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This paper considers an infinite-capacity M/M/c queueing system with modified Bernoulli
vacation under a single vacation policy. At each service completion of a server, the server
may go for a vacation or may continue to serve the next customer, if any in the queue. The
system is analyzed as a quasi-birth-and-death (QBD) process and the necessary and suffi-
cient condition of system equilibrium is obtained. The explicit closed-form of the rate
matrix is derived and the useful formula for computing stationary probabilities is devel-
oped by using matrix analytic approach. System performance measures are explicitly
developed in terms of computable forms. A cost model is derived to determine the optimal
values of the number of servers, service rate and vacation rate simultaneously at the min-
imum total expected cost per unit time. Illustrative numerical examples demonstrate the
optimization approach as well as the effect of various parameters on system performance
measures.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Most studies on queueing system, servers always serve the waiting customers in the queue until all customers is served
exhaustively. In many practical systems, however, it may occur that the service process requires to be temporarily stopped
for overhauling at the end of a service. This overhauling can be utilized as a vacation in the presented model. In this paper,
the quasi-birth–death (QBD) process and matrix analytic method are used to analyze an infinite capacity multi-server M/M/c
queue with a modified Bernoulli vacation schedule. The computational algorithm of stationary probability vectors and
optimization of parameters are developed.

Queueing models with server vacations are effective tools for performance analysis of manufacturing systems, local area
networks, and data communication systems. Past works on vacation queueing models are either single server or multiple
server systems. Excellent surveys on the single server vacation models have been reported by Doshi [1] and Takagi [2].
The variations and extensions of these vacation models were developed by several researchers such as Lee et al. [3,4],
Krishna Reddy et al. [5], Choudhury [6,7], Ke [8,9], Ke and Chu [10], Ke et al. [11,12] and many others. A numbers of papers
[13–16] have recently appeared in queueing literature in which the server provides to each heterogeneous service with
Bernoulli schedule vacation (BSV). The so-called BSV means that when the service of a unit is completed, the server may
leave for a vacation of random length with probability p or may continue to serve the next unit, if any with probability
1� p (see Choudhury et al. [17]). For the multiple server vacation models, there are only a limited number of studies due
. All rights reserved.
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to the complexity of the systems. The M/M/c queue with exponential vacations was first studied by Levy and Yechiali [18].
Chao and Zhao [19] investigated a GI/M/c vacation system and provided an algorithm to compute the performance measures.
Tian et al. [20,21] gave a detailed study of the M/M/c vacation systems in which all servers take multiple vacation policy
when the system is empty. Zhang and Xu [22], Zhang and Tian [23,24] and Ke et al. [25] analyzed the M/M/c vacation sys-
tems with a ‘‘partial server multiple vacation policy’’ in which some servers (only the idle ones) take single or multiple
vacations.

Multi-server vacation models are more flexible and applicable in practice than single server models. Existing research
works, including those mentioned above, have not addressed the analytical study and optimization issue in the infinite buffer
multiple-server systems in which the server may take a vacation upon his each service completion. Besides the lack of research
work on this problem, our study is also motivated by a practical production as follows. Consider a production process with a
number of machines (or c machines). It may so happen that the production process either needs to be temporarily stopped
for overhauling and maintenance of the system after each service completion or continue the service for the next unit/cus-
tomer in the queue. This overhauling can be utilized as a vacation in the presented model. Another application of such model
based on Choudhury et al. [17] may well be found in some transportation systems in which a ferry driver or locomotive dri-
ver may have a vacation after every round of trip.

In this paper, we consider an infinite capacity M/M/c queueing system with modified Bernoulli vacation under a single
vacation policy. Customers arrive according to a Poisson process with parameter k and their service are provided by c servers,
in which the service times are assumed to be exponentially distributed with mean 1=l. It is assumed that customers arrive at
the server form a single waiting line and are served in the order of their arrivals; that is, the first-come, first-served disci-
pline. Each server can serve only one customer at a time, and that the service is independent of the arrival of the customers.
At each service completion instant of a server, the server inspects the system state and decides whether leave for a vacation
or not. If the number of customers in the queue is less than the number of busy/working servers, the server may take a vaca-
tion of random length with probability p or continue to serve the next customer, if any with probability q (=1 � p). The vaca-
tion times are exponentially distribution with mean 1=h. If the number of customers in the queue is more than the number of
busy servers, the server always keeps working/serving for the next customers waiting in the queue (i.e., p = 0). From Fig. 1,
we easily see the state transition with flow in/out rate. Conveniently, we represent this multi-server system with modified
Bernoulli vacation as M/M/c/MBSV queueing system.

