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中文摘要

本研究旨在發展一套可同時應用於處理微動
量測﹑自由振動量測﹑及地震反應數據之統一系統
識別程序。該程序架構於狀態空間模式，並利用次
空間法結合工具變數法求取結構系統之動態特
性。因此，使用者只需要熟悉一套理論，即可同時
解決從微動量測、自由振動量測、及地震反應進行
系統識別之問題。
本研究中，首先利用數值模擬確認所提系統識
別程序之可行性及準確性。然後，為驗證實際應用
之可行性，進行以下之試驗數據處理：(1) 進行一
五層樓鋼構之微動量測分析，並與多變數 ARMA
模式所得者比較；(2) 進行一三跨連續預力混凝土
橋之衝擊試驗分析，並與 Ibrahim 時間域識別法所
得者比較；(3) 進行一五層樓鋼構之振動台試驗分
析，並與有限元素法所得者比較。

關鍵詞：次空間法﹔微動量測﹔自由振動量測﹔地
震反應﹔系統識別

1.  Abstract

The main purpose of this research is to develop 
a unifying procedure for identifying the dynamic 
characteristics of structures from their ambient 
vibration, free vibration, and earthquake response 
data. The proposed procedure will use a state-space 
model cooperating with a subspace approach and 
instrumental variable concept. Hence, the users only 
need to know a procedure and the corresponding 
theoretical background in order to determine the 
dynamic characteristics of a structure from different 
field tests.

The feasibility and accuracy of the proposed 
procedure will be demonstrated through numerical 
simulation. Then, the procedure will be applied to real 
observed data: (1) ambient vibration measurement of 
a five-story frame; (2) free vibration measurement of a 
three-span continuous pre-stressed concrete bridge; 
(3) earthquake response data from shaking table test. 
The identified results will be compared with those 
obtained from other methods.

Keywords: subspace-based approach, ambient 
vibration measurement, free vibration measurement, 
earthquake responses, system identification

2.  Motive and Goal

Investigating the dynamic characteristics of an 
existing structure system based on field tests is 
essential in confirming the construction quality, 
validating or improving analytical finite element 
structural models, or conducting damage assessment. 
To accomplish this task, the popular field tests are 
ambient vibration tests, forced vibration tests, free 
vibration tests, and earthquake response measurement. 
Notably, excluding forced vibration tests due to their 
periodic characteristics of input, identifying the 
dynamic characteristics of a structural system from the 
other three tests can be accomplished in time domain.

Even in the time domain analysis, various 
schemes are often applied to process the data from 
various field tests. For example, to determine the 
dynamic characteristics of a structural system from 
free vibration test, Ibrahim time domain system 
identification (ITD) technique is often applied [1]. 
However, it cannot be directly applied to process 
either the ambient vibration test or the earthquake 
response measurement. That is, to process the ambient 
vibration measurement, ITD technique has to comply 
with random decrement technique [2]. There is no a 
rigorous procedure to extract free vibration responses 
from earthquake responses such that ITD technique 
can be applied to determine the dynamic 
characteristics from the resultant responses. Based on 
the assumption of stationary process for observed data, 
time series models, i.e. AR and ARMA models, are 
also often employed for ambient vibration 
measurements [3-6]. Apparently, however, this 
assumption is not valid for free vibration measurement 
and earthquake response measurement. Consequently, 
to analyze the observed data from different tests, 
various techniques as well as the corresponding 
theoretical backgrounds must be understand, which 
becomes burdensome for the users. Therefore, this 
study develops a system identification procedure 
capable of processing the measurement from various 
tests.   

The proposed procedure is based on state-space 
model cooperating with a subspace approach. Rao and 
Arun [7] provided a comprehensive review on the data 
processing by using state space approaches, while Van 
DerVeen et al. [8] collected more than one hundred 
articles on signal analysis by subspace-based 
approaches. Viberg [9] also reviewed and compared 
numerous subspace-based schemes. He classified these 
schemes into two categories:(1) realization-based 
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subspace methods [10-12], which estimate the 
coefficient matrices of a state-space model via 
measured impulse response functions; (2) direct 
subspace-based methods [13-16], which estimate the 
coefficient matrices via observed input and output 
signals. Apparently, even in the subspace-based 
approach, varying schemes were applied to the data 
from varying tests. 

