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Texture recognition have received tremendous attentions in the past decades, due to its wide applications
in computer vision and pattern recognition. For various applications, formulating texture features in dis-
tributional forms can sometimes provide meaningful representation than in numerical forms. In this
paper, a generalized probabilistic decision-based neural network (GPDNN), based on a novel methodol-
ogy for the measurement of the difference between two distributions, is proposed for texture recognition.
Based on a two-layer pyramid-type network structure, the proposed GPDNN receives texture data via 2-D
grid input nodes, and outputs the classification and/or retrieval results at the top layer node. Our proto-
type system demonstrates a successful utilization of GPDNN to the texture recognition on 40 texture
images selected from the MIT Vision Texture (VisTex) database. Regarding the performance, experiment
results show that (1) based on the proposed distribution difference measurement method, the texture
retrieval accuracy is improved from 77% to 82% by comparing with some recently published leading
methods, and (2) the proposed GPDNN has significant improvements in classification accuracy from

82.2% to 90.1% and retrieval accuracy from 79.9% to 88.6% by comparing with traditional approaches.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Texture recognition has received tremendous attention in the
past decades, for its wide applications in computer vision and pat-
tern recognition (Tuceryan & Jain, 1993, chap. texture analysis).
Numerous methods have been proposed for texture feature extrac-
tion and classification (DO & Vetterli, 2002; Ojala, Pietikainen, &
Harwood, 1996; Reed & Buf, 1993). In the recent years, wavelet-
like approaches (Avci, 2007; Laine & Fan, 1993; Manjunath & Ma,
1996; Randen & Husoy, 1999; Sengur, Turkoglu, & Ince, 2007;
Sengur, 2008; Unser, 1995), such as wavelet packets and Gabor
wavelet transforms, are popular in formulating texture features,
since these methods are partly supported by physiological studies
of the visual cortex (Daugman, 1980; Hubel & Wiesel, 1962). Based
on the extracted feature set, finding a human-perception based
similarity measurement between various texture patterns is a
challenging task and still an ongoing research topic. These ap-
proach usually computes the norm-based distances (e.g., Euclidean
distance) as the similarity measurement (Manjunath & Ma, 1996)
between two feature sets. In general, the texture features can be
formulated in either distributional or numerical forms. For some
pattern recognition applications, formulating features in distribu-
tional forms can sometimes provide more meaningful representa-
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tion than numerical forms can do (DO & Vetterli, 2002; Manjunath
& Ma, 1996).

In the case that texture features are represented by unimodal
Gaussian distributions, the weighted Euclidean distance (Manjunath
& Ma, 1996) was used to measure the difference between two
textures, where the weighting factors are the standard deviations
of Gaussian distributions. However, if distributions of texture fea-
tures need to be estimated by mixture models, such as Gaussian
mixture models (GMMs), weighted Euclidean distance will not be
suitable for similarity measurement.

In this paper, a generalized probabilistic decision-based neural
network (GPDNN), based on a novel methodology for the measure-
ment of the difference between two GMMs, is proposed for texture
recognition. Forty texture images are selected from the MIT Vision
Texture (VisTex) database (Picard et al., 1995) to demonstrate and
evaluate the proposed GPDNN. Experimental results show that, by
using the proposed difference measurement method, the texture
retrieval rates can be improved from 77% to 82%, compared with
some published leading methods, and the proposed GPDNN dem-
onstrated high texture classification and retrieval accuracy, which
is about 90.1% and 88.6%, respectively.

This paper is organized as follows. In the next section, the pro-
posed GMM difference measurement is presented. Then, the math-
ematical background, the architecture, and the learning rules of the
GPDNN are introduced in Section 3. Experimental results are pre-
sented and discussed in Section 4. Finally, Section 5 draws some
concluding remarks.
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2. GMM difference measurement

In order to measure the difference between two GMMs, we pro-
posed a novel methodology for the measurement of the difference
between two complex distributions.

2.1. Definition

For two distributions P, and P, in a feature space R, the differ-
ence between P, and P, is defined and denoted as

0(Pu,Po) = [ (P~ Pz 1)
R
Suppose that P, and P, are two mixture Gaussian distributions:
Z P 'a Zlgra (2)
ZP 0r,)p(2|0r,), 3)

where p(z|0;,) and p(z|0,,) are the Gaussian components in P, and
Py, respectively. In general, the integration in (1) is very compli-
cated. Thus, we introduce the product moment F for distributions
P, and Py:

]—'(PG,Pb):/ PoPydz. 4)
RD

Suppose that each Gaussian component in P, and Pj, is a D-dimen-
sional Gaussian distribution with uncorrelated variables. Let
Or, = {14, Zr,} and 0, ={u, ,%,} are the parameter sets of

T
p(z|0,,) and p(z|0,,), respectively, where u, = [:“ram "“ra(D)] and

T
Ky, = [,urb(]) - ,urb(m] are the mean vectors, and diagonal matrices

%, = diag [O'% o))
covariance matrices. The following lemma simplify the product mo-
ment F to a closed-form expression.