The paper is organized as follows; In Section 2, the quasi-birth–death (QBD) model of the M/M/c/MBSV queueing system
is set up. The explicit closed-form of the rate matrix is derived and the stable condition is obtained by using the matrix-geo-
metric property. Section 3 we derive an efficient algorithm to compute stationary probabilities by matrix-geometric method.
Some system performance measures are derived in Section 4, including some explicit results of special case. In Section 5, a
cost model is developed to determine the optimal values of number of servers, service rate and repair rate, simultaneously, in
Fig. 1. State-transition-rate diagram for an infinite capacity M/M/c queueing system with modified Bernoulli vacation, where (i, j) of circle denotes the state
that there are i vacation servers and j customers in the system.
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order to minimize the total expected cost per unit time. We use Quasi-Newton method and direct search method to imple-
ment the optimization tasks. Some numerical examples are provided to illustrate the optimization methods. Section 6
concludes.

2. Mathematical model

We consider the M/M/c/MBSV queueing system. The state of this queueing system can be described by the pair (i,n),
i = 0,1,2, . . . ,c, n = 0,1,2, . . . , where i denotes the number of vacation servers, and n denotes the number of customers in
the system. According to system assumptions, the server keeps busy and serves the next customer waiting in the queue
at a service completion instant if the number of customers in the system is greater than the number of total working (no
vacation) servers, i.e. ðn P c � iþ 1Þ. As ðn 6 c � iÞ, one server may goes on vacation with probability p(p > 0) or resumes ser-
vice with probability q ¼ 1� p at a service completion instant.

In steady-state, we define
PiðnÞ � probability that there are n customers in the system when there are i vacation servers, where i ¼ 0;1;2; . . . ; c and

n ¼ 0;1;2; . . .

and P ¼ ½P0;P1; . . . ;Pc;Pcþ1; . . .� with Pn ¼ ½P0ðnÞ; P1ðnÞ; . . . ; PcðnÞ�; n ¼ 0;1;2; . . . denotes the steady-state probability
vector.

Referring to the state-transition-rate diagram as shown in Fig. 1, the infinitesimal generator Q of the QBD describing the
M/M/c queueing system with modified Bernoulli vacation is of the form
Q ¼

A0 B

C1 A1 B

C2 A2 B

. .
. . .

. . .
.

. .
. . .

. . .
.

Cc�1 Ac�1 B

Cc Ac B

Ccþ1 Ac B

. .
. . .

. . .
.

2
6666666666666666664

3
7777777777777777775

: ð1Þ
The entries B; Ajð0 6 j 6 cÞ, and Cjð1 6 j 6 c þ 1Þ are matrices of order ðc þ 1Þ defined by B ¼ kIðcþ1Þ�ðcþ1Þ, where Iðcþ1Þ�ðcþ1Þ is
the identity matrix of order c + 1.
Aj ¼

aj;1

g aj;2

2g aj;3

. .
. . .

.

. .
. . .

.

ðc � 1Þg aj;c

cg aj;cþ1

2
66666666666664

3
77777777777775
; j ¼ 0;1; . . . ; c
with diagonal elements aj;k ¼ �½kþminðj; c þ 1� kÞlþ ðk� 1Þg�; k ¼ 1;2; . . . ; c þ 1:
Cj ¼

jql jpl
jql jpl

. .
. . .

.

jql jpl

9>>>>=
>>>>;

# ¼ ðc þ 1� jÞ

# ¼ j

ðj� 1Þl
ðj� 2Þl

. .
.

l
0

8>>>>>>><
>>>>>>>:

2
6666666666666666664

3
7777777777777777775

; j ¼ 1;2; . . . ; c þ 1:
It is well-known (Theorem 3.1.1 of Neuts [26]) that the steady-state probability vector exists if and only if
xBe < xCcþ1e; ð2Þ
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where e is a column vector with dimension ðc þ 1Þ and all elements equal to one. x is the invariant probability of the matrix
F ¼ Ccþ1 þ Ac þ B. x satisfies xF ¼ 0 and xe ¼ 1.