 To identify the dynamic characteristics of 
structures from the ambient vibration, free vibration, 
and earthquake response data, this study develops a 
unified procedure by extending, with some 
modification, the direct subspace-based method with 
the instrumental variables proposed by Viberg et al. 
[17], who developed a procedure to estimate the 
observability matrix for the state space model with 
measured inputs.  Furthermore, to demonstrate the 
feasibility of the proposed procedure, the procedure is 
applied to process an ambient vibration measurement 
of a five-story steel frame, a free vibration 
measurement of a three-span continuous pre-stressed 
concrete bridge, and simulated earthquake responses 
of two five-story steel frames from the shaking table 
test. The dynamic characteristics identified herein are 
compared with those obtained from other methods.

3. Contents of the Research

3.1 Methodology

The observed responses of a linear system with a n
degrees of freedom subjected to m input can be 
expressed by the following state-space model:

kkk fBAzz 1 +=+ ,  (1)

kkkk aDfEzy ++= , (2)

where kz  is a 2n-dimensional state vector, kf  is a 

m-dimensional input vector, ky is a l-dimensional 

observed response vector, ka is a l-dimensional 
white-noise vector. The subscript “k” denotes the 
signal at t=k t∆ , where t∆ is time increment. 
Substituting Eq. (1) into Eq. (2) with careful 
arrangement yields

kkkk ÄFÖZÃY ++= αα , (3)

where the definitions and lengthy expressions for kY , 

kZ , kF , kÄ , αÃ , and αÖ are given in the 
writer’s recent papers [18-19]. (4i)

From linear algebra, one can define a orthogonal 

projection matrix, ⊥
fÐ , onto the null-space of kF

as

k
T
kk

T
kf FFFFIÐ 1)( −⊥ −= . (4)

Introduce instrumental variables P defined as

[ ]TT
p

T
p YFP = , (5)

where p<k. Then, multiplying ⊥
fÐ to both sides of Eq. 

(3) to eliminate the second term in the right-hand side 

of Eq. (3) and multiplying NT /P to the both sides 
of resulting equation yield [17] 

T
fk

T
fk NN

PÐZÃPÐY ⊥⊥ = α
11

. (6)

It should be noted that the fact has been used in 
deriving Eq. (6) that white-noise vector ka  is not 

correlated with input force tf  for all t, and with 

observed response vector qy for k>q.

To reduce the variance of the estimated coefficient 
matrices for the state-space model due to noise and the 
bias of the estimation due to under-modeling, the 
weight matrices suggested by Verhaegen [15]: 

IW =r and 2/1)/( −⊥= NT
fc PPÐW were 

multiplied to Eq. (6). Then, we have

c
T

fkrc
T

fkr NN
WPÐZÃWWPÐYW ⊥⊥ = α

11
(7)

Define a matrix H  equal to the left-hand side of 
Eq. (7). By using singular value decomposition, the 
following relation holds:

T
nnn VQH ∑≈ , (8)

where n∑ is a diagonal matrix containing the n
largest singular values, the columns of nQ and 

nV are the corresponding left and right singular 

vectors, respectively. It should be noted that n  is 
equal to 2n in the perfect data case. If the data contain 
noises, n is typically larger than 2n.

From Eqs. (7) and (8), one has 

nTÃÃ αα ˆ= (9)

where nr QWÃ 1ˆ −=α  and 

1)/( −⊥∑= Nc
T

fknnn WPÐZVT . It can be 

easily proved the following relations 

[ ]TTsTT )ˆˆ()ˆˆ(ˆˆ 1−= AEAEEÃ Lα , 

1ˆ −= nn ATTA , and 1ˆ −= nETE . (10a-c)

From the measured responses and input, one can easily 

estimate matrix αÃ̂ . Then, a least-squares approach 

was applied to estimate Â and Ê  from the 
relationship given in Eq. (10a). 