"G?ﬂ(D)] and X%, —dlag{ 7(1) G%b(DJ are the

Lemma 2.1. Suppose that P, and P, are two mixture Gaussian
distributions defined in (2) and (3), respectively. The product moment
F of Pq and Py, is expressed as:

Ra

Ry
FPaPo) =3 3 PO )P(Or)G (0 0r). (5)

ra=1 rp=1

where

ra(d)
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The proof of Lemma 2.1 is in Appendix A. According to Lemma
2.1, @(Pa, Pp) can be further expressed as follows.

2
1 D (M )= Hrg(a))
exp {* 304158 (d}mg
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g(era ’ Grb) = >

(6)

Theorem 2.2. Let P, and P}, denote p(z|0;,) and p(z|0;,), respectively.
The discriminate function ¢ (Pq, Pp) defined in (1) is expressed as

@(Pa, Py) = F(Pa; Pa) = 2F (Pa; Ps) + F (Pp, Pp)- (7)

Proof. As shown in (1),

O(Pa, Pp) = /RD(PG — Py)2dz

= / (P2 —2P,Py + P})dz
JR

:/ Pgdz—z/ PandZ+/ Pidz
JRP JRP JRP
= F(Pa,Pa) — 2F (Pa, Pp) + F(Pp, Pp).- O

3. Generalized probabilistic decision-based neural network

The generalized probabilistic decision-based neural network
(GPDNN) is a generalized model from its predecessor, the self-
growing probabilistic decision-based neural network (SPDNN)
(Fu & Xu, 1998). Similar to its predecessor SPDNN, a GPDNN has
a modular network structure. One subnet of a GPDNN is designed
to represent one object class. The decision-based learning rules are
adopted to train a GPDNN. Based on the teacher information that
only tells the correctness of the classification for each training da-
tum, a GPDNN performs a distributed and localized updating rule.
The updating rule applies reinforced learning to a subnet corre-
sponding to the correct class and antireinforced learning to the
(unduly) winning subnets. The detailed description of the GPDNN
model is given in the following sections.

3.1. Discriminant Functions of GPDNN

One of the major differences between SPDNN and GPDNN is
that GPDNN receives data in distributional forms instead of numer-
ical forms as network inputs. That is, the subnet discriminant func-
tions of GPDNN are designed to measure the difference between
the input distribution and the modelled or learned distributions.
Thus, reinforced or antireinforced learning is applied to all the sub-
nets of the global winner and the supposed (i.e., the correct) win-
ner, with a weighting distribution proportional to the degree of
possible involvement by each subnet.

In order to measure the difference between two distributions in
each subnet, we use (7) as the discriminate function of the multi-
class GPDNN. As shown in Fig. 1, a GPDNN contains k subnets that
are used to represent a k-category classification problem. Assume
that the modelled distribution for each class w;:i=1,2,...,k is
P;. For an input datum x(t) with a distribution P, according to the
expression in (7), the subnet discriminant function is implemented
by a two-layer pyramid network as shown in Fig. 2. The bottom layer
contains three structurally identical pyramid subnetworks, each of
which computes the F(P;, P;), F(Pi,Pt), and F(P;, Pt), respec-
tively. By summing the results of these three components, the differ-
ence between the input datum x(t) and the modelled class w; is
output at the top layer of the pyramid subnetwork.

Fig. 3 depicts the internal architecture of the pyramid subnet-
work corresponding to F(P;, P;). Suppose that the mixture Gauss-
ian distributions P; and P, consist of R; and R; Gaussian clusters,
respectively. Thus, the subnetwork for F(P;, P;) contains a R; x R,
input grids and R; hidden nodes, where a node in input grids is
marked as Gy, ,.

While the subnetwork receives an input datum x(t) with a dis-
tribution P, each G, node performs the computation according
to (6) to measure the difference between two Gaussian compo-
nents r; and r,, which are in P; and P;, respectively. Then, the out-
puts of all the G;, ;. nodes are weighted by P(0;,) and summed to the
hidden node h;,:

Re

hl’i = Zp(el’r) ) Gr,-,r[- (8)

re=1

Finally, the output of each hidden node h,, ri=1,...,R; are
weighted by P(0,,) and then summed to the output node of the pyr-
amid subnetwork:

F(PiP) = P(Oy) - hr. 9)

When the outputs of all subnets reach the top layer, the MINNET is
activated to select the minimum of the values from the lower sub-
net and its corresponding subnet ID. It means that if the output
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Recognition Result
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Fig. 1. The schematic diagram of a k-class GPDNN. The detail of a subnet is shown in Fig. 2. An input of a GPDNN is represented in distributional forms instead of numerical

values.