Substituting B and Ccþ1 into Eq. (2) and doing some routine manipulations, then we have x0 ¼ 1 and xi ¼ 0; i ¼ 1;2; . . . ; c.
The stability condition is
k <
Xc

i¼0

ðc � iÞxil ¼ cl: ð3Þ
which is the stability condition of the ordinary M/M/c queueing system.
Let the steady-state probability vector P be the unique solution to PQ ¼ 0 and

P1
n¼0Pne ¼ 1. We note that the vector

P ¼ ½P0;P1; . . . ;Pc;Pcþ1; . . .� has the following properties
Pcþk ¼ PcRk; for k P 1: ð4Þ
The matrix R is the unique non-negative solution with spectral radius less than one of the equation
Bþ RAc þ R2Ccþ1 ¼ 0: ð5Þ
It is necessary to solve the rate matrix R of (5), in order to obtain the steady-state solution vector P ¼ ½P0;P1; . . . ;

Pc;Pcþ1; . . .�. Based on the structures of matrices, B; Ac and Ccþ1 which are represented as the lower triangular matrix, thus
the matrix solution R is also the lower triangular matrix. (see Latouche and Ramaswami [27])

Doing some arduous algebraic derivations and arrangement, we develop the explicit formula for matrix
R as follows:
R ¼

r1;1

r2;1 r2;2

..

. ..
. . .

.

..

. ..
. . .

.

rc;1 rc;2 � � � � � � rc;c

rcþ1;1 rcþ1;2 � � � � � � rcþ1;c rcþ1;cþ1

2
66666666664

3
77777777775
; ð6Þ
where ri;i ¼
hi�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

i �4ðcþ1�iÞkl
p

2ðcþ1�iÞl , for 1 6 i 6 c; rcþ1;cþ1 ¼ k
kþcg,
ri;j ¼
ðc þ 1� jÞl

Pi�1
k¼jþ1ri;krk;j þ jri;jþ1g

kþ ðc þ 1� jÞð1� ri;i � rj;jÞlþ ðj� 1Þg ; for 2 6 i 6 c þ 1; i > j;

ri;j ¼ 0; for i < j
and hi ¼ kþ ðc þ 1� iÞlþ ði� 1Þg. Note that ri;i is the corresponding eigen-values of the rate matrix R and the spectral radius
of R, sp(R) is less than one if q ¼ kðclÞ�1

< 1.

Proof. Firstly, the first diagonal element
r1;1 ¼
kþ cl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ clÞ2 � 4ckl

q
2cl

¼ kþ cl� jk� clj
2cl

¼ kðclÞ�1 ¼ q < 1:
For 2 6 i 6 c, the diagonal element ri;i is got from the quadratic equation
f ðxÞ ¼ ðc þ 1� iÞlx2 � hixþ k ¼ 0:
It should be noted that there exists exact one real root in (0,1) because
f ð0Þ ¼ k > 0;
f ð1Þ ¼ ðc þ 1� iÞl� hi�1 þ k ¼ �ði� 1Þg < 0:
Finally, rcþ1;cþ1 ¼ k=ðkþ gÞ < 1. Therefore, all diagonal elements (eigen-values) of rate matrix R are less than 1. Therefore, the
spectral radius of rate matrix R, spðRÞ ¼ max

16i6sþ1
fri;ig is less than 1. By using the rate matrix R, we can solve the steady-state

probability more efficiently. h
3. Algorithm solution

Under the stability condition, by solving the equation PQ ¼ 0 with the normalization condition, we obtain
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P0A0 þP1C1 ¼ 0; ð7aÞ

Pi�1BþPiAi þPiþ1Ciþ1 ¼ 0; 1 6 i 6 c � 1; ð7bÞ

Pc�1BþPcAc þPcRCcþ1 ¼ 0; ð7cÞ

PcRi�1�cBþPcRi�cAc þPcRiþ1�cCcþ1 ¼ 0; c þ 1 6 i; ð7dÞ
X1
i¼0

Pie ¼ 1: ð8Þ
After doing routine substitutions to (7a)–(7c), we have
P0 ¼ P1C1ð�A0Þ�1 ¼ P1/1;

Pi�1 ¼ PiCi½�ð/i�1Bþ Ai�1Þ��1 ¼ Pi/i; 2 6 i 6 c
ð9Þ
and
Pc/cBþPcAc þPcRCcþ1 ¼ 0: ð10Þ
Consequently, Pið0 6 n 6 c � 1Þ in Eq. (9) can be written in terms of Pc as Pi ¼ PcP
iþ1
i¼c /i; i ¼ 0;1;2; . . . ; c � 1 where

/1 ¼ C1ð�A0Þ�1 and /i ¼ Ci½�ð/i�1Bþ Ai�1Þ��1
; 2 6 i 6 c. The rest steady-state vectors Pc;Pcþ1; . . . can be calculated recur-

sively as Pi ¼ PcRi�c , for i P c. Once Pc is determined, the steady-state solutions P ¼ ½P0;P1; . . . ;Pc;Pcþ1; . . .� are obtained.
The vector Pc is given by solving Eq. (10) with the following normalization condition.
X1

i¼0

Pie ¼ P0 þP1 þ . . .þPc�1 þPc þPcþ1 þPcþ2 þ . . .½ �e

¼ PcP
1
i¼c/i þPc P

2

i¼c
/i þ . . .þPc P

c

i¼c
/i þPc þPcRþPcR2 þ . . .