The dynamic characteristics of the structural system 
can be determined from the eigenvalues and 

eigenvectors of Â . Let’s denote the jth eigenvalue 
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and the corresponding eigenvector by jλ̂  and jϕ̂ , 

respectively. Furthermore, let jjj iba +=λ̂ . Then, 

the corresponding undamped circular natural 
frequency jω and modal damping ratio jξ are 

determined by the following relations:

22
jjj βαω += and 

j
j

j ω
α

ξ −= (11a,b)

where )Ä2/()ln( 22 tba jjj +=α  and 

tab jjj ∆= − /)/(tan 1β . The modal shape for the 

observed degrees of freedom jö is equal to jϕ̂Ê . 

3.2 Aplications

 To demonstrate the feasibility of the proposed 
procedure on processing the data in real applications, 
the proposed procedures were applied to identify the 
dynamic characteristics of structures from their 
ambient vibration measurement, simulated response 
data from shaking table tests, and free vibration 
measurement.

Table 1 shows the identified modal parameters for 
five-story steel structure by using present procedure to 
process its ambient vibration measurement in 
long-span direction. Table 1 also lists the identified 
results obtained by employing the multivariate ARMA 
model in combination with a two-stage least-squares 
approach [20].  Comparing the present results with 
those published reveals an excellent agreement 
between them. Strictly speaking, the agreement for the 
frequencies and modal shapes is superior to that for the 
damping ratios. 

The proposed identification procedure was also 
applied to determine the modal parameters of a 
five-story steel frame from its acceleration responses 
subjected to base excitation in shaking table tests. The 
results for the first three modes were well correlated 
with those from finite element analysis. As a third 
example, to identify the dynamic characteristics of a 
highway bridge in vertical direction from its impulse 
test, the proposed procedure was applied. This test was 
conducted on an elevated highway bridge before it was 
opened to the public. Because of the limitation of 
pages, the results will not be shown here. The readers 
who are interesting these results may refer to [19].

4. Discussion

A unified procedure to identify the dynamic 
characteristics of the structural system from ambient 
vibration, free vibration, and earthquake response data 
has been presented herein. This procedure was
established through a space-state model to describe the 
measured responses. The coefficient matrices related 

to the dynamic characteristics were evaluated by a 
subspace method cooperating with the concept of 
instrumental variable. Then, the dynamic 
characteristics were evaluated from the eigenvalues 
and eigenvectors of a coefficient matrix. One of the 
primary advantages of the procedure is that it proposes 
a suitable order for the space-state model from the 
singular values of H  in Eq. (8).

To demonstrate its feasibility for actual 
applications, the proposed procedure has been applied 
to process in situ ambient vibration measurement of a 
five-story steel frame and free vibration measurement 
of a three-span continuous highway bridge. The 
identified dynamic characteristics from the ambient 
vibration data closely corresponded to those obtained 
from the multivariate ARMA model with a two-stage 
least-squares approach. The identified results from the 
free vibration data also display an excellent agreement 
with those from ITD technique, thus validating the 
applicability of the proposed approach.

5. Comment and Conclusion

We have achieved the goals of the project given 
in the proposal. Based on the results in this work, a 
paper has been accepted for publishing in Earthquake 
Engineering and Structure Dynamics. Furthermore, 
some of the results has also been reported in the First 
International Conference on Structural Stability and 
Dynamics held in Taipei 2000.
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Table 1. Identified results from ambient vibration 
measurement

Frequencies 
(Hz) Mode Shapes Modal 

Damping (%)Mode

Present ARMAV Present ARMAV Present ARMAV

1 0.88 0.88
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

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
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














002.
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
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

/
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42.
68.
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0.1

0.22 0.27

2 2.93 2.93




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
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








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


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





−
−

/
53.
0.1
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0.20 0.22

3 5.54 5.55
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

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
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
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−
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/
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0.51 0.46

4 8.37 8.37
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
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

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


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−
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/
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0.49 0.52

5 10.4 10.4





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
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
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−
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Note: / means no data available.


	page1
	page2
	page3
	page4

