. A minimal realization is

~0.0052 0 1 -1
A‘l 0—0.0667]’B—l0 11
o [ 04526 0.0933
~ | 05577 —0.0933

Since the channels are treated as of equal im-
portance, G and R are chosen scalar multiples
of identity matrix. Initially they are chosen
equal.

Figure 2 shows the robustness condition
(4.10) is satisfied. The one minute time delay
practically limits the bandwidth of the closed-
loop system to about 1 rad/min. Step re-
sponses of the closed-loop system is shown in
Figure 3 and Figure 4. The design satisfies
the time response requirement. Note that the
response is better for the case where the step
commands are of opposite signs.

5 Conclusions

We have described a MIMO PI controller de-
sign method based on LQR formulation. The
choice of tuning parameters allow tuning of in-
dividual input-output channel and tradeoff be-
tween dynamic response and robustness. The
number of tuning parameters is exactly the
same as that of a decentralized PI controller.
Although only setpoint command are consid-
ered in the design, the same formulation is also
applicable to design for load disturbance rejec-
tion.
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