� �
e ¼ Pc

Xc

n¼1

P
n

i¼c
/i þ ðI � RÞ�1

" #
e ¼ 1: ð11Þ
Solving Eqs. (10) and (11) in accordance with Cramer’s rule, we obtain Pc. Then the prior state probabilities
½P0;P1;P2; . . . ;Pc�1� are computed from (9) and ½Pcþ1;Pcþ2;Pcþ3; . . .� are gained by the formula Pi ¼ PcRi�c; i P c þ 1.
The solution procedure of the steady-state probabilities is summarized as below:

Algorithm 1. Recursive Solver
INPUT c; B; A0;A1; . . . ;Ac; C1;C2; . . . ;Ccþ1; R; e ¼ ½1; . . . ;1�T , and I is the

identity matrix of order c + 1
OUTPUT P0;P1;P2; . . .
Step 1 set /1 ¼ C1ð�A0Þ�1
Step 2 for i ¼ 2 to c
Step 3 set /i ¼ Ci½�ð/i�1Bþ Ai�1Þ��1
Step 4 end

Step 5 for k ¼ 1 to c
Step 6 set Uk ¼ P
k

i¼c
/i
Step 7 end h i

Step 8 Solving Pc/cBþPcAc þPcRCcþ1 ¼ 0, and Pc

Pc
i¼1Ui þ ðI � RÞ�1 e ¼ 1
Step 9 for i ¼ 0 to c � 1

Step 10 set Pi ¼ PcUiþ1
Step 11 end

Step 12 for i ¼ c þ 1 to . . .
Step 13 set Piþ1 ¼ PiR

Step 14 end

Step 15 OUTPUT
4. System performance measures

There are several general descriptors (system performance measures) of the M/M/c/MBSV queueing system, such as the
expected number of customers in the system (denoted by LsÞ, the expected number of customers in the queue (denoted by
LqÞ, the expected number of busy, idle and vacation servers (denoted by E½B�; E½I� and E½V �, respectively). The expressions for
these system performance measures are given by
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Ls ¼
P1
i¼1

iPie ¼
Pc�1

i¼1
iPieþ cPceþ ðc þ 1ÞPcReþ . . .

¼
Pc�1

i¼1
iPcUiþ1eþ cPcðI � RÞ�1eþPcRðI � RÞ�2e

¼ Pc
Pc�1

i¼1
iUiþ1 þ cðI � RÞ�1 þ RðI � RÞ�2

� �
e;

ð12Þ
Lq ¼ P1

0
..
.

0
1

2
66664

3
77775þP2

0
..
.

1
2

2
66664

3
77775þ � � � þPc

0
..
.

c � 1
c

2
66664

3
77775þPcR

0
..
.

c � 1
c

2
66664

3
77775þ e

0
BBBB@

1
CCCCAþ � � �

¼
Pc�1

i¼1
PcUiþ1ui þPcðI � RÞ�1uc þPcRðI � RÞ�2e

¼ Pc
Pc�1

i¼1
Uiþ1ui þ ðI � RÞ�1uc þ RðI � RÞ�2e

� �
;

ð13Þ
E½V � ¼
X1
i¼0

Pi

0
1
..
.

c

2
66664

3
77775 ¼ Pc

Xc

i¼1

Ui þ ðI � RÞ�1

" # 0
1
..
.

c

2
66664

3
77775; ð14Þ
E½I� ¼ P0

c
c � 1

..

.

0

2
66664

3
77775þP1

c � 1
c � 2

..

.

0

2
66664

3
77775þP2

c � 2
c � 3

..

.

0

2
66664

3
77775þ . . .þPc�1

1
0
..
.