@ (x(®),w,)

Fig. 2. The diagram of a subnet in generalized probabilistic decision based neural
network (GPDNN).

value of subnet i is the minimum among the outputs of all subnets
in a GPDNN, the input datum x(t) is classified as w;.
3.2. Learning Rules for GPDNN

Recall that the training scheme for a multiclass GPDNN follows
the SPDNN learning rules. While the input datum x(t) belonging to
the class w; is misclassified to the class wj, the following reinforced
and antireinforced learning rules are applied to the subnets of w;
and wj, respectively.

Reinforced Learning rule :

W = w1 gV ex(t), w), o

Antireinforced Learning rule :
WY = w™ — gV ex(t), w;). (11)

The gradient vectors in (10) and (11) are computed as follows:
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wherer;=1,2,...,Riand d=1,2,...,D. D is the dimension of the fea-
ture space.

4. Experiments

A total of 40 different texture images are selected from the MIT
Vision Texture (VisTex) database (Picard et al., 1995) to demon-
strate and evaluate the proposed GPDNN for the texture recognition.
The original size of the images is 512 x 512, and each image was
divided into 16 disjoint subimages, i.e., 128 x 128 pixels. Hence,
the classification problem involved a total of 640 subimages, 16
subimages in each of the 40 texture categories (DO & Vetterli,
2002), and only the gray-scale images were used in the experiments.

4.1. Texture feature extraction

The Gabor wavelet decomposition proposed by Manjunath and
Ma (1996) is applied to extract the texture features from an image
of multiple scales and orientations. Advantage of using Gabor
wavelet decomposition is that the Gabor representation is optimal
(Daugman, 1988) in the sense of minimizing the uncertainty in the
spatial and frequency domain. The filter parameters we used are 4
scales and 6 orientations, which produced a bank of 24 filters
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F(7.7)

Fig. 3. The internal architecture of a model in Fig. 2 for computing of F(P;, P;).

{Eu:l<t<4and 1<k< 6}. The filter response of a subimage I texture feature around a pixel X is represented by a 24-dimension
is formulated as I x =1 g¢1, for 1 <t<4, and1 < k <6. Then, the vector [|I11(X)[% .. ., [Tex(X), - - - as(X) 2]
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Fig. 4. The 40 texture categories with their names (shown in the first row), means and standard deviations (shown in the second row in the form of “mean (SD)") of the
number of mixture components in GMMs. It is indicated that the more complicated the texture is, the more mixture components are needed to approximate the texture
feature distribution.
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Gaussian mixture models (GMMs) are used to approximate the
texture feature distributions of the 640 subimages. For each subim-
age, an EM algorithm is employed for finding maximum likelihood
estimates of parameters, and the Bayesian information criterion
(BIC) (Schwarz, 1978) is used to determine the number of mixture
components of the corresponding GMM. Fig. 4 shows the mean and
standard deviation (SD) of the number of mixture components per
texture category, where the first row is the texture image, the sec-
ond row is the texture name, and the third row is the mean and SD
in the form of “mean (SD)”. As we can see, the more complicated
the texture is, the more mixture components are needed to
approximate the texture feature distribution.

4.2. Evaluation of the GMM difference measurement

The first experiment is conducted to examine the performance
of the proposed GMM difference measurement. Similar to the
experiments described in DO and Vetterli (2002), we used each
of 640 images in the databases as a simulated query image, and de-
fined the relevant images for each query as the other 15 subimages
from the same original VisTex image. The retrieval rate is the aver-
age percentages of retrieving relevant images in the top 15
matches. As shown in Table 1, the proposed method improves
the retrieval performance from 77% to 82%, which is 5% better than
the recent published leading methods ([DO & Vetterli, 2002).

4.3. Texture recognition system

In this experiment, a GPDNN-based texture recognition system
is developed. In order to evaluate the performance of the proposed
GPDNN, the cross validation method (Devijver & Kittler, 1982) is
used to randomly split the dataset into training and testing data.
For each such split, the GPDNN is trained and tested using the
training and testing data, respectively. The results are then aver-
aged over the splits. For comparison purpose, two other classifiers,
a minimum-distance classifier (MDC) and an SPDNN (Fu & Xu,
1998), were also built. Each classifier was trained by randomly
chosen eight texture subimages, and tested by the rest of eight tex-
ture subimages in each texture category. The experimental results
of both training and testing set are shown in Table 2. It is clear to

Table 1

Average retrieval rates for individual texture class using the proposed GMM
difference measurement. Method I denotes the generalized Gaussian density (GGD)
and kullback-Leibler distance (KLD) method proposed in DO and Vetterli (2002), and II
denotes the proposed GMM difference measurement method.