0

2
66664

3
77775

¼ PcU1v1 þPcU2v2 þ . . .þPcUcvc

¼ Pc
Pc
i¼1

Uiv i;

ð15Þ
E½B� ¼ c � E½V � � E½I�; ð16Þ
where ui ¼ 0; . . . ;0
zfflfflfflffl}|fflfflfflffl{#¼cþ1�i

;1;2; . . . ; i
zfflfflfflfflfflffl}|fflfflfflfflfflffl{#¼i

2
64

3
75

T

and v i ¼ c � i; c � i� 1; . . . ;1;0
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{#¼c�iþ1

0; . . . ;0
zfflfflfflffl}|fflfflfflffl{#¼i

2
64

3
75

T

are ðc þ 1Þ dimensional column vector.

To understand how system performance measures (such as Ls and E½B�Þ listed above vary with k, l and g, we now perform
some numerical investigation to the measures based on changing the value of system parameters. For computation, we let
p = 0.5. The numerical results of Ls are obtained by considering the following three cases with different values of c.

Case 1. l ¼ 5:5; g ¼ 2:0, vary k from 2.0 to 5.0.
Case 2. k ¼ 2:0; g ¼ 2:0, vary l from 2.5 to 5.5.
Case 3. k ¼ 2:0; l ¼ 3:0, vary g from 1.0 to 4.0. Results of Ls are depicted in Figs. 2–4 for Case 1–3, respectively. Fig. 2

reveals that (i) Ls increases quickly as k increases for c ¼ 1, and (ii) Ls slightly increases as k increases for c P 2.
We observes from Fig. 3 that (i) Ls drastically decreases as l increases for c ¼ 1, and (ii) Ls slightly decreases as
l increases for c P 2. One sees from Fig. 4 that Ls slightly decreases as g increases. We also interest in the effect
of different parameters on the expected number of busy servers ðE½B�Þ. The following three cases are considered:

Case 4. E½B� versus k from 2.0 to 5.0 when l ¼ 5:5 and g ¼ 2:0.
Case 5. E½B� versus l from 2.5 to 5.5 when k ¼ 2:0 and g ¼ 2:0.
Case 6. E½B� versus g from 1.0 to 4.0 when k ¼ 2:0 and l ¼ 3:0.

The numerical illustrations of the expected number of busy servers are graphically presented in Figs. 5–7 for Case 4–6,
respectively. We observe from Figs. 5 and 6 that E½B� increases as k increases or l decreases. Fig. 7 reports E½B� is a constant
is independent of g. From the investigation, it is interesting that E[B] nearly equals to k=l. However, it is very difficult to
proof the results. In the next section, we will provide the proof of single server case ðc ¼ 1Þ.



Fig. 2. The effect of k on the expected number of customers in the system.

Fig. 3. The effect of l on the expected number of customers in the system.
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4.1. Some explicit results of single server

As a particular case, the M/M/1/MBSV queueing system, in which the server may take a vacation if server is free at service
completion instant, steady-state equations in states (0,0), (0,1), and (1,0) are given by:
kP0ð0Þ ¼ qlP0ð1Þ þ gP1ð0Þ;
ðkþ gÞP1ð0Þ ¼ plP0ð1Þ;

ð17Þ
which implies
k½P0ð0Þ þ P1ð0Þ� ¼ lP0ð1Þ: ð18Þ
Thus B ¼ k 0
0 k

� �
; Ac ¼

�ðkþ lÞ 0
g �ðkþ gÞ

� �
, and Ccþ1 ¼

l 0
0 0

� �
.

Substituting B; Ac; Ccþ1 into Bþ RAc þ R2Ccþ1 ¼ 0 and solving the quadratic equation above, we have



Fig. 4. The effect of g on the expected number of customers in the system.

Fig. 5. The expected number of busy servers versus k.
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R ¼
k
l 0
k
l

k
kþg

" #
: ð19Þ
Also, Eq. (19) can be obtained from (6).
For the case of single server, the steady-state distribution P1 ¼ ½P0ð1Þ; P1ð1Þ� satisfies the following
½P0ð0Þ; P1ð0Þ�
k 0
0 k

� �
þ ½P0ð1Þ; P1ð1Þ�

�ðkþ lÞ 0
g �ðkþ gÞ

� �
þ ½P0ð1Þ; P1ð1Þ�

k
l 0
k
l

k
kþg

" #
l 0
0 0

� �
¼

0 0
0 0

� �
; ð20Þ
which leads to
kpl
kþ g

P0ð1Þ ¼ ðkþ gÞP1ð1Þ: ð21Þ
Using the normalization condition (11) to obtain P1



Fig. 6. The expected number of busy servers versus l.

Fig. 7. The expected number of busy servers versus g.
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½P0ð1Þ; P1ð1Þ�ðI � RÞ�1 1
1

� �
þ ½P0ð0Þ; P1ð0Þ� ¼ 1: ð22Þ
Substituting (18), (19) and (21) into (22), we get P0ð1Þ and P1ð1Þ as following
P0ð1Þ ¼
kðkþ gÞðl� kÞg
ðpk2 þ gkþ g2Þl2

ð23Þ
and
P1ð1Þ ¼
k2pgðl� kÞ

ðkþ gÞðpk2 þ gkþ g2Þl
: ð24Þ
After the gaining of P1, the rest steady-state probability vectors P2;P3;P4; . . . can be obtained recursively with
P2 ¼ P1R; P3 ¼ P2R, . . . , and so on.
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The expected number of busy servers is
E½B� ¼ ½P0ð1Þ; P1ð1Þ�ðI � RÞ�1 1
0

� �
¼ P0ð1Þ;

kpl
ðkþ gÞ2

P0ð1Þ
" # l

l�k 0
kðlþgÞ
gðl�kÞ

kþg
g

" #
1
0

� �
¼ P0ð1Þ;

kpl
ðkþ gÞ2

P0ð1Þ
" # l

l�k

kðlþgÞ
gðl�kÞ

" #

¼
l pk2 þ gkþ g2
� �
gðkþ gÞðl� kÞ P0ð1Þ ¼ q: ð25Þ
It is interesting that the result of (25) for the M/M/1/MBSV queueing system, in which the server may take a vacation if server
is free at service completion instant, is the same as that of the ordinary M/M/1 queue.

5. Optimization analysis

In this section, we construct the total expected cost function per unit time based on the system performance measures for
the M/M/c/MBSV queueing system, in which the number of servers ðcÞ is a discrete decision variable, and the service rate ðlÞ
and the vacation rate ðgÞ are continuous decision variables. Our main objective is to find the optimum number of servers c�,
and the optimum values of service rate and vacation rate ðl�;g�Þ simultaneously to minimum the cost function. Let us define
the following cost elements:

Ch � holding cost per unit time per customer present in the system;
Cs � cost per unit time of providing a service rate l;
Cv � cost per unit time when one server is on vacation;
Cr � cost per unit time of providing a vacation rate g;
Cp � fixed cost for purchasing one server.

Using the definition of the cost parameters listed above, the total expected cost function per unit time is given by:
Fðc;l;gÞ ¼ ChLs þ Cslþ CvE½V � þ Crgþ Cpc; ð26Þ
where Ls and E½V � are defined previously.
The analytic study of the optimization behavior of the expected cost function would have been an arduous task to under-

take since the decision variables appear in an expression which is a highly nonlinear and complex and non-linear in terms of
ðc;l;gÞ.

In the next section, we firstly use the Quasi-Newton method to find the optimal value of continuous variable ðl;gÞ, say
ðl�;g�Þ, and then use direct search method to search the optimal value of discrete variable c, say c�.

5.1. Quasi-Newton method

For practice use, the number of servers is bounded by a positive integer cU P 1. We want to find the joint optimal value
ðl�;g�Þ for each given c in the feasible set {1,2, . . . ,cU}. The cost minimization problem can be illustrated mathematically as
Fðc;l�;g�Þ ¼ min
and s:t:ð3Þ

Fðc;l;gÞ cjf g; c ¼ 1;2; . . . ; cU : ð27Þ
For the problem of (27), we should show the convexity of Fðc;l;gÞ in ðl;gÞ. However, this work is difficult to implement.
We note that the derivative of the cost function F with respect to ðl;gÞ indicates the direction which cost function increases.
It means that, the optimal value ðl�;g�Þ can be found along this opposite direction of the gradient. (see Chong and Zak [28]).
That is, for a fixed c, Quasi-Newton method is employed to search ðl;gÞ until the minimum value of Fðc;l;gÞ is achieved, say
Fðc;l�;g�Þ. An effective procedure that makes it possible to calculate the optimal value ðc;l�;g�Þ is presented as follows:

Algorithm 2. Quasi-Newton Method
INPUT Cost function Fðc;l;gÞ, c, R; k;l, initial value ~hð0Þ ¼ ½lð0Þ;gð0Þ�T ,

and the tolerance e.
OUTPUT approximation solution ½l�;g��T .
Step 1 Set the initial trial solution for ~hð0Þ, and compute Fðc;lð0Þ;gð0ÞÞ.