Texture class Methods Texture class Methods
I 11 11

Bark0 53.12 68.75 Food8 97.66 100.00
Bark6 50.39 77.50 Grass1 69.14 66.67
Bark8 73.44 83.33 Leaves8 68.36 75.83
Bark9 61.33 7417 Leaves10 34.38 51.67
Brick1 71.88 91.67 Leaves11 71.48 76.67
Brick4 66.41 81.67 Leaves12 74.61 83.33
Brick5 83.20 77.92 Leaves16 84.77 78.33
Buildings9 86.72 85.00 Metal0 73.05 83.75
Fabric0 87.50 92.50 Metal2 100.00 100.00
Fabric4 64.84 68.33 Misc2 78.12 86.67
Fabric7 100.00 100.00 Sand0 80.08 81.25
Fabric9 87.89 86.25 Stonel 53.52 56.25
Fabric11 81.25 81.25 Stone4 79.30 84.58
Fabric14 100.00 100.00 Terrain10 52.73 55.00
Fabric15 94.53 97.08 Tilel 53.12 60.00
Fabric17 90.23 100.00 Tile4 99.22 94.17
Fabric18 98.83 100.00 Tile7 100.00 99.58
Flowers5 58.20 74.58 Water5 96.48 100.00
FoodO 83.59 92.92 Wood1 35.55 25.00
Food5 89.45 87.08 Wood2 78.52 87.08

Table 2
Means and standard deviations of classification and retrieval accuracies for GPDNN,
SPDNN, and MDC, where the standard deviation is given in the parentheses.

Classification accuracy Retrieval accuracy

Training set Testing set Training set Testing set
GPDNN 0.989(0.006) 0.901(0.021) 0.988(0.008) 0.886(0.026)
SPDNN 0.947(0.025) 0.851(0.016) 0.940(0.026) 0.826(0.020)
MDC 0.873(0.022) 0.822(0.016) 0.858(0.025) 0.799(0.023)

see that the proposed GPDNN has significant improvements in
classification accuracy from 82.2% to 90.1% and retrieval accuracy
from 79.9% to 88.6%.

5. Concluding remarks

In this paper, a generalized probabilistic decision-based neu-
ral network (GPDNN) is proposed and implemented, based on
a novel methodology for measuring the difference between two
Gaussian mixture models (GMMs). 40 texture images are se-
lected from the MIT Vision Texture (VisTex) database to demon-
strate and to evaluate the proposed GPDNN for the texture
recognition. Experimental results show that (1) the proposed
GMM difference measurement improves the retrieval rates, e.g.,
from 77% to 82%, compared with some published leading meth-
ods, and (2) the proposed GPDNN shows significant texture clas-
sification and retrieval performance, which are about 90.1% and
88.6% of the accuracy, and much better than the traditional
methods, i.e., 82.2% and 79.9%, respectively. Although this paper
presents applications of the GPDNN for the texture classification
and retrieval, more image/pattern recognition and classification
problems and applications will be solved and/or applied by the
proposed GPDNN.
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Appendix A
Suppose P, and P, are two mixture Gaussian distributions de-

fined in (2) and (3), respectively. The product moment of P, and P,

Rq

Ry
F(Pa, Py) = ZZPHM (01,)9(0r,» 01,

ra=1 rp=

where
Hry (@)~ Hrg ()’
eXP{ Zd 1#}
g(orm OTb) = = .
\/(ZH)DH3:1 (05 ot Gfa(d))
Proof

F(PaPs) = [ PuPutz

/ (ZP .)p(lo,,) ZP ,)D z|9rb)>
s Rp

_ZZ< (0r,)P(0y,) x /pz|6,b (z|6,a)dz>.

ra=1 rp=1
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Let M(0,,|0:,) be the expected value of the p(z|0,,) under the Gaussian
distribution p(z|0;,),

M(04]0,) = [ p(zli, i dz

:/-~~/{p(zl,...7zD\0r,,) xp(zi,...,2p|0,) }dzy - - dzp
N —

D
(14)

Since the random variables z;,z,,...,zp are mutually independent,
the following joint probability densities can be expressed in product
forms:

D
p(z1,--+,2p0y,) Hp (4]0r,),and
d=1
D
p(zh"'vZD‘Hrn Hp Zd‘(-)ra (15)
d=1
Substitute (15) into (14),
D
M(0,,10r,) = | [ Ma(0r,10r,)- (16)
d=1

Each of the product terms, Mq(0;,|0;,), can be derived as follows:
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Change (s4,tq) coordinate system to (g4, %q) polar coordinate system;

let sq = p,cosoy and tq = p,sinoyg, then
00 21 1 1 1
:/ Pd/ exXpy 5|t x p3 vdpdoy
0 0 Ty Tr
2 2
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Finally, substitute (19) into (16), and
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