Step 2 While j@F=@lj > e or j@F=@gj > e do Step 3–4
Step 3 Compute the cost gradient ~rFð~hÞ ¼ ½@F=@l; @F=@g�T and the cost� �

Hessian matrix Hð~hÞ ¼ @2F=@l2 @2F=@l@g

@2F=@g@l @2F=@g2 at point ~hðiÞ.
Step 4 Find the new trial solution ~hðiþ1Þ ¼~hðiÞ � ½Hð~hðiÞÞ��1~rFð~hðiÞÞ.

Step 5 OUTPUT



Table 1
The illustration of the implement process of Quasi-Newton method.

Iterations 0 1 2 3 4 5 6

Case (i): ðk;pÞ ¼ ð10;0:5Þ with initial value ðc;l;gÞ ¼ ð1;15;2:0Þ
Fðc;l;gÞ 987.973 882.065 845.430 838.786 838.458 838.457 838.457
l 15 16.4035 17.3194 17.5741 17.5901 17.5903 17.5903
g 2.0 2.78381 3.59146 4.13419 4.29150 4.30117 4.30120
@F
@l �19.9189 16.4035 �1.11143 �0.05537 �0.00008 1:57� 10�8 �8� 10�11

@F
@g �176.914 2.78381 �21.1504 �4.00835 �0.22011 �0.00075 �8:5� 10�9

Ls 6.05405 4.24438 3.28115 2.89676 2.81312 2.80833 2.80831
Hessian 14:26 �0:114

�0:114 225:9

� �
6:754 �0:086
�0:086 83:88

� �
4:511 �0:069
�0:069 39:00

� �
4:070 �0:062
�0:062 25:48

� �
4:046 �0:06
�0:06 22:76

� �
4:046 �0:06
�0:06 22:60

� �
4:046 �0:06
�0:06 22:60

� �
Case (ii): ðk;pÞ ¼ ð20;0:2Þ with initial value ðc;l;gÞ ¼ ð3;10;2Þ
Fðc;l;gÞ 1052.33 971.631 942.421 936.060 935.615 935.612 935.612
l 10 11.5153 13.2741 14.6682 15.1728 15.2168 15.2171
g 2.0 2.46623 2.71924 2.75081 2.74176 2.74098 2.74098
@F
@l �59.8568 �23.5812 13.2741 �1.69159 �0.12620 �0.00083 �4:8� 10�8

@F
@g �77.6947 �24.0490 2.71924 �0.59183 �0.04460 �0.00031 4:16� 10�9

Ls 4.82721 3.42012 2.65292 2.31515 2.22369 2.21614 2.21609
Hessian 36:25 10:56

10:56 132:3

� �
12:73 4:723
4:723 62:22

� �
5:547 2:580
2:580 41:83

� �
3:386 1:861
1:861 38:37

� �
2:900 1:686
1:686 38:22

� �
2:862 1:671
1:671 38:21

� �
2:862 1:671
1:671 38:21

� �
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To demonstrate the valid and the procedure of optimization solution, we perform some examples shown in Table 1 by
considering the following cost parameters as

Ch = $90/customer/unit time, Cs = $15/unit time,
Cv = $30/server, Cr = $45/unit time, Cp = $120/server

From Table 1, we can see that the minimum expected cost per unit time of 838.457 is achieved at ðl�;g�Þ ¼
ð17:5903; 4:30120Þ by using 6 iterations, which is c ¼ 1 based on Case (i) with initial value ðl;gÞ ¼ ð15;2:0Þ. Based on Case
(ii), the initial value ðc;l;gÞ ¼ ð3;10;2Þ and the minimum expected cost per unit time of 935.612 is achieved at
ðl�;g�Þ ¼ ð15:2171; 2:74098Þ by using 6 iterations.
5.2. Direct search method

After we obtain the joint optimal value ðl�;g�Þ of the continuous variable ðl;gÞ, we will use direct search method to ob-
tain the optimal c such that the expected cost function Fðc;l�;g�Þ attains a minimum, say Fðc�;l�;g�Þ. Therefore, the cost
minimization problem can be illustrated mathematically as:
Table 2
The opt

c

(i) ðk
c = 1
c = 2
c = 3
c = 4
c = 5

(ii) ð
c = 1
c = 2
c = 3
c = 4
c = 5
Fðc�;l�;g�Þ ¼ min
c2f1;2;...;cUg

Fðc;l�;g�Þf g: ð28Þ
The procedure to find the optimal solution is described in the following. A numerical example is shown in Table 2 based
on (i) ðk; pÞ ¼ ð15;0:5Þ and (ii) ðk; pÞ ¼ ð20;0:8Þ.
imal value ðl�;g�Þ and the corresponding minimum expected cost.

Initial value Coverage valueðl�;g�Þ Iteration Cost*

;pÞ ¼ ð15;0:5Þ
[20,2.0] [24.32507,5.332980] 7 1052.297
[15,2.0] [15.28433,3.798293] 6 895.4944
[10,2.0] [12.37270,3.088068] 6 920.8427
[10,2.0] [11.00938,2.679454] 5 998.4310
[10,2.0] [10.26962,2.428360] 5 1098.187

k;pÞ ¼ ð20;0:8Þ
[25,5.0] [30.75986,6.423140] 6 1288.713
[20,3.0] [18.73113,4.824175] 6 1071.252
[15,2.0] [14.85998,4.032956] 6 1073.578
[10,2.0] [13.05122,3.560957] 6 1137.429
[10,2.0] [12.06278,3.260737] 6 1232.625



Table 3
The optimal value ðc�;l� ;g�Þ and it’s minimum expected value for various value of k and p.

ðk; pÞ (5,0.2) (10,0.2) (20,0.2) (5,0.8) (10,0.8) (20,0.8)
c� 2 2 2 2 2 2

ðl�;g�Þ [7.249477, 1.471333] [11.60659,2.295007] [19.16225,3.550663] [7.091449,2.326386] [11.32231,3.368702] [18.73113,4.824175]
Fðc�;l�;g�Þ 532.099 685.935 932.038 610.522 792.191 1071.252
Ls 1.154063 1.717796 2.565803 1.481779 2.275863 3.436747
E½V � 0.442712 0.465296 0.463387 0.870082 0.864552 0.796331
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Algorithm 3. Direct Search Method
INPUT cU ; F� ¼ M which M is a sufficiently large number

OUTPUT approximation solution S� ¼ ðc�;l�;g�Þ and F� ¼ Fðc�;l�;g�Þ.

Step 1 for c =1 to cU
Step 2 Set a initial trial solution ðl;gÞ

Step 3 Use Quasi-Newton method to find the optimal value ðl�;g�Þ and the
cost function Fðc;l�;g�Þ

Step 4 If the algorithm is diverge, back to step 2 end if

Step 5 If Fðc;l�;g�Þ < F�
Step 6 F� ¼ Fðc;l�;g�Þ and S� ¼ ðc;l�;g�Þ

Step 7 end if
Step 8 end

Step 9 OUTPUT S� and F�
It is noted that the optimal value ðc�;l�;g�Þ ¼ ð2;15:284;3:7983Þ and the corresponding minimum cost F� ¼ 895:4944 for
Case (i). For Case (ii), ðc�;l�;g�Þ ¼ ð2;18:731;4:8242Þ and F� ¼ 1071:252 are optimal.

Finally, we perform a sensitivity investigation to the optimal values ðc�;l�;g�Þ. For various values of k and p, the minimum
expected cost Fðc�;l�;g�Þ and the system performance measures Ls, and E½V � at the optimum values ðc�;l�;g�Þ are shown in
Table 3.

From Table 3, it is seen that (i) c� is insensitive to k or p; (ii) l� increases as k increases; and (iii) g� increases as k or p
increases. Moreover, the minimum expected cost increases Fðc�;l�;g�Þas k or p increases.

6. Concluding remarks

An infinite capacity M/M/c queueing system with modified Bernoulli vacation (M/M/c/MBSV queueing system) was stud-
ied used the matrix-geometric method. This system was formulated as a QBD process and the necessary and sufficient con-
dition for the stability of the system was deduced. More important, the explicitly closed-form solution of stable condition
and rate matrix of the QBD model was obtained, and then the stationary probability distributions were explicitly developed.
We have not only obtained exactly the steady-state probability and the system performance measures using matrix ap-
proach but also presented one efficient method to find the optimal number of servers, the optimal service rate and vacation
rate, simultaneously, so as to reach the minimum cost. The explicit closed-form of single-server system (M/M/1/MBSV
queueing system) was also discussed. We finally have performed a sensitivity analysis between the joint optimal values
ðc�;l�;g�Þ and specific values of k and p.

From practice viewpoint in this study, servers can be viewed of machines. Each machine takes a single vacation when it
completes a service and finds an empty queue. This corresponds to a planned maintenance progressing for the idle machine.
If one machine surely finds someone waiting in the queue at a service completion, it takes a vacation. This corresponds to an
unplanned maintenance progressing for the machine. This study is not difficultly extended to the case that server/machine
takes multiple vacations when an empty queue is found upon a service completion.
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